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The aim of this study was to explore the hierarchical arrangement of structural

properties in cortical and trabecular bone and to determine a mathematical

model that accurately predicts the tissue’s mechanical properties as a function

of these indices. By using a variety of analytical techniques, we were able

to characterize the structural and compositional properties of cortical and tra-

becular bones, as well as to determine the suitable mathematical model to

predict the tissue’s mechanical properties using a continuum micromechanics

approach. Our hierarchical analysis demonstrated that the differences between

cortical and trabecular bone reside mainly at the micro- and ultrastructural

levels. By gaining a better appreciation of the similarities and differences

between the two bone types, we would be able to provide a better assessment

and understanding of their individual roles, as well as their contribution to

bone health overall.
1. Introduction
Cortical and trabecular bone are arranged within a hierarchical structure in

the osseous tissue: this diversity of structures allows the skeleton to perform its mech-

anical and metabolic functions. Different factors, such as bone mass, geometry,

material properties, cortical to trabecular proportion, molecular composition,

microstructure and architecture, contribute to the tissue’s strength and quality [1–3].

Collagen fibres, as an organic component, and carbonated apatite crystals,

as a non-organic component, contribute to bone’s strength by resistance against

loads applied to its structure [1]. The mineral phase is the main determinant of

stiffness, whereas collagen content governs its post-yield ductility. The mechan-

ical properties of bone are ultimately determined by the mineral content and

its distribution pattern within the collagenous matrix, as well as the tissue’s

structural, microstructural and nanostructural organization [4].

Composed primarily of osteons of concentric lamellae, cortical bone is

remarkably stiff and contributes substantially to the tissue’s mechanical

strength. On the other hand, trabecular bone is arranged in a mosaic of angular

segments of parallel sheets of lamellae and shows a greater rate of metabolic

activity, lower modulus and larger surface-area-to-volume ratio [2,5–7].

Extensive research has been conducted to distinguish cortical from tra-

becular bone [4,7–30]. Although a variety of animal models and analytical

techniques have been employed to assess the differences between these two
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structural components—especially in the context of endocrine,

dietary and stress variables—few studies have compared them

in a comprehensive manner. Bigi et al. [13] have reported the

CO3 and Ca/P content of trabecular and cortical bone in

mouse. Bagi et al. [15] analysed the yield load and stiffness of cor-

tical bone in mouse based on bone volume fraction. Toolan et al.
[31] analysed the effects of bisphosphonates on the mechanical

behaviour of rat bones. Hodgskinson et al. [19] and Kuhn et al.
[11] reported the hardness and Ca, CO3, C/PO4 and Ca/P con-

tent for trabecular and cortical bone of bovine. Limited data have

been reported on pig and dog [22,32]. The majority of work on

human contains mineral density, bone volume fraction, tissue

modulus and module of elasticity [7,21,23–27,29,30]. These

studies have produced inconsistent results and have only pro-

vided snapshots of the vast spectrum of data on which to base

an exhaustive comparison (table 1).

Given the complex nature of bone, a comparison between

its cortical and trabecular components should consider the

hierarchical arrangement of structural properties for these

two distinct tissues. Recent technological advancements have

allowed researchers to evaluate bone’s properties at ultra-,

micro- and nanostructural levels, facilitating new insights

into the tissue’s material properties. Moreover, by considering

the relative influences of certain structural parameters on bone

strength and modulus, the tissue’s mechanical properties can

be predicted by mathematical modelling with single- and

two-parameter power-law or linear functions [33–37]. How-

ever, owing to the heterogeneity and anisotropic material

properties of cortical and trabecular bone, these methods

cannot fully predict the mechanical properties of bone. In

recent years, several methods have been proposed to overcome

this shortcoming [38–43]. One of the methods considered for

this purpose is the continuum micromechanics approach

[44,45]. Continuum micromechanics is the analysis of hetero-

geneous or anisotropic materials at the level of the individual

material elements forming these materials [44,45]. It has been

used in several applications including modelling of defects in

solids [46], mechanical properties of composites [47], electro-

elastic moduli of piezoelectric composites [48] and recently in

modelling of mechanical properties of bone [40,42,43].

