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Ecological processes that can realistically account for network architectures are

central to our understanding of how species assemble and function in ecosys-

tems. Consumer species are constantly selecting and adjusting which resource

species are to be exploited in an antagonistic network. Here we incorporate a

hybrid behavioural rule of adaptive interaction switching and random drift

into a bipartite network model. Predictions are insensitive to the model par-

ameters and the initial network structures, and agree extremely well with

the observed levels of modularity, nestedness and node-degree distributions

for 61 real networks. Evolutionary and community assemblage histories

only indirectly affect network structure by defining the size and complexity

of ecological networks, whereas adaptive interaction switching and random

drift carve out the details of network architecture at the faster ecological

time scale. The hybrid behavioural rule of both adaptation and drift could

well be the key processes for structure emergence in real ecological networks.
1. Introduction
Antagonistic interactions, such as herbivory, parasitism and predation, are impor-

tant to the provision of ecosystem function and service [1]. It represents the

process of resource exploitation in ecological networks [2] and can divide species

into clusters where consumers within a cluster are likely to share the same func-

tion and exploit similar resources [3–6]. This process of resource exploitation can

also create a nested structure where species connected to specialists are embedded

in the set of species connected to generalists [7]. Such clustering (namely, com-

partmentalization) and nested architectures can have profound effects on the

stability of ecological communities [7–14]. Specifically, compartmentalization

tends to stabilize ecological networks by containing the effect of perturbations

within modules [3,11,15]. By contrast, although nested structure can foster high

species richness [12] and enhance resilience against perturbations [9,10,16], it

reduces species persistence in mutualistic networks [17] and destabilizes the com-

munity [14]. Despite their important role in securing ecosystem functions and

services during perturbations, mechanisms that can account for the level of com-

partmentalization and nestedness close to those observed in real ecological

networks remain poorly understood.

Both adaptive interaction switching [18] and evolutionary history [19,20] have

been put forward as important factors in shaping the architecture of ecological

networks. As the antagonistic interaction largely reflects the relationship between

resources and consumers [2], it is the consumer’s adaptive decision-making be-

haviour that decides which resources to exploit and, therefore, the structure of

a bipartite ecological network. This adaptive nature of selecting and switching

interaction partners (i.e. tuning target resources) is essential for the survival of

consumers that are competing for available resources [21–23]. Adaptive inter-

action switches occur when the quantity and quality of available resources

changes. Consumers prefer to select highly profitable resources rather than con-

suming all resources available to them as specified in optimal foraging theory

[24]. Concurrently, they will exploit abundant resources over rare ones to avoid
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risk [25,26]. This adaptive behaviour of interaction switching

could well be the predominant process that pushes an ecologi-

cal network towards becoming compartmentalized or nested,

forming a potentially stable and resilient complex community

[18,27]. Furthermore, as evolutionary history can affect the

traits of both consumers and resources, it often determines

the availability and accessibility of resources on a physiological

level [28,29]. Consequently, the architecture of an ecological

network is also shaped by the imprint from its evolutionary

history [20,30,31].

To date, although quite a few models have been put forward

for explaining the emergence of function, compartmentaliza-

tion and nestedness in antagonistic networks, those can be

further improved and refined, especially regarding their pre-

dictive power, to incorporate all essential forces of evolution

[32,33]. Evolution is largely driven by mutation, natural

selection and random drift. Adaptive interaction switching

implemented in most of these models only emphasizes adap-

tation from one or two particular processes, specifically by

using the classical optimality methodology in evolutionary

ecology [33] or optimization-based analytical treatment for

adaptive behaviour [18,27]. To capture the essence of network

evolution, the role of random drift needs to be appreciated,

which is an important non-adaptive force to counterbalance

the process of optimization. Real networks are often sub-

optimal, and ignoring random drift in optimality models can

lead to the exaggeration of network architectures. To this end,

a hybrid model that emphasizes both adaptation and drift

could offer a more complete picture of network evolution.

