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Intracellular endosymbiotic bacteria are found in many terrestrial arthropods

and have a profound influence on host biology. A basic question about these

symbionts is why they infect the hosts that they do, but estimating symbiont

incidence (the proportion of potential host species that are actually infected)

is complicated by dynamic or low prevalence infections. We develop a

maximum-likelihood approach to estimating incidence, and testing hypotheses

about its variation. We apply our method to a database of screens for bacte-

rial symbionts, containing more than 3600 distinct arthropod species and

more than 150 000 individual arthropods. After accounting for sampling

bias, we estimate that 52% (CIs: 48–57) of arthropod species are infected

with Wolbachia, 24% (CIs: 20–42) with Rickettsia and 13% (CIs: 13–55) with

Cardinium. We then show that these differences stem from the significantly

reduced incidence of Rickettsia and Cardinium in most hexapod orders, which

might be explained by evolutionary differences in the arthropod immune

response. Finally, we test the prediction that symbiont incidence should be

higher in speciose host clades. But while some groups do show a trend for

more infection in species-rich families, the correlations are generally weak

and inconsistent. These results argue against a major role for parasitic

symbionts in driving arthropod diversification.
1. Introduction
Terrestrial arthropods carry an array of intracellular endosymbiotic bacteria.

These bacteria have a profound influence on their hosts and are thought to

affect areas of biology ranging from reproductive mode and resistance to

viruses, to effective population size and rate of speciation [1–7]. Some of the

bacteria are also remarkable for the breadth of their host range [3,8–10], but

relatively little is known about why they infect the hosts that they do.

Several authors have suggested that symbiont infection frequency might vary

predictably with host biology [1,3,6,7,9–16]. For example, two distinct arguments

predict that symbionts should be more common in host taxa that are species rich.

First, some symbionts might cause reproductive isolation in their hosts, thus

increasing the number of species in infected groups, relative to uninfected

groups [17–19]. Second, if symbionts occasionally switch hosts, and if these

switches take place preferentially between closely related host species, then sym-

bionts should be more common in host groups with many closely related species,

as these relatives can act as ready sources of infection [20,21].

Hypotheses of this kind are common, but difficult to test in a rigorous com-

parative framework (though see, e.g. [6,15]). This is partly because symbiont

incidence (i.e. the proportion of potential host species that are actually infected)

is not easy to measure. While symbionts can be detected with PCR-based screens,

infections vary in their prevalence (i.e. the proportion of individuals infected),

and so it follows that low prevalence infections will be difficult to detect, that

symbiont absence is impossible to prove, and that the number of infected

samples might grossly underestimate the number of infected populations
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Figure 1. Estimates of symbiont incidence, x0.001 (i.e. the proportion of species infected at a prevalence of greater than 1/1000) in terrestrial arthropods. Estimates
obtained from (a) fitting a beta distribution to the complete database; (b) fitting a doubly inflated beta distribution to the complete database, and so allowing for
completely uninfected or completely infected species; (c) standardized sampling (i.e. a weighted sum of estimates from the largest arthropod taxa, using the single
largest population sample from each sampled species).
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[8,22]. Furthermore, the infection status of a population can

change rapidly [3,20,23,24], and this makes any single

sample a mere snapshot of the ongoing ecological dynamics.

A way to mitigate these problems is to combine data

from several populations, and estimate the distribution of

prevalences across a group of potential hosts [8]. This distri-

bution might be relatively stable, even when infection in any

single species changes rapidly [20,21,25,26], and it allows us to

infer the number of unobserved, low prevalence infections,

even when few populations were sampled in depth. Such an

approach to estimating incidence was pioneered by Hilgen-

boecker et al. [8] and has since been applied to several bacterial

symbionts [8,26,27]. Here, we extend the approach in a full

likelihood-based framework; this allows us to place proper con-

fidence intervals on our incidence estimates, and to formally test

hypotheses about whether and why incidence varies.

We apply our method to a newly collated database of

published screens for three genera of bacterial secondary sym-

bionts: Wolbachia, Rickettsia and Cardinium. Each genus

employs a range of transmission strategies but is best known

as a reproductive parasite, manipulating the sexual biology of

hosts to facilitate vertical transmission via the egg cytoplasm

[1,3,4,7]. Most importantly, each genus has been extensively

studied, and so our database contains screens of over

150 000 individuals from over 3500 distinct arthropod species.
2. Material and methods
(a) Data collection
We searched the literature for PCR-based screens of Wolbachia, Rick-
ettsia and Cardinium in wild populations of terrestrial arthropods

(see electronic supplementary material, S1). For each population,

we recorded the host species, the number of individuals screened

and the number found to be infected. Our database includes data

from 361 source publications, and over 10 000 populations, and is

included as electronic supplementary material. Each screened

arthropod was classified according to up-to-date taxonomy (elec-

tronic supplementary material, figure S1). To estimate the relative

species richness of arthropod groups, we used estimates of the

number of described species (electronic supplementary material,

table S2). These will, of course, be a crude proxy for true species

number, but are acceptable for our purposes, given the many

difficulties in extrapolation [28].