The aim of this study is to explore the hierarchical arrange-

ment of structural properties in cortical and trabecular bone

and to determine a mathematical model that accurately pre-

dicts the tissue’s mechanical properties as a function of these

indices (figure 1). By gaining a better appreciation of the simi-

larities and differences between the two bone types, we will be

able to provide a better assessment and understanding of their

individual roles, as well as their contribution to bone health

overall [11,18].
2. Material and methods
2.1. Specimen preparation
The study protocol was approved by the Institutional Animal Care

and Use Committee at Beth Israel Deaconess Medical Center,

Boston, MA. Thirty Sprague–Dawley female rats (20 weeks old)

were obtained from Charles River Laboratories (Charlestown,

MA, USA) and euthanized via CO2 inhalation. Cylindrical

samples of diaphyseal cortical bone (height 6.85 + 0.85 mm)

and distal metaphyseal trabecular bone (height 5.17 + 0.65 mm)

specimens were obtained from each femur (figure 2). Additionally,

secondary specimens for embedding were obtained by cutting
1-mm-thick diaphyseal and distal metaphyseal sections from all

femurs. The specimen preparation protocol has been published

in detail elsewhere [49]. All specimens underwent cleaning via

sonic agitation (Fisher Scientific International, Hampton, NH,

USA) while suspended in distilled water for 20 min, followed

by centrifugal removal of excess water and marrow at 9g for

15 min. The details of the analytical methods will be presented in

hierarchical fashion as follows.

2.2. Macrostructural properties
2.2.1. Extrinsic structural properties
All cylindrical specimens underwent uniaxial compression

(INSTRON 8511, Instron Corporation, Norwood, MA, USA) for

determination of properties through analysis of the load–displace-

ment curve. Structural stiffness was defined as the slope of the

linear portion of the curve, whereas yield load was represented

at the point where the curve ceased to be linear. The point with

the highest load value represents the ultimate load.

2.2.2. Bone tissue density (rt)
Bone mass and tissue volume (TV) of cylindrical specimens were

measured by a precision scale (AnalyticalPlus, Ohaus, Pine

Brook, NJ, USA) and gas pycnometry (AccuPyc 1330, Micromeri-

tics, GA, USA). Bone tissue density was calculated by dividing

bone mass by bone tissue volume.

2.2.3. Mineral and matrix content
In order to determine the mineral (ash mass/dry mass) and

matrix (1 2 (ash mass/dry mass)) contents, the cylindrical speci-

mens were dried at 708C for 24 h and ashed at 6008C for 96 h

(Furnace 48000, Thermolyne, Dubuque, IA, USA). It has been

shown that some parts of mineral evaporate at 6008C and quan-

titatively contribute to 6.6% of mineral weight. Therefore, the

measured mineral content should be multiplied by 1.066 to

show the actual mineral content in the bone.

2.3. Microstructural properties
2.3.1. Morphometric indices
Bone volume fraction (BV/TV) and bone-surface-to-volume ratio

(BS/BV) of the trabecular and cortical cylindrical specimens were

assessed using micro-computed tomography (mCT40; Scanco

Medical AG, Brüttisellen, Switzerland—tube energy and current,

55 kVp and 145 mA, respectively; integration time, 250 ms; and

isotropic voxel size, 20 mm).

2.3.2. Apparent material properties
Apparent mechanical properties were calculated from the stress–

strain curves obtained from uniaxial compression testing. The

minimum cross-sectional areas for cancellous and cortical bone

specimens were calculated from mCT images (figure 3). The mod-

ulus of elasticity (E) was determined from the slope of the linear

portion of the curve, while the point where the curve ceased to be

linear was designated as the yield strength (YS). The point with

the highest strength value represented the ultimate strength (US).