Here we explore whether a model implementing both

the processes of adaptive interaction switching and random

drift can obtain a realistic level of compartmentalization,

node-degree distribution and nestedness in real antagonistic

networks. To do so, we first incorporated adaptive interaction

switching and random drift in a modified Lotka–Volterra

model, with the resource consumption depicted by the Holling

type II functional response for multiple species. Consumers

in the model are allowed to not only selectively eliminate the

unfit resources from their diets based on the benefits and

abundances of these resources (i.e. an adaptive process), but

also randomly try out new resources (i.e. random drift). This

hybrid behavioural rule depicts adaptation as Alfred Russel

Wallace’s natural selection via the elimination of the unfit and

random drift as the innovation in foraging behaviours,

making it distinctive from other rules of adaptive interaction

switching. This hybrid rule, thus emphasizes the interplay

between adaptation and drift in driving the emergence of rea-

listic network architecture. We go further by examining the

sensitivity of model outputs to a wide range of initial structures

and parameter values, representing a diverse evolutionary

history, and model performance by comparing model predic-

tions with observed modularity, nestedness and node-degree

distributions from 61 real antagonistic networks collated from

literature. This model not only highlights the adaptive nature

of ecological networks (i.e. the importance of density-dependent

behavioural regulation) but also the role of random drift in

explaining the emergence of network structures.
2. Model and methods
Let us consider an antagonistic network, consisting of m
resource species and n consumer species. The population
dynamics of resource i is controlled by its own density-

dependent recruitment minus the loss due to feeding by

consumers, whereas the population dynamics of consumer j
is governed by the increase rate due to exploiting resources

(depicted by Holling’s type II functional response) minus

its mortality. This yields the following Lotka–Volterra

resource–consumer model:

1

Ri

dRi

dt
¼ ri � ciRi �

X
j

aijvijNj

1þ h
P

k akjvkjRk
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1

Nj

dNj
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X
i

b jiaijvijRi

1þ h
P

k akjvkjRk
,

9>>>>=
>>>>;

(2:1)

where Ri and Nj are the population size of resource i and con-

sumer j, respectively; ri and ci the intrinsic growth rate and the

density-dependent coefficient of resource i; dj the mortality of

consumer j. The last term depicts the functional response of

resources to the exploitation of consumers [34–36], satisfying

all rules for prey switching (equivalent to the last functional

response listed in the table of Morozov & Petrovskii [37]).

Specifically, the binary interaction matrix faijg indicates

whether resource i is exploited by consumer j (aij ¼ 1) or not

(aij ¼ 0); the preference matrix fvijg depicts the probability

of whether consumer j decides to exploit resource i once

encountered; the benefit matrix fbjig represents the benefit

received by consumer j from consuming an individual of

resource i, also known as the conversion efficiency; h denotes

a consumer’s handling time of a resource individual and

is assumed to be equal for all consumers on all resources

(h ¼ 0.1). To keep the model simple, direct competition

within the same trophic level is ignored as its impact on popu-

lation dynamics is often much weaker than antagonistic

interactions of resource exploitation [6], thus emphasizing

indirect resource competition.

We define the hybrid rule of adaptive interaction switch

and random drift as follows. At each time step, a consumer

stops wasting its limited foraging time on the resource that

contributes the least to its fitness gain, and a randomly selected

consumer also starts to exploit a new resource. This hybrid rule

of interaction switch depicts the process of natural selection as

the elimination of the unfit and the behavioural innovation

of trying out new resources. Specifically, the above model

(equation (2.1)) was numerically solved with a time step of

0.01; at each time step, a randomly selected consumer species

stops exploiting the resource that contributes the least to its

per capita population growth rate (i.e. the resource with

the minimum non-zero numerator in the consumer’s func-

tional response, bjiaijvijRi in equation (2.1)); at the same time

step, a consumer starts to exploit a randomly selected new

resource. This hybrid behavioural rule not only emphasizes

the adaptive process that the consumer gradually improves

its resource utilization efficiency by retaining highly beneficial

and abundant resources and eliminating less beneficial and

rare ones [36], but also allows for behavioural innovation that

new resources can be exploited by consumers via the random

drift of interactions.

In the simulation, the entries of binary interaction matrix

were initially randomly assigned 0 or 1, with the number of

interactions being equal to the observation from the real net-

works and also ensuring no isolated species in the network.