(b) Model
Following [8], we initially assume that between-population vari-

ation in prevalences can be adequately described by a beta
distribution, whose parameters are estimated from the screen

data. From the best-fit distribution, we calculate the proportion

of species infected above a given threshold frequency c, and

denote this estimate of symbiont incidence as xc [8]. Most results

reported use c ¼ 0.001, and thus we define a population as

‘infected’ if it has a prevalence of greater than 1/1000 individuals.

We use this threshold for expedience, but it is clear that the pro-

portion of species in which no single individual is infected will

be difficult to estimate with much confidence or precision.

Furthermore, the threshold frequency reflects a biologically mean-

ingful distinction between established infections and very low

prevalence ‘dead-end’ infections, which are unlikely to persist in

the host population [29,30]. Details of the model and numerical

methods are found in electronic supplementary material, S2.
3. Results
(a) Estimating symbiont incidence
We begin by estimating symbiont incidence across the terres-

trial arthropods as a whole. Figure 1 shows three such

estimates for each bacterial genus. The initial estimates (a)

were obtained from fitting a simple beta distribution to our

complete database of screens. Owing to the shape of the

beta distribution, these estimates entail the assumption that

no population is completely free from infection (with a preva-

lence of exactly zero), and no population is completely

infected (with a prevalence of exactly one, as with an obligate

or primary symbiont). To relax this questionable assumption,

we developed a method of fitting a doubly inflated beta dis-

tribution [31] which does allow for completely uninfected

and completely infected host populations, as well as popu-

lations with intermediate prevalence. Comparing the two

models on simulated data shows that the doubly inflated

distribution is much more accurate when, in reality, a large

fraction of populations do not harbour the symbionts (elec-

tronic supplementary material, S3 and figure S2). However,

for our real data, fitting the doubly inflated distribution

had almost no effect on estimates (b), suggesting that the

simpler model is reasonably adequate.

More fundamentally, we are interested in the incidence

across arthropod species (i.e. the proportion of species

infected), and for this purpose, estimates from our complete

database will be biased in at least three ways. First, and most

obviously, some species are represented by a single population

sample, and some by many samples. For example, the vectors

of rickettsial disease (Parasitiformes and Siphonaptera) are

hugely overrepresented (electronic supplementary material,
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Figure 2. Estimates of symbiont incidence, x0.001 (i.e. the proportion of
species infected at a prevalence of greater than 1/1000) in the two major
subphyla of Arthropoda. Each pair of bars shows the incidence of a different
bacterial genus, and compares estimates for Hexapoda (left-hand bar) and
Chelicerata (right-hand bar). Estimates used ‘standardized sampling’ (see
main text). P-values above each set of bars are from a likelihood ratio
test of heterogeneity in the estimates.
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figure S1). Second, there are clear taxonomic biases in the

sampled species. In particular, minor arthropod orders are

overrepresented (presumably from studies of symbiont host

range; electronic supplementary material, figure S1). Third,

and more subtly, sampling might be biased by the concen-

tration of research effort on populations and species that

were already known to contain infection [8].

To mitigate and test for these biases, we developed a

three-stage process, which we call ‘standardized sampling’.

First, we subsampled our data, retaining only the single

largest screen from each species. Second, we estimated

incidence for each of the major groups of arthropods, and

then combined these estimates in a weighted sum, weighting

each group by its contribution to total arthropod biodiversity.

Third, we tested for differences in symbiont prevalence

between multi-individual screens (which are more likely to

be carried out on species known to carry infection), and

single-individual screens (which are most likely to resemble

a quasi-random sample of species). Full details are given in

electronic supplementary material, S4, and results obtained

with standardized sampling are labelled (c) in figure 1.

