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Cells can move through extracellular environments with varying geometries and

adhesive properties. Adaptation to these differences is achieved by switching

between different modes of motility, including lamellipod-driven and blebbing

motility. Further, cells can modulate their level of adhesion to the extracellular

matrix (ECM) depending on both the level of force applied to the adhesions

and cell intrinsic biochemical properties. We have constructed a computatio-

nal model of cell motility to investigate how motile cells transition between

extracellular environments with varying surface continuity, confinement and

adhesion. Changes in migration strategy are an emergent property of cells

as the ECM geometry and adhesion changes. The transition into confined

environments with discontinuous ECM fibres is sufficient to induce shifts from

lamellipod-based to blebbing motility, while changes in confinement alone

within a continuous geometry are not. The geometry of the ECM facilitates

plasticity, by inducing shifts where the cell has high marginal gain from a

mode change, and conserving persistency where the cell can continue movement

regardless of the motility mode. This regulation of cell motility is independent of

global changes in cytoskeletal properties, but requires locally higher linkage

between the actin network andthe plasma membrane at the cell rear, and changes

in internal cell pressure. In addition to matrix geometry, we consider how

cells might transition between ECM of different adhesiveness. We find that this

requires positive feedback between the forces cells apply on the adhesion

points, and the strength of the cell–ECM adhesions on those sites. This positive

feedback leads to the emergence of a small number of highly adhesive cores,

similar to focal adhesions. While the range of ECM adhesion levels the cell can

invade is expanded with this feedback mechanism; the velocities are lowered

for conditions where the positive feedback is not vital. Thus, plasticity of cell

motility sacrifices the benefits of specialization, for robustness.
1. Introduction
Motile cells are required to navigate through a variety of extracellular conditions,

both in terms of the geometry and adhesiveness of the extracellular matrix (ECM).

These changing environments have different motility requirements [1]. Certain

ECM geometries favour a mode of motility that uses actin polymerization within

lamellipodia to push the membrane forward. By contrast, other geometries favour

migration dominated by high actomyosin contractility and hydrostatic pressure

pushing the plasma membrane forward. The latter form of migration is character-

ized by membrane blebs. Similarly, different cell–ECM adhesion levels result in

different motility modes becoming more efficient [2]. To maintain motility in

response to changes in the extracellular environment, cells can adapt their behav-

iour. The plasticity of cell motility can be exploited in pathological contexts such

asthe spread ofcancercells through the body. However, it is unclear what regulatory

mechanisms confer this adaptability and if this plasticity comes at the cost of

the benefits of specialization. A large number of inter-connected physical and
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biochemical parameters involved in determiningthe efficiencyof

cell migration, many of which may also determine changes in

migration strategy[3]. This complexity can be daunting;however

computational modelling has recently started to provide analytic

frameworks that enable the precise, and context-dependent role

of individual phenomena to be determined.

Beyond biochemical perturbation of a selected motility

driver, changing the ECM geometry can induce motility mode

changes. Leucocytes can move in a lamellipod-dependent

mode on in vivo surfaces, such as the endothelial lining, and

switch to a low adhesion, flexible morphology mode of motility

within interstitial collagen [4,5]. Adult skeletal muscle stem cells

crawl on the basal lamina, and during penetration of the basal

lamina and through the meshwork of myofibres, they switch

to movement with a flexible morphology and plasma mem-

brane blebbing [6]. The plastic nature of cell motility under

ever-changing extracellular conditions is frequently observed,

yet our understanding of the factors enabling these shifts is

limited. A better understanding of these factors are essential,

in both promoting cell movement, such as in stem cell treat-

ments; and inhibiting it, such as targeting cancer cell motility

during metastasis.

In the current work, we focus on how migrating cells adapt

to changes in ECM geometry and adhesiveness. We build upon

our previously reported computational model of cell motility

that incorporates flexible cell morphology, plasma membrane

blebbing, lamellipodia formation and interactions with the

ECM filaments [2]. First, we show that shifts in modes of

motility in response to changes in matrix geometry are an

emergent property of the model. These changes are linked to

the confinement-driven hydrostatic pressure changes of the

cell and the availability of surfaces to spread lamellipodia.

Within confined environments, changes in ECM adhesiveness

can also lead to changes in migration mode. However, changes

in cell–matrix adhesion on unconfined surfaces frequently lead

to cell detachment and loss of migration. To overcome this

difficulty, we investigate the influence of introducing a feed-

back between the strength of cell–ECM adhesions and the

forces applied on junction points [7,8]. Incorporation of this

feedback to the model is sufficient for formation of spatially

discrete high-adhesion regions, reminiscent of focal adhesions.