Moreover, multiple values of parameters and initial interaction

matrices were used to ensure the robustness of model predic-

tions. When running the model we randomly assigned
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Figure 1. The effect of initial network structure and model parameters on the dynamics of modularity over time. Simulations of (a,b) were run for the network from
Thompson & Townsend [45] and Labunets [46] (PH22 and HP20 in electronic supplementary material, table S1), respectively, with parameters assigned as in Case II
of the electronic supplementary material, figure S1. Simulations of (c) were run for the network PH22 using various demographic and benefit parameter ranges,
while simulations of (d ) were run for PH22 using different values of handling time. Dashed lines represent the observed modularity of the real network.
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values to the model parameters and chose only to report the

results for parameters that ensure the persistence of all species

in the network (see the electronic supplementary material).

The performance of the model was evaluated by comparing

predictions with the observed modularity (i.e. the extent

to which nodes cluster into compartments [38]), nestedness

(i.e. specialist species interact with a subset of the partners of

generalist species [7]) and node-degree distribution (depicting

the asymmetry of network topology [39–41]) of 61 real net-

works (33 host–parasitoid and 28 plant–herbivore), collated

from published materials. For each input of observed network

size and interaction numbers, the model was run from t ¼ 0 to

300 (each time unit of t includes 100 time steps).

The modularity of interaction matrix was calculated by

using the software NETCARTO based on simulated annealing

[42], with the statistical significance tested by the null

model F that has fixed row and column sums equal to the

observations (similar to the SIM9 in [43]). Nestedness was

measured by ANINHADO v. 3.0 [44], with the significance

tested by null models ER (random matrices with equal con-

nectance to the observations) and CE (probability of an

interaction equals (Sri/Nc þ Scj/Nr)/2, where Sri and Scj

are sums of row i and column j, Nc and Nr are the number

of columns and rows, respectively). The predicted modularity

and nestedness were the average of 200 matrices for t ¼ 101,

102 . . . 300 after the dynamics of the network has reached its

stable equilibrium, and the node-degree distribution calculated

for the interaction matrix at t ¼ 300. Reduced major axis

regression was used to compare observed with predicted mod-

ularity and nestendess, and the Kolmogorov–Smirnov test was
used to compare the observed with predicted node-degree dis-

tributions. We further used a general linear (statistical) model to

partition the variance of observed modularity into proportions

explained by network size and connectance, with/without

considering the hybrid rule of interaction switch.
3. Results
Through the interaction switch, the modularity of a network

gradually converged to a stable equilibrium similar to the

observed modularity of the real network, and as illustrated

in figure 1 this equilibrium is also independent of the initial

interaction matrix and assigned model parameters (see also

figure 2; for details see the electronic supplementary material,

appendix S1). The predicted levels of modularity for the 61

real networks were not significantly different from their

observed values as demonstrated for two sets of model par-

ameters using the reduced major axis regression (figure 2a:

slope ¼ 0.95, t-test for y ¼ x, t ¼ 21.15, p ¼ 0.26; figure 2b:

slope ¼ 0.97, t ¼ 21.19, p ¼ 0.24; see the electronic sup-

plementary material, table S1 for the prediction and

observation for each real network), with more than 90%

variation of observed modularity explained by the model

(r2 . 0.9). Surprisingly, the trajectory of network structure

was not necessarily evolving towards a higher level of mod-

ularity; rather, the predicted networks showed a significantly

lower level of modularity than the modularity of initial

random networks (t ¼ 18.066, p , 0.001; t ¼ 15.48, p ,

0.001; figure 2c,d).
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Predictions of nestedness also agreed well with the

observations. Of the 61 real networks, 55 were significantly

nested when using the null model ER, and 49 were signifi-

cantly nested when using the null model CE (electronic

supplementary material, table S2). In addition, the predicted

NODFs of the 61 networks were significantly higher than

the nestedness of their initial random networks (t ¼ 219.36,

p , 0.001; t ¼ 219.033, p , 0.001; figure 3c,d).

