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Neisseria gonorrhoeae (GC) remains a serious burden in many high-sexual-

activity, undertreated populations. Using empirical data from a 2009 study

of GC burden among pastoralists in Kaokoveld, Namibia, we expand the stan-

dard gonorrhoea transmission model by using locally derived sexual contact

data to explore transmission dynamics in a population with high rates of part-

ner exchange and low treatment-seeking behaviour. We use the model to

generate ball-park estimates for transmission probabilities and other par-

ameter values for low-level (i.e. less than approx. 1200 copies/20 ml PCR

reaction) asymptomatic infections, which account for 74% of all GC infections

found in Kaokoveld in 2009, and to describe the impact of asymptomatic, low-

level infections on overall prevalence patterns. Our results suggest that GC

transmission probabilities are higher than previously estimated, that untreated

infections take longer to clear than previously estimated and that a high

prevalence of low-level infections is partially due to larger numbers of

untreated, asymptomatic infections. These results provide new insights into

the natural history of GC and the challenge of syndromic management

programmes for the eradication of endemic gonorrhoea.
1. Introduction
Dynamic compartmental models have been effective tools for understanding

the transmission system of contagious infections [1,2], including gonorrhoea

[3]. Gonorrhoea (GC) presents special challenges to building an effective com-

partmental model, including lack of knowledge of the epidemiologic impact of

asymptomatic infections, an incomplete understanding of immune response

to gonorrhoea infection and the complexity of modelling contact network

structures. Getting empirical data for any of these is very difficult.

The earliest GC models [3,4] accounted for asymptomatic disease by includ-

ing an equation to represent a third health status (susceptible, symptomatic and

asymptomatic). They accounted for variability in sexual contact frequencies by

assuming two sub-groups differentiated by sexual activity levels. In these

models, the high-activity group—responsible for the persistence of GC, despite

R0 values of apparently less than 1 across the rest of the population—is referred

to as the ‘core’ group [3,5,6]. Since its development, the core-group concept has

been defined and applied in many different ways [7] but there is a lack of con-

sensus regarding its value for measuring, predicting and intervening on real GC

epidemics. Furthermore, Rothenberg et al. [8] argue that the concept of a core

group is too simplistic because it considers only individual risk behaviours

and not confounding influences of risk associated with one’s group membership

or environment.

More recent models have questioned the assumption that contact between

core and non-core-group members is random—certainly an oversimplification
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Figure 1. Histogram of DNA quantity in 431 urethral or vaginal samples from
participants in Kaokoveld, Namibia, 2009. Quantities of 1125 copies or
more were categorized as ‘high-level’ infections, according to a distinct
cut-off in the data. This is very close to the ID50 dose for GC as reported
by Todar [14].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150067

2
of reality—and thus, have expanded the complexity of con-

tact pattern algorithms. In their GC model, Garnett &

Anderson [9] defined a single parameter (1) of assortative

mixing to represent the proportion of all contacts that indi-

viduals reserve for their own group. Jacquez et al. [10] and

Simon & Jacquez [11] introduced the concept of preferred

mixing, in which a proportion (ri) of total contacts are

reserved for members of one’s own group, with all other

contacts (1 2 ri) randomly proportioned within the total

population, allowing for different activity groups to have

different amounts of within-group preference.

Despite the inclusion of greater biological and behaviour-

al complexity, these models still struggled to reflect real

epidemiologic patterns because good estimates for some par-

ameters were still not known. Garnett et al. [12] responded to

this problem by fitting a GC transmission model with

parameter values drawn from empirical data. Their model

described GC transmission in a clinic population in

Newark, New Jersey; it included two infected/infectious

states (symptomatic and asymptomatic), four sexual activity

groups (instead of the simple ‘core’ and ‘non-core’ dichot-

omy) and an embedded expression for assortative sexual

mixing among the activity groups. The model was informed

by empirical data from the Newark clinic population; of

course, nearly all the study subjects were symptomatic. The

model used data from the National Health and Nutrition

Examination Survey to estimate parameters for contact pat-

terns. Ultimately, they found this empirically driven model

only matched real world patterns when transmission prob-

abilities and asymptomatic disease parameters were set

unrealistically high and that the model was highly sensitive

to small changes in parameter values. The goal of this

paper is to enrich and expand the approach of Garnett et al.
especially to shed more light on the role of asymptomatic

individuals and to re-examine the transmission parameters.
1.1. A model of GC transmission in Kaokoveld, Namibia
We present a model of GC transmission among a remotely

living population of semi-nomadic pastoralists in Kaokoveld,

northwestern Namibia, among whom condom use is rare and

treatment is often inaccessible. In 2009, one of us (A.H.)

undertook a cross-sectional, empirical study of GC burden,

reproductive health and sexual behaviour and contacts in

Kaokoveld [13]. Like Garnett et al. [12], our GC model

includes four sexual activity groups and parameter estimates

based on empirical data. Also, by collecting our empirical

data cross-sectionally, rather than targeting treatment-seeking

participants, we likely captured a more realistic view of the

prevalence of asymptomatic GC cases in Kaokoveld.

Our model makes several advancements on Garnett

et al.’s work. First, our empirical data come from a population

of sexually active adults within a closed sexual network, not a

subpopulation of symptomatic patients attending a clinic.

Therefore, our estimated ranges for several parameters—

including proportion of asymptomatic infections (uk),

number of contacts (cki) and preferred mixing (ri)—are

backed by a richer dataset.

Second, because our field protocol included the collection

of urethral/vaginal swabs for qPCR-based GC diagnostics,

we were able to quantify bacterial loads for each participant

in the sample. This information led to the inclusion of a

novel complexity: a third infected/infectious status that is
exclusively asymptomatic and low bacterial load. Figure 1 pre-

sents a histogram of DNA quantities among 431 urethral or

vaginal samples from our study participants [13]. Participants

whose sample quantities had fewer than 1125 copies/20ml

qPCR reaction were categorized as having ‘low-level’ infec-

tions, according to the distinct cut-off in the data in figure 1.

