Skip to main content
. 2015 May 22;282(1807):20141958. doi: 10.1098/rspb.2014.1958

Table 1.

Derivation of population dynamical stability properties. Point estimates for population parameters [ri, Ki] (in log-normal scale), equilibrium densities in number of breeding pairs [Ni*] and eigenvalues [λi] for the three study plots with statistical support for interspecific interactions (αij). All systems are feasible [all Ni* > 0] and locally stable (all |λi| < 1), such that populations will return to equilibrium following a small perturbation. Plot B shows a shift in relative abundances of the two species across the temperature threshold (θ), but no change in feasibility or local stability conditions. We created 1000 bootstrap samples and estimated the parameters for the corresponding model in each sample. By definition, the system is locally stable when (αii · αjj > αij · αji). In our case, (αii · αjj = 1) and (1 > αij · αji). Models formulations are summarized in electronic supplementary material, table S1.

location speciesi ri Ki αij Ni* λi significance of 1 > αij · αji interpretation
Plot HP GT 3.77 5.11 0.51 43.27 0.83 p < 0.001 stable coexistence
BT 2.24 5.84 0.84 14.22 0.05
Plot B GT (TempSpring < θ) 5.20 4.70 0.25 47.45 −0.51 p < 0.001 stable coexistence
BT (TempSpring < θ) 6.20 6.21 0.74 28.98 0.40
GT (TempSpringθ) 5.20 4.70 0.25 41.49 0.75 p < 0.001 stable coexistence (tending towards unstable; see text)
BT (TempSpringθ) 4.65 9.51 1.51 49.49 −0.34
Marley Wood GT 2.16 4.55 0.25 35.76 0.85 p < 0.001 stable coexistence
BT 1.59 7.05 0.90 45.64 0.45
Liesbos GT 3.29 3.81 0.06 36.94 0.14 p < 0.001 stable coexistence
BT 2.00 2.32 −0.21 21.59 0.14