2.4. Nanostructural properties
2.4.1. Nanoindentation
The secondary specimens were dehydrated with ethyl alcohol,

embedded in epoxy resin and polished. The midsections of

the trabecular elements and the cortical shells were selected as

indentation sites using a Berkovich indenter (Hysitron Tribo-

indenter, Minneapolis, MN, USA) to avoid boundary condition

errors. Thirty-five indentations distributed across the cross section

of each samplewere done and the results were averaged per sample.



Table 1. A chronological snapshot of comparative hierarchical properties of cortical and trabecular bones.

level indices ref. bone type testing technique cortical bone
cancellous
bone

macro-

structure

ash (inorganic) content % [13] rat femur/tibia thermogravimetry 66.4 (0.3) 62.0 (0.3)

[21] steer vertebra/tibia gravimetry 67.86 64.55

protein content (%) [21] steer vertebra/tibia gravimetry 28 31.09

bone mineral density

(BMD) (g cm23)

[17] mouse femur/tibia mCT 1.089 (0.017) 0.745 (0.102)

[28] human (black) tibia peripheral QCT 0.229 (0.088) 1.188 (0.043)

human (white) tibia 0.255 (0.053) 1.117 (3.6)

bone tissue density (rT)

(g cm23)

[22] rat vertebra/femur gravimetry 2.066 (0.005) 1.908 (0.011)

[21] human vertebra/tibia gravimetry 1.91 1.87

steer vertebra/tibia gravimetry 1.995 (0.01) 1.93 (0.22)

stiffness (N mm21) [15] rat femoral midshaft three-point bending 47.24 (6.59) —

[31] rat femoral midshaft three-point bending 588 (75) —

rat vertebra compression — 1327 (336)

failure load (N) [15] rat femoral midshaft three-point banding 160.09 (30.80) —

microstructure BV/TV (mm3 mm23) [15] rat femur mCT 0.46 0.11 (0.04)

[17] mouse femur/tibia mCT — 0.25 (0.06)

[20] fetal pig mandibular mCT — 24.14 (4.14)

mod. of elasticity (GPa) [30] human iliac crest (23 year) three-point bending 3.76 (1.68) 3.03 (1.63)

human iliac crest (63 year) three-point bending 5.26 (2.09) 4.16 (2.02)

[7] human tibia four-point bending 6.75 (1.00) 5.72 (1.27)

[29] human proximal tibia three-point banding 5.44 (1.25) 4.59 (1.6)

yield strength (YS) (GPa) [27] human femur compression 0.109 0.089

nanostructure tissue modulus (GPa) [32] porcine femur microindentation 11.6 (9.5) 5.9 (4.3)

nanoindentation 16.4 (1.3) 21.5 (2.1)

[25] human vertebrae/tibia nanoindentation 25.8 (0.7) 13.4 (2.0)

[26] human femur acoustic microscopy 17.73 (0.22) 17.5 (1.12)

nanoindentation 20.02 (0.27) 18.14 (1.7)

[4] human femur nanoindentation 21.2 (5.3) 11.4 (5.3)

hardness (GPa) [25] human vertebrae/tibia nanoindentation 0.736 (0.034) 0.468 (0.079)

[4] human femur nanoindentation 0.234 – 0.76 0.234 – 0.76

composition CO3 (2) [13] rat femur/tibia FT-IR 3.8 (0.2) 2.3 (0.2)

[11] bovine femur/tibia chemical analysis 5.33 (0.1) 5.33 (0.18)

C/PO4 (2) [11] bovine femur/tibia chemical analysis 0.17 0.17

Ca (mg g21) [19] bovine femur colorimetry 271 257

[23] child vertebrae/femur gravimetry 194 47.4

HPO4 (%) [11] bovine femur/tibia FT-IR 20.3 (0.2) 20.7 (0.2)