This is very close to the presumed ID50 dose for GC of 1000

copies [14]. Sixty-four per cent of participants (n ¼ 276) were

GC positive; 74% of these cases were low-level.

In Kaokoveld, where most GC infections are asymptomatic

and people therefore seldom seek treatment, we found a high

prevalence of low-level infections [13]. Though the trans-

mission probability of low-level infections is likely lower

than that of high-level infections, their high prevalence

suggests they are important in maintaining endemic levels of

GC in this population. By adding this additional infection

status and using qPCR assays to quantitate GC DNA levels,

we observed infections at a finer resolution. Third, our inter-

views included questions about numbers and names of

sexual partners, which guided our parameter estimates for

contact rates and preferred mixing.

It is not the goal of this paper to derive point estimates of

the unknown transmission probabilities and infection dur-

ations. Given the high number of unknown parameters and

uncertainties in our sample’s representation of the full popu-

lation, such a goal is not achievable. Rather, following the

path-breaking work of Garnett et al. [12], we will show that

only specific ranges of parameters yield the high prevalences

we found in our sample. The goals of this paper include

descriptions of these ranges, of our paths to calculating

them, and of their implications for understanding nuances

in the spread of GC.

This research programme focused on the following four

questions:

(1) In a population where most people, not just a small core

group, have multiple and concurrent partners, how do

we model contact structure?

(2) How accurate are previous estimates of transmission

probability?



rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150067

3
(3) What are the characteristics of low-level infections?

(4) How does the addition of a low-level status of GC infection

to the compartmental model affect overall prevalence?

We will first expand on and clarify these questions, then

describe our model including descriptions of its various par-

ameters and our estimates of these parameters, describe how

our analysis of this model shed light on each of the four ques-

tions, discuss the sensitivity of our results and finally discuss

model limitations and future directions.

1.1.1. Question 1 (modelling contact structure)
Unlike many western populations, having multiple, concurrent

partners is culturally acceptable and commonly practiced

among the Kaokoveld pastoralist tribal groups. Populations

that broadly condone partner concurrency challenge the

notion of a GC-sustaining, high-activity ‘core’ group. Our

empirical dataset includes data on recent sexual partners for

all participants in the Kaokoveld study. Thus, we have a

unique ability to use detailed field-collected data to estimate

parameters for contact frequency and mixing—two crucial

but difficult to estimate parameters—for our model.

1.1.2. Question 2 (accuracy of previous estimates of transmission
probability)

Garnett et al. [12] were concerned that their transmission prob-

ability estimates were ‘too high’: (male-to-female (b1) ¼ 0.8

and female-to-male (b2) ¼ 0.6) because they exceeded the

values reported by Hooper et al. [15] and Platt et al. [16], who

used culture-based methods to estimate transmission prob-

ability and duration. We attempted to address that concern

in our model, suspecting that an additional infectious status

with transmission probability (albeit a much lower one)

might help drive overall prevalence.

1.1.3. Question 3 (characteristics of low-level infections)
The observation of highly prevalent, asymptomatic, low-level

GC cases in the Kaokoveld empirical dataset was an unex-

pected finding that yielded a number of new questions.

For example: How long does it take for high-level infections

to decrease into low-level infections? How long do low-

level infections last before they resolve? We use our model

to generate ball-park estimates of (i) the rate at which

high-level asymptomatic infections decrease into low-level

infections (ck), (ii) the transmission probability of low-

level infections (blow
k ), and (iii) the duration of low-level

infections before they resolve (gk).

1.1.4. Question 4 (impact of low-level infections on overall
prevalence)

Low-level infections are highly prevalent in Kaokoveld; this

is likely to be true in any high-activity population where

people rarely receive antibiotic treatment for their GC infec-

tions. With prevalence as high as 42% (men) and 53%

(women), low-level infections likely have an impact on over-

all transmission patterns.

The distribution of GC in Kaokoveld, as we view it from

our 2009 dataset, is really just a snapshot of a dynamic pro-

cess of transmission, self-limiting infection and disease

resolution. Our model provides an opportunity to estimate

these unknown characteristics of low-level GC infection

(e.g. transmission and duration) under the biological and
sociological conditions of Kaokoveld. We hope that our abil-

ity to include in our model more complete data on sexual

behaviour, contact structures and bacterial load will yield

sharper estimates of the transmission parameters of GC in

larger, urban populations.
2. Material and methods
2.1. Empirical dataset from Kaokoveld, Namibia, 2009
An eight-month field study was undertaken in 2009 among the

semi-nomadic, remotely living pastoralists of Kaokoveld, in north-

western Namibia. We recruited 445 participants and had complete

data (including GC status) for 431 participants. These data were

collected as part of an ecological and behavioural study of sexually

transmitted diseases that explored GC epidemiology in a high-

activity, remote population with very limited access to treatment.

Treatment in Kaokoveld is exclusively through syndromic man-

agement [17,18]. Urethral (male) and vaginal (female) swabs

were collected in the field and tested for GC-specific DNA using

qPCR, a highly sensitive molecular technique that enables DNA

quantitation [13]. Thirteen per cent of men and 17% of women

had high-level GC infections. The striking result from the Kaoko-

veld study was the high prevalence of low-level GC infections

found: 42% of men and 53% of women.
2.2. Description of the model
Building on the foundational work of Garnett et al. [12], we pre-

sent an ordinary differential equation system to model the

transmission dynamics of endemic GC—in our case for a high-

activity, undertreated population in remote Namibia (figure 2).

The model was analysed using Matlab R2012a.