These improved estimates are substantially lower than the

estimates from the complete database, but they remain remark-

ably high. We estimate that just over half of terrestrial arthropod

species are infected with Wolbachia at a non-negligible frequency

(52%, CIs 48–57), around a quarter infected with Rickettsia
(24%, CIs 20–42) and around an eighth infected with Cardinium
(13%, CIs 13–55). Furthermore, we cannot reject the possibility

that Rickettsia and Cardinium incidences are much higher

(figure 1). Their large and skewed confidence intervals reflect

the underlying distributions of prevalences that we inferred

from the data. In particular, for all bacteria, we inferred that

most single species were subject to either very high or very

low levels of infection at any given time (electronic supplemen-

tary material, table S1; [8,26,27]). However, estimates of mean

prevalence levels were much lower for Cardinium and Rickettsia
(less than 6%) than for Wolbachia (24%; electronic supplemen-

tary material, table S1). As such, for Cardinium and Rickettsia,

it was difficult to distinguish between low incidence and a

high incidence of low prevalence infections; this uncertainty is

reflected in the high upper bounds on our estimates.

(b) Variation in incidence between bacteria and major
arthropod host groups

We next tested for differences in symbiont incidence between

bacteria and between major host groups. Figure 2 compares

estimates of incidence for the best-sampled subphyla of

arthropods, namely Hexapoda (insects and relatives), and

Chelicerata (represented by arachnids in our database), after

applying standardized sampling. Results show no significant

difference in the incidences of Wolbachia in hexapods (51%)

versus chelicerates (61%), and no significant difference in

the incidences of the three bacteria in chelicerates (Wolbachia
61%, Rickettsia 51% and Cardinium 60%). As such, the clearest

pattern in our data is significantly lower incidences, in hexa-

pod hosts, of Rickettsia (22%) and especially Cardinium (8%)

[14]. (We note that results are quite different when standar-

dized sampling is not applied, confirming the benefits of

this approach; electronic supplementary material, figure S4.)

The pattern in figure 2 might be explained in many

ways, but one possibility is differences in arthropod innate

immunity [32,33]. (WJ Palmer 2014, personal communication.)
Comparative genomics shows that chelicerates lack key com-

ponents of the IMD immune pathway (WJ Palmer 2014,

personal communication), which is primarily responsive to

Gram-negative bacteria [34], and activated by DAP-type

peptidoglycans [35]. Peptidoglycans are not thought to be pro-

duced by Wolbachia [36,37], but are produced by Cardinium
[36,38], and also by Rickettsia, albeit sometimes at very low

levels [39,40]. Therefore, the low incidence in hexapods of

Rickettsia and especially Cardinium, might be due to their elicit-

ing an additional immune response, not found in chelicerates,

and not induced by Wolbachia in any host group. Suggestive sup-

port for this hypothesis comes from within hexapods, where the

paraneopteran orders Hemiptera (true bugs), and Psocodea

(lice) are also known to lack components of IMD [33]. Figure 3

shows that for Cardinium, the six arthropod groups with the

highest estimated incidence (the five sampled chelicerate

groups, and Hemiptera) all lack IMD components. This pattern

is weakly present in Rickettsia (where it applies the three groups

with highest incidence), and is wholly absent in Wolbachia.

Regardless of its cause, figure 3 suggests that closely

related groups of host might have similar levels of symbiont

incidence. This is borne out in formal tests, where Cardinium
and Rickettsia, but not Wolbachia, show weak evidence of

phylogenetic signal in their incidence levels (electronic

supplementary material, S5.1 and table S4).

(c) Species richness and symbiont incidence
We next tested the prediction that infection levels in a

host group will tend to increase with its species richness

[18–21]; this is best tested with many taxonomic groups of

similar age, and a rough biological similarity [11,13,18], and

so we considered arthropod families or genera within major

orders. Formally, we regressed estimated incidence in a

family against its described species number, using various

cut-off frequencies to define an ‘infected’ species (it is

unlikely that, say, a speciation event would be caused by a

very low prevalence infection; electronic supplementary

material, S5.2). Results (electronic supplementary material,

table S5 and figure S5), showed no clear pattern. For example,

in Coleoptera (beetles), a significant positive relationship
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Figure 3. Estimates of symbiont incidence, x0.001 (i.e. the proportion of species infected at a prevalence of greater than 1/1000) for three genera of bacterial
endosymbionts, across orders (and some superordinal groups) of terrestrial arthropods. Grey points show estimates from our complete database, and black
points show estimates with standardized sampling, in which all sampled species were represented by the single largest population sample. Shading and vertical
lines demarcate some major host groups, including Hexapoda (left-hand panel) and Chelicerata (right-hand panel).
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between incidence and species richness is found for both