We show that cells equipped with mechanosensing and

adhesion regulation have higher robustness when faced with

changes in adhesion levels, but their velocities are lower than

the peak velocities at optimum adhesion levels. Overall, the

observed plasticity of cell motility ensures cells continue move-

ment under changing conditions; and comes at the cost of peak

velocities cells could reach, under conditions optimized for the

current extracellular state.
2. Results
2.1. A two-phase solution to cell motility mode

efficiency is mapped to distinct regions of cell –
extracellular matrix adhesion and extracellular
matrix geometry spectrums

To study the plasticity of cell motility, we use a physical

model of cell dynamics [2] (electronic supplementary

material, figure S1a). The model cell has flexible morphology;

it can form two basic types of protrusions: lamellipodia
and plasma membrane blebs. The ECM fibres are defined

explicitly, allowing for investigation of detailed interactions

between the ECM geometry, cell–ECM adhesion regulation

and cell motility mechanisms (see ‘Cell motility model’ sec-

tion in Material and methods). Our previous version of the

model could reproduce many features of cell migration, how-

ever the considerations of membrane blebbing and cell–ECM

adhesion were over-simplified. In this study, we improve

these aspects of the model and increase its computational effi-

ciency (see electronic supplementary material, Initiation of

blebs on retracting blebs section and figure S1b–d ). Following

implementation of these changes, we use our model to inves-

tigate the regulatory mechanisms that enable plasticity of cell

motility, under changing environment conditions.

We first investigate the cell velocity performance under

various ECM geometries, cell–ECM adhesion levels and

actomyosin contractility levels. In accordance with experi-

mental observations, the cells in simulations are polarized to

have increased myosin and cortex–membrane linkage (ERM

protein) at the cells’ rear [9–12] (electronic supplementary

material, figure S1e–g), as a means of generating robust direc-

tional motility. The lamellipodia formation rates are inversely

linked to myosin concentrations on the cell surface, mimicking

the antagonistic effect of Rho–Rac signalling [13]. Figure 1a
shows that significant cell velocities can be achieved in all the

matrix geometries tested. An intermediate level of cell–ECM

adhesion is optimal on unconfined surfaces (figure 1a(i)).

Lower levels of cell–ECM adhesion can be tolerated in confined

continuous environments (figure 1a(ii)) and matrix adhesion is

not required in confined discontinuous environments (figure

1a(iii)). Our simulations with polarized lamellipodia in the

absence of myosin polarity suggest polarity in the contractile

forces is necessary for consistent and rapid directional move-

ment of the cell body (electronic supplementary material,

figure S1h, also see ‘A detailed description of the cell motility

model’ section). These results are consistent with our findings

using the previous version of the model [2]. Therefore, our

modifications to make the model more computationally efficient

and incorporating blebs on blebs have not fundamentally

altered the behaviour of the model.

To obtain a quantitative insight into cell migration

mode changes, metrics are implemented for the extent of mem-

brane blebbing and lamellipodia. The extent of plasma

membrane blebbing is scored as the percentage of blebbing

cell surface. The contribution of lamellipodia on cell motility

is scored by the lamellipodia spreading on ECM surfaces. At

each time point, the binary lamellipodia score is 1 if the cell

has spreading lamellipodia in the selected direction (front or

rear), and 0 otherwise (see electronic supplementary material,

‘Protrusion Scores’ section). These metrics are then calculated

for all matrix adhesion and contractility conditions tested in

figure 1a. This reveals lamellipodia are dominant when

cells are moving on or between continuous surfaces (figure

1b), and blebs dominate in discontinuous environments

(figure 1c). In line with experimental data, increasing contracti-

lity correlates with increased blebbing [14]. Exemplars of these

migration modes for cells with a cell–ECM adhesion value of

20 and overall contractility of 1.4 are shown in figure

1d(i–iii). A further feature of this analysis is that reduced

adhesion favours membrane blebbing (figure 1d(iv)). For a

cell moving in a confined continuous environment with a con-

tractility value of 1.4, the profile of cell velocity with varying

cell–ECM adhesion suggests a single broad peak of velocity
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Figure 1. Motility mode characterization. (a) Velocity heatmaps showing the performance of a cell with blebs and lamellipodia (i) on a surface, (ii) in a confined
continuous and (iii) in a confined discontinuous environment; y-axis: adhesion levels, x-axis: overall cell contractility. Cell polarity is 50% increased contractility at
the cell rear accompanied by a 50% reduction of contractility at cell front, and 40% reduced ERM levels at cell front. (iv) Colourbar is valid for a(i – iii). (b) Front
spreading lamellipodia score and (c) blebbing surface percentage heatmaps, organization same as in (a). (d ) Simulation snapshots for contractility 1.4, (i) from
a(i), adhesion 20, (ii) from a(ii), adhesion 20, (iii) from a(iii), adhesion 20, and (iv) from a(ii), adhesion 5. Scalebar in (i) is 5 mm, and valid for all (i – iv). (e)
Plot of velocity (black), blebbing score (dashed blue) and front spreading lamellipodia score (dashed green), against cell – ECM adhesion strength (x-axis). The cell
is in a confined continuous environment, with contractility set to 1.4. Data are extracted from heatmaps a(ii),b(ii),c(ii), and y-values are normalized to show the position
of peaks. (f ) Cell velocity (mm min21) for a cell with only blebs (cyan), only lamellipodia (magenta) and both blebs and lamellipodia (black), against cell – ECM
adhesion strength. The cells are within a confined continuous environment. Cell contractility is 1.4, data are extracted from a(ii), and electronic supplementary material,
figure S2a(ii). The distinct peaks of bleb only and lamellipodia only motilities coincide with the larger plateau of the cell with both blebs and lamellipodia.
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between ECM adhesion values of 5 and 30 (figure 1a(ii),e).