Individuals in our model fall into one of four health cat-

egories: susceptible (X ), symptomatic high-level-infected

(Y s,high), asymptomatic high-level-infected (Y a,high) or asympto-

matic low-level-infected (Ya,low). Participants with low-level

GC infections were no more likely to report genito-urinary symp-

toms than people who tested negative for GC and/or chlamydia;

therefore, we have no symptomatic low-level category in our

model. Individuals in the model are categorized by sex (k ¼ 1

(males), k ¼ 2 (females)) and activity group (i). Though partner

concurrency is normative in Kaokoveld, there is still wide varia-

bility in contacts per unit of time among participants. We

therefore follow Garnett et al. [12] and allow four activity

groups. These activity groups represent four levels of contact fre-

quency, ranging from highest (i ¼ 1) to lowest (i ¼ 4) activity, but

with different mean contact rates for men and women in each

activity group (i.e. c1,i= c2,i).

Heterosexual sex is assumed; previous research [19] and our

own field interviews indicate that non-vaginal modes of sexual

contact (e.g. anal and oral) are culturally rejected and rarely prac-

ticed in the study population. With a few exceptions (identified

below), our parameter values come directly from the 2009

Kaokoveld field study dataset. See electronic supplementary

material, appendix A, for the model equations and for a full

description of the model. Final parameter estimates are reported

in table 1.
2.3. Parameter values
A goal of this paper is to use the survey data collected and more

general information about Kaokoveld to construct and study a

model of the spread of GC in rural Kaokoveld. There are three

types of parameters that are central to building such a model:

the entry and exit rates into the sexually active population, the

distribution of the levels of sexual activity among the males
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and females of Kaokoveld and the parameters that summarize

how the different groups mix for sexual activity.
2.3.1. Population parameters

2.3.1.1. Entry/exit from population (m)
Our model considers only sexually active individuals. Our entry/

exit parameter is the average number of individuals who become

(stop being) sexually active in a given period divided by the

number of sexually active people in the study population. Little

demographic data exist for rural Kaokoveld specifically, but

there are regular censuses at the district level (Kunene district).

A Namibian Ministry of Health and Social Services demographic

study [20] reported that the median age of first sexual intercourse

in the Kunene district is about 17.5 for both men and women

(Table 5.6 in the report). The age of sexual debut is slightly earlier

in the rural areas of Kunene, including Kaokoveld (approx. 16–17

years old). Tables 5.7.1 and 5.7.2 of the Namibia Demographic and

Health Survey [20] show that men and women are typically still

sexually active into their late fifties.

Based on these estimates and data for age-stratified popula-

tion numbers in Namibia [20,21], we estimate that about 23 000

Namibians turn 16.5 each year and that the total population

between the ages of 16.5 and 60 is about 500 000 (electronic

supplementary material, appendix B, table I); thus, new

16-year-olds make up 4.6% of the sexually active population. The

daily entry and exit rate into the sexually active population is

0.046/365, m ¼ 0.00013.

To keep the population dynamics from complicating the

disease transmission dynamics, we assume, as all other such mod-

elling efforts do, that the size of the sexually active population is

constant for our model simulations; thus, we work with daily

entry/exit rate m ¼ 0.00013. Our sensitivity analyses indicate our

results are not sensitive to small changes in m.
2.3.1.2. Contact rates (ck,i)
We next focus on the contact rate per person—the number of sex

partners per person per period. All survey participants were

asked to provide the names of all sexual contacts within the

last six months—the longest range of time that participants

could accurately recall contact information. For both men and

women, we identified break points to divide the participants

into four activity groups for each sex. We denote by ck,i the

mean number of contacts for persons of sex k ¼ 1,2 in activity
group k ¼ 1,2,3,4 (electronic supplementary material, appendix

B, table IV).

The challenge in constructing a population model of contacts

from the mixing data collected arises from the fact that the total

number of contacts reported by the men in the sample (683) is

more than twice as large as the total number reported by

women (305). We needed to make adjustments as our closed

population model must have the number of contacts of men

with women equal to the number of contacts of women with men.

Such a discrepancy can arise from two sources: those in the

sample may have misreported their contact history (men over-

reporting and/or women under-reporting), or the sample was

not representative of the sexual activity levels of those in the

underlying population. We claim that the women’s numbers

are where adjustments needed to be made. We do not think

men were over-reporting because the survey asked detailed ques-

tions about sexual behaviour that enabled data triangulation and

made it difficult to fabricate partnerships. We detected over-

reporting by men a few times but found that it only occurred

among very young men who had only recently begun sexual

activity. While our survey design deterred over-reporting

attempts by men during the interview process, it could not ident-

ify under-reporting by women. Thus, we assume from our

methods that women’s contact data, on the whole, were less

reliable than the men’s. Although there is little research on the

sexual behaviour norms of Kaokoveld, the existing literature, as

well as our own field knowledge [13], show that concurrency is

common and culturally acceptable among most women as well

as men [19] and that women use this freedom to select partners

that provide material and emotional support [22].

We took two steps to use the survey data to build a consistent

contact structure into our model. First, to balance the number of

men and women, we added 13 more women and distributed

them evenly among all but the highest contact rates. This brought

the number of women in the sample to 221, equal to the number

of men, and it brought the number of women’s contacts up to 399.

Second, we looked for a closed subsample within the whole

sample—individuals in the total sample who reported partners

that were also participants in the study. This yielded a subsample

of 76 women and 70 men. The majority of partnerships in this

subsample were reported by both partners. Eleven of the men

(16%) in this subsample did not report contacts that women in

the sample had reported, and 13 of the women (17%) did not

report contacts that men in the subsample had reported. Elec-

tronic supplementary material, appendix B, table II, shows a

contact matrix for this subsample where we included the contacts
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that were reported by only one partner. The result is a contact

matrix with 103 contacts. The row and column headings in elec-

tronic supplementary material, table II, indicate one of the four

activity groups.