Wolbachia and Rickettsia, but Araneae (spiders) show the

opposite result. Furthermore, the explanatory power of the

model is very low in all cases (only with Wolbachia infections

at more than 50% prevalence in Coleoptera does the model

yield a pseudo-r2 above 10%).
4. Discussion
We have introduced a maximum-likelihood estimator of sym-

biont incidence (the proportion of potential host species that
are actually infected), and applied our estimator to a large

database of PCR screens for Wolbachia, Rickettsia and

Cardinium in terrestrial arthropods. We have also introduced

methods to account for the most serious sources of sampling

bias, including weighting estimates from different groups by

their contribution to arthropod diversity. Obviously, other

biases will persist (nobody could hope to obtain a truly

random sample of all arthropod species) and it remains prac-

tically impossible to prove the absence of a symbiont in a

given species. Most seriously, our estimates will be reliable

only if prevalences in the sampled populations are represen-

tative of the species range as a whole. When only a tiny
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proportion of the species range has been sampled, this is

impossible to prove. For although migration between popu-

lations and species-specific susceptibilities will act to

homogenize prevalences across populations, geographical

isolation, habitat variation or intraspecific genetic variation,

could lead to large, sustained differences. In the worst-case

scenario, prevalences across populations of a given species

would be completely uncorrelated with each other. In such

a case, our xc would correspond, roughly, to the incidence

across populations, while the incidence across species

would tend towards 100% (since, with uncorrelated preva-

lences, it becomes extremely unlikely for all populations of

a given species to be free from infection at any given time).

Reality must lie somewhere between these two extremes,

and so our incidence estimates are probably downwardly

biased.

With these caveats, we have estimated that Wolbachia,

Rickettsia and Cardinium infect, respectively, around a half,

a quarter and an eighth of terrestrial arthropod species

(figure 1). These differences mask remarkably similar inci-

dences in chelicerates (figures 2 and 3), and stem from the

significantly lower incidences of Rickettsia and especially

Cardinium in some hexapod groups [14,25] (electronic sup-

plementary material, table S4). We have speculated that this

might reflect evolutionary changes in arthropod immunity,

since many of the groups with higher incidences lack com-

ponents of the IMD pathway [32–34,36,41] (WJ Palmer

2014, personal communication), and IMD is activated by

DAP-type peptidoglycan [33], which is produced by

Cardinium [36,38] but not Wolbachia [36,37].

Finally, we tested the prediction that incidence levels

should be higher in host groups that are more speciose

[17–21]. Data from some groups, such as Coleoptera, sup-

ported the prediction, but overall, the correlations were

inconsistent and generally weak (electronic supplementary

material, table S5 and figure S5). There are three possible

explanations for these negative results. First, there is limited

power, stemming from inadequacies in our data, or the low

precision in our incidence estimates. However, several

groups did yield significant results—but not consistently in

the predicted direction (electronic supplementary material,

table S5). Second, a confounding factor might have masked

a true underlying correlation. For example, competitive
exclusion among symbionts might lead to high incidence of

one bacterium being predictably associated with low inci-

dence of another (though see [22,42]), or species richness

might correlate with clade age, which might also affect

incidence [43]. Alternatively, symbionts might induce specia-

tion without transferring to the new daughter species, or

might often drive their hosts extinct [44,45].

Third, and finally, there might be no causal relationship

between species number and symbiont incidence. The predic-

tion stems from (i) models of biased host switching, in which

symbionts transfer more readily to closely related hosts

[20,21] and (ii) suggestions that symbionts might cause host

speciation [17–19]. Regarding host shifting, there is strong

evidence of between-species transfer in all three bacteria

(both phylogenetic [3,7,46,47] and experimental [41,48]), but

evidence of bias is indirect, coming from phylogenetic clus-

tering [7,11,13,24,46,47] (strong experimental evidence

comes solely from Spiroplasma, an ecologically similar, but

phylogenetically distant endosymbiont [49]). The evidence

for symbiont-mediated speciation is even sparser. Host

reproductive isolation might arise as a passive by-product

of host–symbiont coevolution (since any genomic change,

whether in host or symbiont, might have negative epistatic

fitness effects in a hybrid background [4,19]). But the most

plausible route to rapid speciation is through reproductive

manipulations that cause isolation, such as cytoplasmic

incompatibility, or host parthenogenesis. Not all manipula-

tions have been observed in all host–parasite combinations,

and so this might explain the inconsistent results (electronic

supplementary material, table S5). Nevertheless, taken

together, our results must count as evidence against the

claim that symbionts are a major cause of diversification

across the arthropods as a whole.

While no consistent effect of species richness has been

found, we hope that the methods presented here will prove

useful for testing the many further hypotheses about the

causes of endosymbiont incidence in nature.
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