Our model also produced the node-degree distribution

resembling the observations (figure 4). The Kolmogorov–

Smirnov test revealed no significant difference between the

observed and predicted node-degree distribution for more

than 98% of the real networks (inset of figure 4), with only

one distribution of consumer degrees differing significantly

from the observation (see the electronic supplementary

material, table S1). Evidently, the model has successfully

predicted, with admirable precision, the observed levels of

compartmentalization, nestedness and node-degree distri-

butions, suggesting that the model has captured the essential

process of structural emergence in antagonistic networks,

namely the adaptive interaction switch plus random drift.

The general linear model that explains the observed level of

modularity in these 61 networks by the number of resource

species, the number of consumer species and the number of

interactions in the network can also explain a substantial

amount (52%) of modularity variation (F3,57 ¼ 22.5, p , 0.01;
adjusted r2 ¼ 0.518). This still suggests an extremely high pre-

dictive power of our model, adding nearly 40% variation

explained over the general linear model. Network size does

not play a significant role in determining network architecture,

here specifically modularity (less than 7% variance explai-

ned, F2,58¼ 3.102, p ¼ 0.052; figure 5). Instead, the role of

network size on network architecture is indirectly realized

through affecting network complexity (i.e. explaining the

number of interactions in a network, 63% variance explained,

F2,58¼ 52.32, p , 0.001; figure 5). Network complexity alone

is an important factor explaining compartmentalization

(29% variance explained, F1,59 ¼ 25.86, p , 0.001) and when

together with network size can explain 52% variance of modu-

larity (F3,57 ¼ 22.49, p , 0.001; figure 5). With network size and

complexity as the input, our model that incorporated the

hybrid rule of interaction switch can explain 90% variance of

modularity (F1,59¼ 514.09, p , 0.001).
4. Discussion
Consumer–resource interaction is the mainstay of ecosystem

function in food webs, both in antagonistic (e.g. parasitic and

predation) and mutualistic (e.g. pollination and seed disper-

sal) networks [48,49]. The optimal foraging theory predicts

that a consumer can maximize its energy intake rate by
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optimally allocating searching and handling time; in doing

so, the consumer will only target highly beneficial resources

and discard wasting time on low-benefit resources [24].

A recent update on the optimal foraging theory suggests

that imprint from past experience and hunger aversion can

also make consumers prefer abundant resources to those rare
ones even if the abundant resources are less profitable than

the rare ones [25,26]. The component of adaptive interaction

switch in the model reflects this updated optimal foraging

process of both profit seeking and hunger aversion as the

decision of a switch depends on both the benefit (bjiaijvij) and

the abundance (Rj) of exploited resources.
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Although such a behavioural rule of adaptive interaction

switching that can rapidly change interacting partners has

been suggested a key force of shaping the structure of ecological

networks [18,32,33,50], the optimization via adaptive inter-

action switching alone would lead to unrealistic extreme

structures in ecological networks, such as perfectly nested

structures in mutualistic networks or a higher level of compart-

mentalization than null model predictions in antagonistic

networks, exaggerating the level of asymmetry in network top-

ology. This highlights the counterbalancing role of random drift

in pushing network structures back from the extremes to a rea-

listic level. The hybrid behavioural rule not only included the

adaptive process of eliminating the unfit interacting partners

but also the random drift of interactions between species.

Importantly, the simple model implementing both adaptive

rewiring and random drift of interactions successfully predicted

the observed level of compartmentalization and nestedness in

real antagonistic networks (figures 1–3), with the proportion

of variance explained drastically improved from the general

linear model based on network size and connectivity. The

hybrid behavioural rule of both adaptive rewiring and

random drift could well be the key processes for structure

emergence in real ecological networks.

Results from this model, together with progress made in lit-

erature, further allow us to elucidate key drivers behind the

emergence of network architecture (figure 5). First, evolutionary

history, community assembling process and environmental

characteristics (e.g. productivity and heterogeneity) could lar-

gely determine the number of species (i.e. network size) and

the composition/turnover of species and traits (i.e. model par-

ameters) that a community can hold [4,5,30,51–54]. Second,

extracting the contribution of network size and complexity,

the hybrid behavioural rule alone can explain nearly 40% vari-

ation of observed modularity. Such a hybrid behaviour rule of

adaptation and drift can occur rapidly at a pace even faster
than the typical ecological time scale (e.g. host switch in para-

sites [21]) and is the most important determinant of network

architecture (figure 5). The hybrid behavioural rule, together

with network size and complexity, can account for more than

90% variation of network architectures. We suggest that this

model almost perfectly explains fundamental network architec-

ture as only 10% variance is unaccounted for—which could be

due to many other stochastic factors or sampling artefacts.