We created a matrix of contact between men and women in

each activity group in this subsample from electronic supplemen-

tary material, table II. Electronic supplementary material,

appendix B, table III, shows that the fraction of contacts reported

by men with each activity group of women is fairly consistent

between the subsample and the full sample. This gave us an

additional reason to trust the reporting by men more than

women. Given that men reported 683 contacts in the full

sample and 103 in the subsample, we multiplied each cell

value in our subsample of contact structure (electronic sup-

plementary material, table II) by 683/103. This preserved the

distribution of the number of men in each male activity group

and generated a unique multiplier for each activity group

(c21 ¼ 1.2, c22 ¼ 2.2, c23 ¼ 2.2, c24 ¼ 1.7) for the underrepresented

numbers of women’s contacts in the full sample. By multiplying

these values by the total number of women in each activity

group, we generated a total number of contacts for women that

are symmetric to that reported by men. Final values for the

total number of women and the total number of contacts in

our model are presented in electronic supplementary material,

appendix B, tables IV and V.

As an additional check of this approach, we also ran a ver-

sion of the model where we adjusted men’s contact rates based

on women’s reports. We then ran the model over a wide range

of transmission probability estimates (bk
high ¼ 0:2–0:95 and

bk
low ¼ 0:0–0:7) and found that no model runs using values gen-

erated from women’s reports produced infectious steady states

that came close to matching empirical values from Kaokoveld

(electronic supplementary material, appendix B, table VI and

figure I). This further supports our decision to use men as the

reliable sex to balance contact rates in our model.
2.3.1.3. Mixing parameter (rjk,i)
The ckj’s discussed above keep track of the average number of

contacts in each activity group j for each sex k. The next par-

ameter in modelling the sexual contact structure is the mixing

parameter, which keeps track of who has sex with whom, in par-

ticular, what fraction of activity group i’s contacts are with

individuals in (opposite sex) group j. There are two extremes

for such matrices. In one (‘associative mixing’), members of

group i mix only with members of the corresponding group i.
At the other extreme is random or proportionate mixing in

which the fraction of a group i member’s (say, male) contacts

with female members of group j is simply the fraction of all

females in the study population that are in group j, i.e. the rela-

tive size of group j. Classically, proportionate mixing has been

the most common model assumption.

In their study of the spread of GC in New Jersey, Garnett

et al. [12] used a combination of these two mixing specifications.

They assumed that each activity group reserved a fraction r of

contacts for members of the corresponding opposite sex group

with the rest of their contacts randomly distributed among all

four activity groups (see [3]). We added a bit more flexibility in

our contact pattern model by allowing each activity group j to

reserve a different fraction (rj) for within-group mixing with

the rest proportionately distributed among all four activity

groups. Jacquez et al. [10] called this ‘preferred mixing’.

We used the Kaokoveld survey to generate contact matrices

that describe contact patterns in rural Kaokoveld. In fact, we

once again used the 146-participant subsample of those 103 con-

tacts for which both partners reported the contact in the survey.

The resulting 4 � 4 contact matrix is presented in electronic sup-

plementary material, appendix B, table II. If contacts were
random, this contact matrix would have a x2 of zero. Instead,

its x2 is 13.7. We calculated what integer values we could sub-

tract from the diagonal entries of this contact matrix (i.e. the

cells that represent the number of contacts between men and

women of the same activity group) so that the resulting matrix

would have as small a x2 as possible. We divided these sub-

tracted numbers by the total number of contacts in each group

to get the reserved fraction ri for each group. See table 1 for

final values.

2.3.2 Disease parameters

2.3.2.1. Transmission probability of symptomatic and

asymptomatic high-level infections (bk
high)

This parameter (b
high
k ) is the mean probability that a single con-

tact with a sex k0 person infected with a high-level infection will

lead to a new infection. We cannot estimate this directly from our

dataset because we do not have accurate estimates of the number

of sex acts per person or the GC statuses of participants’ contacts.

However, values for GC transmission in the literature estimate

male-to-female transmission at 0.5 by Platt et al. [16] and

female-to-male at 0.2–0.5 by Hooper et al. [15]. Garnett et al.
[12] could not maintain endemic GC in their model to match

levels seen in Newark without increasing these probabilities to

0.8 and 0.6, respectively. Though Garnett et al. were concerned

that these values were ‘too high’, our estimations suggest that

these higher values may be closer to reality for many settings.

Platt et al. [16] and Hooper et al.’s [15] empirically derived esti-

mates were based on culture detection methods, which are

very insensitive compared with molecular assays that are now

the standard. Additionally, in Kaokoveld, GC transmission—

especially male-to-female—is likely to be at the high end of rea-

listic estimates because of the frequency of partner exchange,

minimal condom use and a preference for dry sex. Thus, we

expect that the appropriate estimates for disease transmission

lie somewhere in this higher range.

2.3.2.2. Transmission probability of asymptomatic low-level

infections (blow
k )

We assume that low-level infections have a lower transmission

probability than high-level infections. However, because our

empirical work in Kaokoveld was the first to report on the obser-

vance of high prevalence of low-level infections among an

undertreated population, there are no reliable estimates for this

parameter. We use our model to generate estimates for low-

level transmission probabilities.

2.3.2.3. Recovery from symptomatic high-level infection (sk)
In the Kaokoveld dataset, the vast majority of participants who

reported having had symptoms in the prior six months sought

treatment at a clinic. Only symptomatic people receive treatment

because local sexually transmitted disease (STD) care is through

syndromic management; no screening or partner notification

programme exists. Thus, individuals in our model recover from

symptomatic infection faster than they do from other categories

of infection because they received antibiotics.