However, the blebbing and lamellipodia profiles indicate this

single broad velocity peak comprises two different migratory

behaviours (figure 1e). Cells migrate with extensive blebs at

low ECM adhesion. Above ECM adhesion of 20, there are

very few blebs, and lamellipodia dominate (figure 1d(ii),(iv)).

Further support for the relationship between matrix adhesion

and the mode of migration is obtained from velocity–adhesion

relationships of cells restricted to only blebbing or only lamel-

lipodia-driven migration (electronic supplementary material,

figure S2a–c). The maximal velocities for a blebbing only strat-

egy are achieved with cell–ECM adhesion of 5–10, whereas

the maximal velocities for lamellipodia-driven cells are 20–30

(figure 1f ). Interestingly, the maximal velocities obtained

when cells are restricted to a single migratory strategy are

higher than when both blebbing and lamellipodia are per-

mitted. This indicates that ability to employ different

migration modes comes at some cost to the migrating cell’s

maximal velocity.

The analysis above demonstrates a two-phase solution to

the problem of cell migration in different matrix geometries

or with different ECM adhesion levels. The lamellipodia-

driven migration phase dominates in the presence of

continuous surfaces and higher matrix adhesion. The bleb-

driven migration phase is observed in confined environments

that are discontinuous, or with low cell–ECM adhesion.

These data raise the possibility that cells may undergo tran-

sition between these two phases or migration modes, in

response to encountering changes in either the geometry or

adhesiveness of the ECM.

2.2. Plasticity in motility mode is an emergent property
of the model

We hypothesized that cells within our model would dynamically

alter their motility mode if the geometry of the matrix they

encountered changed. Therefore, we simulate cells moving

through changing environment geometries, as combinations

of (i) unconfined surfaces, (ii) confined continuous environ-

ments, (iii) confined discontinuous regular matrices of fibres

(figure 2a–d) and finally (iv) random meshes that are generated

based on in vivo ECM geometries [2] (figure 2e). In these simu-

lations, cells are permitted to use both lamellipodia and plasma

membrane blebbing.

When the cells switch from moving on a surface into

a discontinuous matrix (figure 2a(i)), they can maintain

their movement rate (figure 2a(ii)—solid black line), yet

there is a significant decrease in spreading lamellipodia

both towards the cell front and the rear, and a significant

increase in blebbing surface percentage (figure 2a(iii),(iv)).

Moving from a surface to a discontinuous matrix pushes

the cell towards a more blebbing motility mode. Thus, the

model can recreate a transition between different migratory

strategies in response to changing matrix geometries. These

changes occur without necessitating any regulation at the

‘biochemical’ level, such as varying the probability of

protrusion initiation, actomyosin contractility or cell–ECM

adhesion. The regulation is carried out by the availability of

resources at the physical level, first by the lack of continuous

surfaces to stabilize lamellipodia, and second, by the increase

in internal cell pressure due to cell shape change, driving

increased blebbing [15] (electronic supplementary material,

figure S3a). Although the A375 melanoma that we use for
the parameterization of our model have a predominantly

blebbing motility phenotype, simulations for a parameter

set similar to the largely lamellipodia-dependent MDA-MB-

231 breast cancer cells demonstrate the same transitions,

albeit with higher protrusion scores on surfaces (figure

2a(ii)—dashed pink line; electronic supplementary material,

figure S3g, see also ‘A detailed description of the cell motility

model’ section). Thus, plasticity of the migration mode is a

generic feature observed with parameters representing both

MDA-MB-231 breast cancer and A375 melanoma cells.

During the transition (figure 2a(i)—interval 2), when the

ECM surface comes to an end (cell centre at approx. 70 mm),

the lamellipod spreading towards the front stops elongating

and retracts, reducing the pulling forces on the cell rear. This

allows for a transient increase in rearward lamellipodia score

(figure 2a(iv)), which is reduced below that of the levels on a

continuous surface, as the cell progresses through the discon-

tinuous environment (figure 2a—interval 3). The percentage

of the cell surface undergoing blebbing increases through

the transition period and into the discontinuous matrix

(figure 2f; electronic supplementary material, movie S1).

Under confinement at the adhesion level of 20, the force bal-

ance between the ECM adhesion and contractility leads to

higher curvature at the cell tips relative to the surface curvature

of an unconfined cell. As formulated with Laplace’s law, the

higher curvature generates higher pressures under unchanged

surface tension resulting from actomyosin forces. These local

changes in the curvature lead to cells with higher internal

pressure in confined environments and to more extensive

blebbing (electronic supplementary material, figure S3a).