The conceptual framework proposed in figure 5 also pin-

points two future research directions: (i) factors determining

the number of species that a community can hold (i.e. network

size); and (ii) mechanisms of how network size indirectly

affects network architectures through directly dictating net-

work complexity. To this end, the interplay of environment,

evolutionary process (e.g. adaptation limits) and community

assembly rule (e.g. species packing of generalist/specialist)

could together determine the ceiling of species richness and

the interaction complexity within a community. Studies on

species packing in local and regional communities (e.g. on

Darwin’s naturalization hypothesis and the integration of

alien species in native species assemblages) could shed light

on these research directions [4].

For a long time, ecologists have sought a solution to the

diversity–stability debate [55] with comparisons such as binary

versus weighted interaction matrices, antagonistic versus mutua-

listic interactions, and random versus non-random interactions

[3,6,11,14,22,33,55,56]. However, most early models in this

debate depict a rigid network with a constant interaction

matrix, with Lyapunov stability a proxy of ecological stabi-

lity, portraying whether the perturbation caused by small

changes in population sizes amplifies or dampens [14]. This

is inconsistent with the dynamic and adaptive nature of eco-

logical systems. The interaction matrix in recent models of

adaptive interaction switch is constantly changing, reflecting

an adaptive network and ecosystem converging or responding

to changes [22,27]. By allowing consumers to readjust their

exploited resources via updating the interaction matrix, our

model successfully captured the essence of the structural

emergence and the process of stabilization in antagonistic net-

works (see the electronic supplementary material, figure S7),

suggesting that a network model implementing all relevant

evolutionary processes is a better proxy than a rigid network

for ecological communities and that the adaptive interaction

switch is important for forecasting the response of ecosystems

to environmental changes and perturbations [18,57], without

ignoring the behavioural innovation from random drift that

can further broaden the evolutionary trajectory. To this end,

we should also consider structural stability [58] or more

generally evolutionary stability of ecological networks. Since

Lyapunov and evolutionary stability reflect different aspects

of interaction networks, they have different implications for

understanding network resilience. This is highlighted in evol-

utionary invasion analysis (e.g. adaptive dynamics) where

ecological and evolutionary stability are clearly distinguished

and handled separately (e.g. [59]). The complexity–stability

debate will be better resolved once these two stability concepts

are differentiated for the unique value that each captures in

describing interaction networks and the resilience thereof.

The adaptive interaction switch allows the abundance of

species to fluctuate without necessarily leading to extinction

when facing perturbations [21] and is a vital adaptive behav-

iour that can rebalance the network back to its equilibrium

(figure 1) and buffer ecosystems against perturbations [22].
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It is, thus, a strong structuralizing and stabilizing force

that compartmentalizes antagonistic networks, which can

also form nested structures in mutualistic networks [33,36].

Species do select and adjust which other species to interact

with, in response to changes in ambient environment

and resource availability [21–23]. Fast ecological processes

(e.g. density- and benefit-dependent interaction switching,

selective foraging and importantly randomly drift), together

with the slow evolutionary processes behind network size

and complexity (e.g. assemblage history and the coevolution

of trait complementarity), are dominant forces that give rise

to the realized network architecture. The lack of either one

will seriously hamper our understanding and predictive

power of how ecosystems function. Our results highlight the

need to incorporate random drift in current models based on

adaptive interaction switch for maximizing the predictive

power. Lessons should be learned from population genetics
that considers evolution as driven by adaptation (natural selec-

tion plus mutation), genetic drift and gene flow. Future

network models could further consider the process of coloniza-

tion, extinction and speciation to initiate a shift in modelling

from closed to open and adaptive systems.
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