We identified survey participants who reported having had

GC symptoms within the past six months [13]. From these indi-

viduals’ data, we estimated the number of days between

symptom recognition and travel to the clinic. We separated this

parameter by sex, because women in our study typically took

longer to seek treatment. We estimated a duration average of

11.7 days for men and 14.5 days for women. These numbers

are roughly estimated because people in our study population

do not keep a specific record of dates. It takes several days
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after treatment begins (i.e. day of clinic attendance) for the anti-

biotics to clear the infection completely, and our field interviews

indicate that that there was variability in which antibiotics were

dispensed during the data collection period. Therefore, our esti-

mates for recovery from symptomatic high-level infection (sk)

are likely low and oversimplified, but offer a starting point for

calibrating the model.

2.3.2.4. Rate of movement from Yk
a,high! Yk

a,low (ck)
This parameter estimates the rate at which asymptomatic high-

level infections diminish into low-level infections. Like blow
k ,

this value is unknown because asymptomatic low-level infec-

tions had not been reported prior to the Kaokoveld study. It

has been assumed that untreated people are infectious for six

months [12], but this estimate was derived when culture was

still the diagnostic gold standard. Low-level infections were not

likely to be detectable and so previous values given for duration

of infectiousness of untreated infections might actually be an esti-

mate of how long it takes for an untreated infection to diminish

below the ID50 dose. We use our model to test this assumption.

2.3.2.5. Recovery from asymptomatic infection (gk)
This is the rate at which low-level infections diminish to the point

of complete resolution and an infected person becomes susceptible

again. Because this parameter is part of movement in and out of

the low-level infectious state, we again do not have reliable esti-

mates for this parameter. We use our model to explore

reasonable values.

2.3.2.6. Proportion of high-concentration infections that are

asymptomatic (uk)
Very few men and even fewer women with high-level GC infec-

tions in the Kaokoveld study reported symptoms. Given the lack

of screening and partner notification programmes in Kaokoveld,

people who do not perceive symptoms do not receive antibiotic

therapy. These people stay infected and infectious longer than

people who receive antibiotic treatment. The proportion of
asymptomatic—and therefore untreated—individuals in a popu-

lation will likely have a strong influence on transmission

dynamics and endemic levels of GC.

All participants in the empirical study were asked whether

they were currently experiencing (i) abnormal discharge or (ii)

dysuria (i.e. pain or itching during urination). Answers to these

two questions were tightly correlated [13], so the variables

were aggregated. Among participants with high-level GC infec-

tions, 78% of men and 95% of women were asymptomatic; this

is a much higher rate of asymptomatic infection than usually

reported in the literature, but studies among similarly rural

[23] and resource poor populations [24] find similarly low rates

of symptom reporting. In our model, u1 ¼ 0.78 and u2 ¼ 0.95.
3. Results and discussion
3.1. Calibration and validation
3.1.1. Question 1. How does contact structure affect GC

prevalence in our model?
We use the function rki for preferred mixing, with a term (ri)

for proportion of within-group contacts for each activity

group, to capture nuances of within-group preference in a

tractable way. For sake of comparison, we compared three

mixing formulations: preferred mixing with ri as in the final

model, random (or proportionate) mixing with ri ¼ 0 for all

i and associative mixing with ri ¼ 1 for all i.
We found that prevalence decreased as within-group

preference increased (figure 3). Total prevalence was highest

under conditions with completely random contact structure—

expected because this is the case in which low-activity individ-

uals mix the most with high-activity individuals (e.g. [25]).

3.1.2. Question 2. Are male-to-female transmission probabilities
higher than previously estimated?

Regarding our parameters for high-level transmission prob-

ability, we were not able to reflect the endemic levels in
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Kaokoveld if we reduced transmission below Garnett et al.’s
values of b

high
1 ¼ 0:8 (male-to-female) and b

high
2 ¼ 0:6; in fact,

we get closer to Kaokoveld prevalence levels when we increase

high-level transmission above Garnett et al.’s values to

b
high
1 ¼ 0:95 and b

high
2 ¼ 0:8 (figure 4a,b; electronic supplemen-

tary material, appendix B, table VII). We used the model to

generate rough estimates of transmission probabilities for the

low-level infected status as well. This is the first time this

status has been presented in a model of GC transmission, so

we used our calibration process to define reasonable estimates

(figure 4a; electronic supplementary material, appendix B,
table VII). Our estimates for low-level transmission probabil-

ities to match Kaokoveld prevalence levels centred around

blow
1 ¼ 0:5 and blow

2 ¼ 0:3.

To find the best estimates for b
high
k and blow

k , we ran

approximately 40 simulations with a range of different b

values. In figure 4a–c, we present a summary of some of our

runs (once we determined rough estimates for other

parameters) to illustrate our pattern for calibrating these trans-

mission parameters. Figure 4a lists all bk values used in each

run. Figure 4b shows the prevalence outputs from each run,

along with a comparison to prevalence levels in the Kaokoveld
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sample. Figure 4c shows the difference between prevalence

outputs from each run and Kaokoveld prevalence.

Run 1 (figure 4a) uses Garnett et al.’s [12] final values for

high-level infections (bk
high) and blow

1 ¼ 0:2, blow
2 ¼ 0:1. We

also ran the model (Run 2) with parameter values for bk
high

(b1
high ¼ 0.5 and b1

high ¼ 0.2) as reported by Hooper et al.
[15] and Platt et al. [16] to demonstrate that these bk values

cannot sustain infections levels seen in our Kaokoveld

sample. Our simulations systematically used different bk

values to find the combination of transmission parameters

that yielded closest model-generated prevalences to the Kao-

koveld sample values. Given our choices of the other model

parameters and of the bk’s we sampled, we found the closest

fit to the Kaokoveld sample values in Run 15: b
high
1 ¼ 0:95,

b
high
2 ¼ 0:8, blow

1 ¼ 0:5 and blow
2 ¼ 0:3. Deviations from these

values led to poorer fits to the Kaokoveld data.

Our results suggest that differences in transmission risk

between men and women persist among diminishing,

lower transmissibility infections, which might help explain

the greater prevalence of low-level infections among

women in Kaokoveld. This result also suggests that the b

values estimated by Garnett et al. are not unrealistically high.