An inverse transition occurs while the cells are moving

onto a surface emerging from a discontinuous matrix

(figure 2b; electronic supplementary material, figure S3b,h).

When the cell leaves the confined region, the relaxation of

the cell shape leads to reduction in cell pressure, which

reduces blebbing. As the lamellipodia are stabilized and

spread the cell further, the curvature of the cell body is also

reduced, leading to further reduction in internal cell pressure.

The force balance between contractile and adhesive forces

determines the extent of spread of the cell, hence the internal

pressure and the concomitant blebbing extent (electronic

supplementary material, figure S3b).

2.3. Continuous surfaces induce actin polymerization-
based motility beyond optimal levels

Cells moving through transitions between surfaces and con-

fined continuous environments show less pronounced

changes in their motility modes. The cells stay predominantly

in the lamellipod-based phenotype at all times (figure 2c,d ).

Through the transitions between unconfined and confined

regions, the lamellipodia scores stay above 0.75 at all times,

indicative of cells stabilizing forward lamellipodia on the

surfaces, and maintaining them through the environment

changes. Inside the confined regions, the blebbing score is rela-

tively higher, yet still below 6%, and the front spreading

lamellipodia score is above 0.9. This suggests the cell stays in

a lamellipod-dominated phenotype through the transitions

between confined and unconfined surfaces (figure 2c,d,g;

electronic supplementary material, movie S2 and figure S3i,j).
Lamellipodia-driven motility is already more effective

than blebbing motility on both unconfined surfaces and

under confinement, at the adhesion level of 20 (electronic
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Figure 2. Cell behaviour in changing ECM geometry. (a – e) Cells can form plasma membrane blebs and lamellipodia. Overall contractility of the cell 1.4, 50%
increased contractility at the cell rear accompanied by a 50% reduction of contractility at cell front. Forty per cent reduced ERM at cell front. Cell ECM adhesion is 20
units. Data points taken at every second of simulation time; binned at 1 mm intervals with respect to the position of cell centre. All plots averaged over at least 10
simulations. (i) Environment schematic, (ii) instantaneous cell velocity (mm min21), calculated every minute in solid black, instantaneous velocities for cells mimick-
ing a predominantly lamellipod-dependent cell type are plotted in dashed pink for ease of comparison, further details of this set-up are given in electronic
supplementary material, figure S3g – j. (iii) Front spreading lamellipodia score (green), rear spreading lamellipodia score (dashed red) and percentage of blebbing
cell surface (blue) plotted as a function of cell position within the environment. Note the scale changes in plots for blebbing scores in c,d. (iv) Statistical analysis of
average protrusion scores for the position intervals marked on the environment schematic (i). Colour coding same as (ii). Two-tail t-test carried out between scores of
each interval within the environment, *p , 0.05, **p , 0.01 and ***p , 0.001. (a) Cell in transition from an unconfined surface to a confined discontinuous
environment; (b) from a confined discontinuous environment to an unconfined surface; (c) from a confined continuous environment to an unconfined surface;
(d ) from an unconfined surface to a confined continuous environment, and back to the unconfined surface; (e) from a surface to an in vivo-mimetic environment.
( f ) Snapshots overlaid from a representative simulation of (a). Arrow points at the lamellipod spreading towards the cell rear, within the transition zone. See
electronic supplementary material, movie S1. (g) Model snapshots for (d ), see electronic supplementary material, movie S2; (h) model snapshots for (e), see
electronic supplementary material, movie S3. For ( f – h), scale bars, 10 mm.
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supplementary material, figure S2a(i,ii)). At this adhesion, we

cannot distinguish whether the cell selectively stays in the

optimum motility mode, or the cells are able to change into

blebbing motility only when the lamellipodia are forced to

retract by the environment. To clarify this point, we ran

simulations at the cell–ECM adhesion level of 10, where
blebbing motility is more effective within confined continu-

ous geometries (blebbing only velocity—4.9 mm min21

versus lamellipod-only velocity—4.0 mm min21; electronic

supplementary material, figure S2a(ii)). Here, the cells start

having higher blebbing scores, yet, the front spreading lamel-

lipodia scores still stay at 0.8 or higher under confined regions
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rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141355

6

(electronic supplementary material, figure S3c,d ). This indi-

cates there is not a complete shift in the cell motility mode,

even under conditions where a blebbing motility mode

would have been more efficient.

Although the motility mode is not shifted, the increase

observed in blebbing is related to the pressure changes of

the cell. Under high cell–ECM adhesion, spreading lamelli-

podia are stabilized more successfully, and the cell rear is

harder to detach. Then the cell spreads more, reducing the

internal cell pressure, therefore suppressing blebbing (elec-

tronic supplementary material, figure S3e,f, for adhesion 20,

compared to figure S3c(iv),d(iv) for adhesion 10). Shape

changes induced by confinement and low adhesion can

lead to the generation of higher intracellular pressures with

a concomitant increase in blebbing.