Some discussion of the existing empirical evidence for

transmission probabilities is helpful here. The studies used

to inform GC transmission models were conducted when

the gold standard for GC diagnosis was culture [15,16]. Cul-

ture has largely been replaced by molecular techniques,

which are more sensitive and can detect GC DNA at much

lower quantities. Therefore, it is likely that many cases were

not detected in those early studies, reducing the transmission

probabilities that they generated.

Hooper et al. also found that female-to-male transmission

probability differed between two different demographic

groups in their study. Thus, it is also possible that among

some high-activity populations—especially ones with high

levels of partner exchange [26], low rates of condom use

and a preference for dry sex [27]—transmission probabilities

for both sexes are higher than previously estimated.

We do not assume that our estimates are universally appro-

priate because transmission probability is context-dependent

and is likely best represented by some range, which is influ-

enced by many factors, including bacterial load, infection

duration and frequency of past infections in the population.

It probably also depends on the environment and culture

of the underlying population. Unique behavioural character-

istics in Kaokoveld, including limited access to treatment,

minimal condom use, preference for dry sex and high frequency

of partner exchange, could easily affect the underlying

transmissibility of GC among the population.

Finally, it is important to note that our values for high-

level GC transmission may seem strange because they are so

much higher than previously suggested values from empiri-

cal studies or models. However, these rates only apply to

transmission of the highest concentration infections in the

model population, which account for about 26% of the

infections in the model. Our low-level transmission prob-

ability estimates account for 74% of the infections. If the

transmission parameters are reduced to a weighted average

for each direction (male-to-female and female-to-male), we

get b1 ¼ 0.62 and b2 ¼ 0.43, which are closer to previous

estimates. Thus, the actual problem of prior bk estimates

not being high enough to account for observed prevalences

in high-risk communities may not have been with the
estimates being inaccurate so much as there being an over-

simplification with using a one-level bk parameter, as well

as a general lack of information about asymptomatic cases.

In this vein, a considerable body of work on the

transmission of HIV, for example, stresses the role of hetero-

geneity in a number of important epidemiologic and

biologic factors, including the sex of the infected partner,

the type of sex act and the time since that partner’s infection

occurred [28,29]. To capture this heterogeneity, a single beta

just will not do.
3.1.3. Question 3. What are the characteristics of low-level
infection status?

The high prevalence of low-level GC infections in Kaokoveld

(42% of men, 53% of women) motivated the construction of

this model to define low-level associated transmission charac-

teristics of GC and explore their effect on overall prevalence

in Kaokoveld or other similarly undertreated populations

with high endemic GC levels.

Given our choices of the bk’s, our model-generated preva-

lence came closest to matching the Kaokoveld prevalence

when we set parameter values for which (i) women (s2 ¼ 24

days) were infectious at the symptomatic, high-level infection

stage longer than men (s1 ¼ 21 days) and (ii) both men and

women’s asymptomatic high-level infections lasted longer

than the six months typically estimated for untreated, asymp-

tomatic infection (gk ¼ 10.9 months). Also, women (c2 ¼ 10.9

months) remained in the low-level stage longer than men

(c1 ¼ 8.2 months) before returning to susceptible status. All

final parameter values are reported in table 1.

These numbers are greater than estimates previously

generated, but there are very few estimates from empirical

data of the natural history of gonococcal infection, and

none that were obtained in the absence of treatment where

highly sensitive diagnostics were used to diagnose and quan-

tify GC infections. An early study of untreated, incarcerated

women found that after four months of monitoring, less

than half the participants became culture negative [30]; it

follows that infection duration is at least four months, prob-

ably longer. Most aspects of the study design suggest that

disease duration was heavily underestimated. First, the

study recruited already infected, symptomatic partici-

pants—unknown numbers of days of infectiousness were

lost at the beginning of the infection. Second, participants’

GC was considered resolved when cultures became negative,

even though all ‘cleared’ participants still reported having

symptoms—this insensitive diagnostic technique was likely

not catching infections as they diminished in titre.

There are also no reliable data for untreated GC duration

for men. Handsfield et al. [31] tracked asymptomatically

infected men, but they were treated by day 165 (5.4 months);

our results indicate that infections last at least that long.

Most model-based research estimates infection duration

to be six months, which is derived from an attempt to find

the duration of infection that would fit a population where

the proportion of cases that are asymptomatic is 40–60%

[31,32]. These studies were conducted among urban popu-

lations in a clinic setting where we do not expect their

proportions for asymptomatic cases to match the proportions

found in highly remote populations. There are two reasons

for this: first, clinic-collected samples are usually biased

towards symptomatic cases because asymptomatically
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infected people are less likely to seek treatment for an STD.

Second, other studies of healthcare-seeking behaviour have

shown that infected people in high-risk settings are more

likely to disregard genito-urinary symptoms [24] and in

rural areas (where clinic access is poor) even fewer seek treat-

ment [23]. Regardless of whether a particular GC infection is
symptomatic (i.e. the person has characteristic discharge, dys-

uria, abdomen pain, etc.), if the infected person does not

recognize those conditions as infection symptoms nor seeks

treatment for them, the infection is, functionally, asympto-

matic and will have a longer duration of infectiousness

than treated infections and will attenuate in the manner we

model herein.

Our estimates need to be backed up by other empiri-

cally backed models and direct measures, but they do

shed light on aspects of GC epidemiology that are very diffi-

cult to study empirically—especially the impact of

asymptomatic disease on driving transmission, particularly

where GC infections are rarely treated and infectiousness

persists longer.
7

3.1.4. Question 4. What role do low-level infections play in
overall gonorrhoea prevalence?

Because low-level infections were highly prevalent among

men and women (there were more men and women with

these infections than there are GC negative people in our

sample), we presumed they played an important role in driv-

ing overall transmission. We predicted that if we removed

this compartment from our model, we would see a significant

drop in overall prevalence.