When the cells transition into in vivo-mimetic environments

from unconfined surfaces, they change into a more blebbing-

dominated motility, with significant reduction in lamellipodia

scores and an increase in blebbing (figure 2e,h; electronic sup-

plementary material, movie S3). The characteristics of this

transition are similar to those observed in cells moving from

unconfined surfaces into confined discontinuous environ-

ments (figure 2a). Taken together, these data demonstrate

that changes in matrix geometry lead to changes in the mode

of cell migration. Further, these changes result in the utilization

of a cell migration mode that is well suited, although not

necessarily optimal, for the matrix geometry. Importantly,

these changes occur without any global changes in the overall

actin protrusion probability, actomyosin contractility, cell–

matrix adhesion or other biochemical properties of the cells.

Rather, they emerge as a natural consequence of the geometry

of the environment that stabilizes/destabilizes lamellipodia

and influence cell pressure.
2.4. Cell polarity control mechanisms are required
for plasticity

Up to this point, we have analysed cell behaviour with co-

localized myosin and cortex–membrane linkage (ERM

protein) polarity, where both myosin and ERM are higher

at the cell rear. This was based on experimental evidence of

co-localization of the myosin and ERM proteins at the rear

of migrating cells [9–11] (electronic supplementary material,

figure S1e,f ); however, these two parameters do not necess-

arily need to be similarly polarized in all physiological

settings. To investigate the roles of the relative polarity of

these proteins on plasticity of cell motility, we investigate

cell behaviour with myosin and ERM proteins localizing at

opposite ends of the cell, where myosin is higher at the cell

rear and ERM is higher at front. This leads to the cells

having a higher probability of blebbing at the rear. The

change in polarity does not change the motility mode shifts

with transitions of ECM geometry (figure 3), but we see an

approximate 50% drop in instantaneous velocity profiles

when the cell successfully shifts into a blebbing mode of

motility (figure 3a(ii),b(ii); electronic supplementary material,

movie S4(i)). With the blebs forming at the cell rear and

competing with the contractile cortex, they cause a velocity

reduction, rather than facilitating forward movement. The

velocity is indeed reduced to a level below that of a cell with-

out the ability to form blebs (electronic supplementary

material, figure S2a(iii)). Motility in confined continuous

environments is not adversely affected due to the dominant

lamellipodia (figure 3c,d; electronic supplementary material,

movie S4ii). This behaviour is reproducible at higher cell

polarities (electronic supplementary material, figure S4). How-

ever, we previously noted that this organization of actomyosin
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and cortex–plasma membrane linkage polarities yielded the

highest velocities on non-confined surfaces [2]. Therefore,

although adaptation of migratory strategy is facilitated by

similar polarization of the contractile actomyosin network

and cortex–plasma membrane linkers at the cell rear, it is not

optimal for migration on a two-dimensional surface.

2.5. Varying cell – extracellular matrix adhesion
challenges plasticity

In the simulations carried out above, the adhesiveness of

the ECM has been constant; however, cells moving through

tissue will encounter matrices of different composition that

will have different adhesive characteristics. Therefore, we

investigate the cell behaviour with changing adhesion con-

ditions. We simulate a cell moving on a surface that changes

its adhesiveness between 20 and 5 (figure 4a). Under these con-

ditions, the cell cannot pass the low adhesive region and is

detached. This indicates that variations in the adhesion proper-

ties of the ECM hinder a cell’s ability to move continuously on a

surface. However, under the same conditions within confine-

ment, the cells rapidly change between motility modes as the

cell–ECM adhesion changes (figure 4b). When the cell contacts

more adhesive ECM (value 20), lamellipod-driven motility

dominates; blebs become dominant when ECM adhesiveness

is 5 [16]. The analysis in figure 4a,b predict that a cell will

be unable to transition successfully from a confined envi-

ronment to an unconfined environment if the cell–ECM

adhesiveness is only 5. We confirm this prediction in figure

4c. Together, these simulations demonstrate that changes in

matrix adhesiveness can induce changes in migration strategy

and that the ability to effectively maintain cell migration only

occurs within a narrow range of cell–ECM adhesion values.

To enable plasticity across a wider range of matrix adhesive-

ness, a mechanism to modulate cell–ECM adhesion would

be beneficial.

2.6. A simple feedback between tension and cell – ECM
adhesion strength is sufficient for formation
of focal adhesion-like structures

Experimental studies have extensively documented the ability

of integrin-mediated adhesions to become stronger when

the forces exerted upon them increase [7,8,17]. Briefly, the

application of force to adhesion complex proteins such as

p130Cas and talin causes changes in protein folding [18–20].

This in turn alters the availability of surfaces for biochemical

regulation, either at the level of phosphorylation or protein–

protein interaction, leading to stronger cell–matrix adhesions.

We propose that a regulatory mechanism for the cell–ECM

adhesion in response to applied forces is a good candidate to

increase the plasticity of cell motility. We implement a ten-

sion–adhesion feedback in our model and test its effects on

cell motility. In this model, the forces acting on a local adhesion

point can induce changes in the adhesion strength at that point.

This is modelled similar to an ‘equilibrium concentration’

(figure 5a): the forces acting on the adhesion determine

the target adhesion strength, and the ‘concentration’ of the

adhesion point is modulated towards the equilibrium with

a turnover time comparable to actin turnover (see electronic

supplementary material, ‘Cell–ECM adhesion strengthen-

ing’ section). Within this framework, the characteristics of
the feedback mechanism are determined by the adhesion

ranges available for the cell to modulate, and force ranges it

can respond to. The low end of the adhesion range defines

the initial adhesion strength immediately at formation. The

high end of the adhesion range is the saturation point, where

further increase in the tension applied to the adhesion point

will not induce additional strengthening. The lower end of

the force range identifies the minimal force magnitude that

the cells can sense, and the high end of the force range corre-

sponds to the force level that induces adhesion saturation

(figure 5a).

To characterize the influence of the feedback mechanism,

we test a series of ranges for both the adhesion and force

components, and whether adhesion strengthening responds

to forces exerted parallel or perpendicular to the plane of

the ECM (electronic supplementary material, figure S5).

This analysis reveals that the improvements in cell velocity

at low adhesions on unconfined surfaces mostly come at

the cost of reduction in cell velocity under other conditions.

We show that the feedback response is most effective when

the forces acting on the plane of the ECM fibre facilitate

strengthening (figure 5b,c(i); electronic supplementary

material, figure S5), the adhesion range is 5–250 units, and

any positive force induces strengthening, with saturation at

300 pN (figure 5a,b).

The feedback mechanism does not cause a uniform

increase in adhesion across all points of the cell in contact

with the ECM. Accompanying a limited increase in overall

adhesion strengths, a small number of strong adhesions

emerge. The overall adhesion profiles are demonstrated as

adhesion strength heatmaps. These show the distribution of

adhesion strengths in time. In each simulation, we take the

adhesion strength distribution of the adhered nodes every

second (figure 5d(i),(ii)). For each time point, we bin the

adhesion levels at 5-unit intervals and prepare a histogram

of adhesion strengths. Then the histograms are colour

coded for the fraction values (figure 5d(iii)). Then different

time points are stacked horizontally in the form of heatmaps,

with the colour coding from the histograms (figure 5e,f ). The

heatmaps demonstrate the majority of adhesions stay at low

levels, with a very small fraction of adhesion points continu-

ing on to form strong adhesion sites, resembling focal

adhesion saturation. The frequent downward diagonal pat-

terns are typically the result of the strengthening of a single

adhesion over time. They terminate when the adhesion

becomes detached.

The strong adhesions form as a result of competitive

strengthening between nearby adhesion points. When one of

two neighbouring—equally strong—adhesions detaches sto-

chastically, the force on the intact adhesion increases, causing

a further strengthening. With a series of such successive selec-

tion events, a small number of strong adhesions emerge

(figure 5g). Under same conditions, if the perpendicular com-

ponents of the pulling forces are facilitated in adhesion

strengthening as opposed to shear forces, the cells can increase

the adhesions at a smaller range (electronic supplementary

material, figure S6a), perpendicular strengthening is not effec-

tive at generating strong adhesions in the front half of the cell.

The profiles emerging from shear forces inducing adhesion

strengthening are closer to the experimentally observed pat-

terns (electronic supplementary material, figure S6b). This is

in line with the cell geometry-dependent changes on the

forces the cells can apply on the substrate, and concomitant
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changes in focal adhesion maturation at progressing stages of

cell spreading [21].
2.7. Adhesion feedback improves plasticity of cell
motility at the cost of peak velocities

Finally, we investigate cell behaviour upon encountering

changes in adhesion strength as well as ECM geometry

(figure 6). To simulate changing ligand content on ECM sur-

face, we change the basal adhesion value in the absence of

applied force (figure 5a). At low ECM ligand regions, the

initial adhesions are formed at a minimum strength of 5

and are upregulated with every positive force. At high

ligand regions, the adhesion points are initiated at the mini-

mum strength of 20 and are upregulated only by forces

above the corresponding force level (see electronic sup-

plementary material, ‘Cell–ECM adhesion strengthening’

section). The cells that do not have the ability to regulate

their adhesions have fixed adhesions of 5 units at low

adhesion, and 20 units at high-adhesion regions.