After calibrating the model for a closest match to Kaoko-

veld prevalence patterns, we ran the model without a low-

level infection compartment (i.e. asymptomatic high-level

infected individuals moved directly back to being suscep-

tible, figure 2). However, we found in these runs that

overall prevalence remained the same, but was driven

entirely by high-level infections (figure 5) because, when

we removed the low-level infection compartment from the

model, infected individuals did not spend several additional

months in the low-level infectious stage, which means they

became susceptible to a new infection sooner. In this version

of the model, people’s individual infections are shorter,

but reinfection frequency increases and, over time, people

spend more time in a state of high infectiousness.

Our model illustrates the impact of low-level infections on

the prevalence of high-level infections and contributes to an

old but patchy discussion on the importance of immunity

in GC epidemiology. Studies of similarly high-activity, low-

treatment populations do not report prevalences as high as

we found in Kaokoveld [33,34]. Our model suggests that,

without the added stage of low-level infection, prevalence

of high-level infections in Kaokoveld (and, presumably simi-

lar populations) would be much higher. Instead, we argue

that high GC prevalence in undertreated populations is

mostly composed of long-duration, low-level infections,

which have the effect of decreasing both the number

of potential opportunities to become reinfected and the

possibility of facing a new, severe infection.

As one of our reviewers pointed out, ‘there is an interest-

ing parallel to HIV epidemiology, previously unrecognized in

the setting of gonorrhoea: the importance of low-degree,

high-concurrency sexual networks; a high-infectivity group
(or perhaps phase); and a low-infectivity group that might

be important for endemic maintenance of infection. The par-

allel would be complete if people are most infectious soon

after acquiring gonorrhoea’.
3.2. Sensitivity and uncertainty analyses
We conducted two kinds of uncertainty and sensitivity ana-

lyses to determine the relative influence of the 31 model

parameters of the transmission dynamics on the equilibrium

values of the eight outputs: the final prevalences of uninfec-

ted males and females (X ), of symptomatic high-level males

and females (Ys,high), of asymptomatic high-level males and

females (Ya,high) and of asymptomatic low-level males and

females (Ya,low). Uncertainty analyses assess the prediction

imprecision in the outcome variable due to uncertainty in esti-

mating the value of input parameters. Sensitivity analyses

quantify how changes in the value of input parameters alter

the value of an outcome variable. Uncertainty and sensitivity

analyses are necessary to explore the behaviour of a model as

complex as the one presented here, especially because the

uncertainty in estimating the values of many of the input par-

ameters compounds the complexity of the model. For both sets

of analyses, we explored the effects of each parameter on the

eight output estimates representative of transmission in this

system. We present both analyses to assess the sensitivity and

prediction uncertainty for each parameter.
3.2.1. Sensitivity and uncertainly analyses: elasticity
The sensitivity analysis, which is the simplest approach,

involved changing the value of each parameter while holding

the other parameters fixed. This parameter sensitivity

measure (elasticity) was estimated by determining the mean

percentage change in each output from a 1% change in the

parameter of interest, relative to the values in the base run

(electronic supplementary material, appendix C, table VII).

This approach is quick and simple, but it explores only a

small region of the full parameter space.

The most sensitive parameter was the proportion of high-

concentration infections that are asymptomatic (uk). A 1%

change in u1 resulted in a 4% decrease in men’s symptomatic

high-level infections; increasing u2 by 1% resulted in a 19%

decrease in symptomatic high-level-infected women. There

were also major effects on the asymptomatic high-level men

and women. Our values for u1 and u2 are higher than those

usually reported in the literature. However, as we indicated

above, because of our face-to-face interviews, our collection

of urethral and vaginal samples, and our use of molecular

diagnostics instead of culture, we are comfortable with the

values of u1 ¼ 0.78 and u2 ¼ 0.95 for our Kaokoveld sample.

Due to local variability in the biological characteristics of

individual epidemics and accessibility of treatment, we

expect values for uk to differ among populations.

The other input parameters whose elasticities exceeded

0.58 in absolute value were (table 2): transmissibility of

high-level infection (b
high
k ) and disease duration parameters

(sk, ck, gk). The b
high
k sensitivity suggests a narrow range of

accurate estimates for these transmission probabilities. No

population or contact parameters were especially elastic,

and the numbers with low-level infection or no infection

were not particularly sensitive to parameter values.
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3.2.2. Sensitivity and uncertainly analyses: partial rank
correlations

To explore the effect of varying the values of all input par-

ameters across their whole range simultaneously, we used

Latin hypercube sampling (LHS) and partial rank correlation

(PRC) [35,36]. In LHS, a probability distribution for each of

the 31 input parameters is chosen and the support of each of

these distributions is divided into N equivalent segments

(N ¼ 2000). We then ran the model 2000 times to compute the

eight outcomes of interest, each time choosing at random and

independently, without replacement, a value for each of the

31 parameters from the 2000 subintervals. (After these 2000

runs, each of the 2000 subintervals comprising the distribution

for each of our 31 parameters had been sampled only once.)

To carry out the PRC process, we assigned ranks to our

2000 subintervals for each of our 31 parameters from 1 to

2000 in the natural increasing order. This yielded a 2000 �
31 integer-valued input matrix. We also assigned integer

ranks to the values of the corresponding outputs. Next, we

constructed a 2000� 1 matrix of the output variables gener-

ated by each of these 2000 runs and then rank-transformed

this column matrix by replacing the value of the outcome vari-

able of the ith run by its relative size (rank) among the 2000
output variables of all 2000 runs. Finally, we used the rank-

transformed input matrix and the rank-transformed output

matrix to calculate the Spearman or rank correlation coefficient

and the partial rank correlation coefficient (PRCC). The magni-

tude of the PRCC indicates the importance of the uncertainty

in predicting the value of the outcome variable, and the result

for each input and output variable is a number between 21

and þ1. The sign of the PRCC indicates whether the input par-

ameter has a negative or positive effect on the outcome

variable. PRCC is adequate for uncertainty and sensitivity

analysis of nonlinear and monotonic relationship between

inputs and outputs.