Cells that regulate their adhesions move slower than the cells

without the feedback mechanism in confined regions and

unconfined surfaces with cell–ECM values of 20 (figure 6a-inter-

val1/2, 6b–interval1; electronic supplementary material, movies

S5 and S6). However, cells without feedback fail to move on

unconfined surface regions with low ECM adhesion, while

cells with the feedback can continue onwards. The same behav-

iour emerges when the cells are exposed to the changing

adhesion levels at different orders (electronic supplementary

material, figure S6c,d). Similar to simulations mimicking

predominantly blebbing-dependent A375 melanoma cells, the
simulations mimicking predominantly lamellipodia-depen-

dent MDA-MB-231 breast cancer cells with mechanosensing

ability display continuance of movement under changing

adhesion conditions (electronic supplementary material,

figure S6c(v)). In parallel with efficiency differences under

changing adhesion levels, the influence of tension–adhesion

feedback differs from that of a constitutively high-adhesion

state in its increased performance within discontinuous

environments and reduced performance on unconfined sur-

faces (figure 6a(iv)—dashed blue). The tension–adhesion

feedback mechanism improves the robustness of cell motility

when faced with rapid changes in ECM adhesiveness,

however this comes at the cost of peak cell velocities. To

conclude, the mechanisms that we identify to enable plas-

ticity, including ability to use blebs and lamellipodia,

co-localization of actomyosin and actin-membrane linkage

at the rear, and adhesion strengthening all reduce maximal

cell velocities, compared with the global optimum in each

separate condition.
3. Discussion
The transition of cells between different migration modes in

response to varying environmental changes is an important pro-

blem in health and disease. In our previous work, using a unified

model that incorporates lamellipodia, blebbing and cell–ECM

interactions, we identified different ECM geometries will have

different cellular requirements and efficacy of invasion through

a given matrix geometry will strongly depend on the motility

mode [2]. In this study, building upon our model, we investigate

the regulatory mechanisms that underlie transition in cell
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Figure 5. Implications of positive feedback between cell – ECM adhesion strength and tension on adhesion sites. (a) Representation of tension – adhesion feedback curve.
The equilibrium adhesion concentration is induced by shear force on the adhesion point. For cell performance with different parameter sets, see electronic supplementary
material, figure S5. (b) Schematic of the forces included in tension – adhesion feedback mechanism. (c) Cell velocity as a function of adhesion on (i) an unconfined
surface, (ii) confined discontinuous environment, with (solid lines) and without (dashed lines) tension – adhesion feedback. For the simulations with mechanosensing,
initial adhesion concentration (cmin

CAE ) and the lower limit of the force magnitude to start strengthening (Fmin) are shifted on the tension – adhesion feedback curve (a).
Data for overall contractility 0.7 are in green and 1.4 in red. Cells can form plasma membrane blebs and lamellipodia; polarity is the same as in figure 2. (d ) Adhesion
heatmap generation methodology. (i) Model snapshot for a selected time point. (ii) Close up of adhered agents in (i), and the adhesion profile plot for the adhered
agents only. (iii) Adhesion strength histogram for adhered agents, binned at 5 unit intervals. The histogram corresponds to the snapshot in (i) and (ii). Bars are colour
coded with respect to fraction magnitude, which also reflects the representation in heatmaps in (e,f ). (e,f ) Heatmaps for adhesion concentration of adhered agents,
binned at 5-unit intervals. These are the colour-coded histograms as in (d(iii)), stacked in time horizontally. The y-axis indicates the adhesion level bins, and x-axis the
simulation time (s). The cell has a minimum adhesion concentration of 5 units, polarity same as in (c), overall contractility level is 1.4. (e) Data on unconfined surface and
(f ) within a confined discontinuous environment. Colourbar valid for (e,f ). A small number of adhesion points reach very high levels, while majority stays within the
initial bin of 5 – 10 units. (g) Simulation snapshots showing the adhesion strengthening on a small number of nodes in a neighbourhood, (g(ii)) has close shots of the
boxed region in (g(i)). (iii) Colourbar for the adhesion strength of cell surface agents in snapshots (i) and (ii).
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migration strategy. We construct a model that can maintain cell

migration when challenged with changes in both matrix geo-

metry and matrix adhesiveness. Strikingly, maintenance of cell

movement through varying environments is associated with

changes in migratory strategy. This is in agreement with exper-

imentally observed plasticity in modes of cell migration

[2,3,6,16,22–25].

We find a clear distinction between the performances of

blebbing and lamellipodia-based motility modes on uncon-

fined surfaces and confined discontinuous environments.

Under all tested conditions, lamellipodia-based movement

is more effective on a two-dimensional surface, and blebbing

motility is more effective in confined discontinuous environ-

ments (electronic supplementary material, figure S2a(i),(iii)).

In line with this clear-cut difference in performance, ECM

geometry changes between unconfined continuous and con-

fined discontinuous are sufficient to induce motility mode

shifts to the cell, between dominant lamellipodia and bleb-

bing (figure 2a,b). The observed transitions are consistent

between cell types of different propensity for blebbing- and

lamellipodia-based motilities (electronic supplementary

material, figure S3g,j ), with the cell type that is better

equipped for a lamellipodia-based motility demonstrating

higher protrusions scores as expected. The changes in mode

of cell migration occur with no global changes in key actin

and cell adhesion parameters, thus we propose that the

switching of migration mode emerges from a combination

of physical and localized feedback between cytoskeletal prop-

erties and the ECM. The change to bleb-driven motility in

discontinuous confined environments is facilitated by the

lack of surfaces to stabilize lamellipodia and increased intra-

cellular pressure of the cell due to changes in cell geometry.

Similarly, when ECM geometry changes from unconfined

surfaces to the complex in vivo mimetic environment of
interstitial collagen, the cell shifts into blebbing motility,

albeit with occasional lamellipodia engaging continuous seg-

ments of matrix (figure 2e; electronic supplementary material,

movie S3). In both examples, the confined environments are

associated with increased intracellular pressure and this

leads to increased membrane blebbing. The increase in

pressure does not result from ‘biochemical’ changes in overall

levels of actomyosin contractility. Instead, we believe that

confinement in three-dimensional environments leads to

higher levels of membrane and cell cortex curvature and, fol-

lowing basic physical principles, pressure and increasing

curvature are positively correlated if cortical tension is con-

stant. Thus, the most parsimonious explanation of the

switch to blebbing migration needs only simple physics and

not biochemical mechanisms.

Changes between unconfined and confined continuous sur-

faces have less pronounced influences on the cell motility mode.

Confinement alone within continuous surfaces encourages

higher blebbing (figure 2c,d), yet is not necessarily sufficient to

enable the cell to convert from a lamellipodia-based to a blebbing

motility mode, even under conditions where bleb-driven moti-

lity would be more beneficial (electronic supplementary

material, figure S3c,d).

Increased intracellular pressure and blebbing per se are

not sufficient to ensure effective migration in discontinuous

environments. If myosin and ERM proteins localize at oppo-

site ends of the cell, then the cell velocity decreases when the

environment induces increased blebbing. Thus, for increased

efficiency, the physical regulation from the ECM geometry

additionally needs coordinated polarization of actomyosin

contractility and linkage of the actin cortex to the plasma

membrane. Indeed, such coordination is frequently observed

in experimental systems [9,26] (electronic supplementary

material, figure S1e,f ).
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The adhesion strength between the cell and the ECM is

not solely under the control of the cell. Just as the cells

encounter varying ECM geometries, they also encounter

regions of varying adhesion ligand levels on ECM fibres.

We therefore model transitions between matrices of varying

adhesiveness. Migration into regions of low cell–ECM adhe-

siveness in confined environments is associated with

increased membrane blebbing. This is in agreement with

experimental observations. However, we observe that the

cells’ ability to maintain migration in unconfined matrix

environments is sensitive to the cell–ECM adhesion level.

Specifically, if adhesion is below 10, then cells simply

detach whenever they encounter an unconfined environment.

We explored whether biomechanical regulation with a

positive feedback from the forces applied on the adhesion

would enable cells to maintain migration even in unconfined

matrices with low cell–ECM adhesion [8]. Our model ena-

bles us to explore properties of this feedback mechanism,

which cannot be tested experimentally. In particular, we

determine that strengthening of adhesion in response to

forces parallel to the matrix leads to the most effective restor-

ation of migration on unconfined surfaces with low cell–

ECM adhesion. Strikingly, when this positive feedback mech-

anism is introduced into our model, our simulations suggest

a small number of strong adhesions will emerge. Under con-

ditions with changing ECM adhesiveness, the cells

harbouring the positive tension–adhesion feedback perform

more robustly than cells with fixed adhesion levels. These

cells manage to continue movement in spite of the geometry

and adhesion changes. They succeed through conditions

where cells without adhesion regulation fail; albeit with

lower velocities in some regions. Our model suggest that

the effective regulation of cell–ECM adhesions will have a

profound influence on the adaptability of the cell to changing
environments, which indeed is observed in the motility regu-

lation and plasticity of metastasizing breast cancer cells [27].

Our simulations suggest the changes in both the geo-

metry of the ECM, and its adhesion ligand concentration,

enable the cell to adapt its motility mode for persistent move-

ment. Overall, the ability to cope with changes in the ECM

content comes at the cost of high velocities, cells specialized

for a given environment could reach. Plasticity of cell motility

sacrifices the benefits of specialization, for robustness.
4. Material and methods
4.1. Cell motility model
Computational modelling has extensively been used to probe

cell motility, from single protrusion dynamics, to interactions

with and the structure of the ECM [28–43]. A detailed analysis

of where our model fits within the available literature and its

distinctive methodologies can be found in electronic supple-

mentary material, ‘A detailed description of the cell motility

model’ section.

Our model of single cell motility defines flexible cell mor-

phology with the actomyosin cortex of the cell surface, the

plasma membrane, local concentrations of proteins residing on

the cell surface, a viscoelastic cell interior and an explicitly

defined nucleus that can change shape (electronic supplementary

material, figure S1a). This model structure allows for complete

heterogeneity of contractility (myosin concentration), actin

cortex density, cell cortex–plasma membrane adhesion

(ERM protein concentrations) and cell–ECM adhesion over the

cell surface.

Further details of the modelling methodology and par-

ameters, the features we have added into our model for the

current manuscript, the protrusion score calculation methods

and the cell–ECM adhesion feedback formulation can be found

in the electronic supplementary material.
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