Electronic supplementary material, appendix C, table

VIII, gives the values of all the input–output combinations

that had a significant PRCC ( p , 0.001). Table 3 lists the

combinations that had significant PRCCs with absolute

value greater than 0.35. As expected, the parameters with

high elasticities also had high PRCCs (uk, sk, ck, gk). But

other input variables and output variables now play a role,

including the average number of contacts of women in the

lowest activity group (c24), the fraction of men in the

second lowest activity group (N13) and their average

number of contacts (c13) and the fraction of activity that



Table 2. Ranked parameter elasticities with absolute value greater than 0.58%. uk, proportion of high-level infections that are asymptomatic; sk, recovery rate
from symptomatic, high-level infections; gk, recovery rate from asymptomatic, low-level infections; bk

high, transmission rate of high-level infections; ck, recovery
rate from asymptomatic, high-level infections. Note the insensitivity of population and contact parameters.

high-level, symptomatic men
high-level, symptomatic
women high-level, asymptomatic men

high-level, asymptomatic
women

parameter elasticity value parameter elasticity value parameter elasticity value parameter elasticity value

u1 23.7 u2 219.08 c1 21.27 c2 21.26

s1 21 s2 20.99 g1 0.91 b1
high 0.9

g1 0.93 b1
high 0.93 b2

high 0.85 u2 0.88

b2
high 0.87 g2 0.91 u1 0.82 g2 0.87

c2 20.79 c1 20.84 c2 20.84 c1 20.82

g2 0.67 g1 0.71 g2 0.65 g1 0.68
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high-activity men and women had with each other (r1).

Unlike the results for elasticities, some of these parameters

increased the uncertainty in estimates of the equilibrium

numbers of asymptomatic and uninfected men and women.
4. Model limitations and future directions
There are several limitations to conclusions we can draw

from the key insights of our model. First, even with high

transmission probabilities and long infection durations, our

model outputs for high- and low-level GC prevalences among

women were lower than our empirical values. A likely contri-

buting reason for this is that women were under-reporting

their number of contacts. Although we were able to account

for this somewhat by estimating new contact rates using

multipliers derived from men’s more accurate contact rates, it

seems that we are still underestimating the amount of partner

concurrency among women in Kaokoveld.

Second, it is tempting to draw conclusions about immunity

to GC from our model. These results and our empirical data

from Kaokoveld do not measure immunity but are consistent

with previous observations of an incomplete immune response

to GC infections. Plummer et al. [37] show that immunity is

strain-specific and incomplete. In their study, female sex

workers were significantly less likely to be reinfected with

the same strain of GC and the longer a woman engaged in

sex work, the less frequently she was infected. It has also

been proposed that untreated infections will have a stronger

immune response than those that resolve more quickly as a

result of antibiotic intervention [31]. Adding the potential for

immunity would be an important advancement on the

model because it would allow us to make predictions about

how specific intervention programmes will affect population-

wide acquired immunity. In a resource poor setting, where

treatment is limited and erratic, immunity to disease can

play a very important, protective role.

Third, while our model allows for low-level infections to

generate from (i) exposure from a contact with another low-

level infection and (ii) a diminished asymptomatic high-

level infection, we do not allow for a new high-level infection

to result from exposure to a low-level infection. However, this

may be an important component of GC transmission,
happening when a person with a low-level infection has

sexual contact with a person who has never been exposed

to that strain before. As age-discordant couples are

common in Kaokoveld [19] (A. Hazel 2009, unpublished

field interviews), it is possible that many GC cases among

the youngest adults were the result of contact with an older

adult who has a low-level infection. It is necessary to further

explore if these contacts are important for maintaining the

15% prevalence for high-level infections in Kaokoveld and

are, therefore, ideal targets for prevention interventions.

This is especially important because it could help explain—

in addition to the problem of under-reporting by women—

why our model outputs for high-level infections in women

were lower than the survey indicated.
5. Conclusion
Using the approach pioneered by Hethcote & Yorke [3], and

especially by Garnett et al. [12], we present a model of GC

transmission that is the first to include a compartment for

reduced-infectiousness disease status (figure 2). By construct-

ing this model using (i) extensive empirical, cross-sectional

data about sexual activity and contact structure based on inter-

views in rural Kaokoveld and (ii) sensitive, quantitative

diagnostic GC assays of urethral or vaginal swabs of the inter-

viewees, we were able to interrogate old assumptions about

transmission probabilities and infection duration. Our model

supports Garnett et al.’s findings [12] that the transmissibility

of high-level infections is higher than past epidemiologic

studies have reported, further suggesting that the estimates

derived from culture-based studies are not reliable. Finally,

we described the transmission and duration of a new infec-

tious stage of GC that is the result of untreated, unresolved

asymptomatic infections. These explorations provide corrobor-

ating insights into the importance of immunity in shaping

patterns of endemic GC.

The original fieldwork in Kaokoveld was completed

when treatment options were strictly limited to symptomatic

people. This is still the case, but these studies—yielding reliable

prevalence measures and empirically backed theoretical trans-

mission models—have the potential to inform STD care to the

Kaokoveld communities and similarly remote, undertreated
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populations. With parameter estimates that are backed by

empirical validation, we can build from our current model

to predict future risk based on behavioural or epidemio-

logic transitions. This is an important future step because

the Kaokoveld pastoralists, like many remotely living

subsistence-based populations, are facing economic, cultural

and environmental changes that are likely to have an impact

on health and healthcare access [38,39].
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