PO4 [11] bovine femur/tibia FT-IR (%) 9.6 (0.1) 8.7 (0.1)

[23] child vertebrae/femur chemical analysis

(mg g21 of bone)

24.1 90.3

Ca/P (2) [13] rat femur/tibia spectrophometry 1.63 (0.2) 1.5 (0.2)

[11] bovine femur/tibia chemical analysis 1.64 (0.02) 1.58 (0.06)
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2.5. Compositional properties
2.5.1. Total protein and collagen content
Following uniaxial compression testing, cylindrical specimens were

subjected to amino acid analysis. For this purpose, specimens were

powdered using a Spex mill (SPEX Freezer/Mill; SPEX Industries
Inc., NJ, USA) and lyophilized to recover cortical and trabecular

bone powder. The matrix analysis was performed with an amino

acid analyser (Beckman System 7300; Beckman Coulter Inc., CA,

USA). The amino acids were separated by ion-exchange chromato-

graphy followed by post-column derivatization using ninhydrin

for detection. Signals at 440 and 570 nm wavelengths were
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integrated, and the concentration of each ninhydrin-reactive

component was recorded.

2.5.2. Phosphate (PO4), hydrogen phosphate (HPO4), carbonate
(CO3), carbonate/phosphate and protein/mineral content

Fourier transform infrared (FT-IR) spectroscopy was performed on

cylindrical specimens using a spectrometer (Perkin-Elmer, Wal-

tham, MA, USA). The spectra were curve-fitted in the n4 PO4, n2

CO3 and amide band domains (Galactic GRAMS Software,

Salem, NH, USA). The n4 PO4 domain shows five main phosphate

bands at 600, 575 and 560 cm21 for PO4 groups in an apatite lattice,

and 617 and 534 cm21 for non-apatitic environments correspond-

ing to surface location (figure 4a) [50]. The n2 CO3 domain was

decomposed into three bands at 879, 871 and 866 cm21 related to

types A and B carbonate, and carbonate ions in non-apatitic

environments, respectively (figure 4b) [51]. The amide–n3 carbon-

ate domain (1300–1800 cm21) was decomposed into seven bands

at 1750, 1670, 1640, 1550, 1510, 1450 and 1410 cm21. The relative
intensity of the mineral and protein bands has proven to be an

accurate measure of the mineral-to-protein ratio [52].

2.5.3. Calcium and phosphate (PO4) content
Calcium content was determined using an NBX electron micro-

probe (Cameca Instrument, Nampa, ID, USA) on isolated

mineral crystals pressed into a flat pellet (beam voltage,

10 keV; beam current, 30 nA; and a rastered beam, 64 �
64 mm) [53,54]. On the other hand, a modified Fiske and Sub-

barow colorimetric method at the peak absorption of 660 mm

was used to quantify the phosphate content [55–57].

2.6. Statistical analysis
Normality of continuous data was assessed by using the

Kolmogorov–Smirnov test. Comparative analyses were performed

by one-way analysis of variance (ANOVA), with bone type (cortical

and trabecular) as independent variables, and outcome measures

from different testing modalities as dependent variables. In

addition, a regression analysis was conducted to determine the cor-

relation between axial stiffness derived from experiments and that

derived from the micromechanics model. Statistical analysis was

performed using the PSAW software package (version 19.0; SPSS

Inc./IBM, Chicago, IL, USA). Two-tailed values of p , 0.05 were

considered statistically significant.

2.7. Mathematical modelling
Bone has a hierarchical structure [58,59]; therefore, each level of

hierarchy plays a significant role in the mechanical properties

of bone structure. Figure 5 shows the four levels of hierarchy

inspired from material composition and structure of the bone:

nanoscale (10–100 nm), submicroscale (1–10 mm), microscale
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(10–100 mm) and macroscale (0.5–10 mm). The objective of

mathematical modelling is to relate macrostructural mechani-

cal properties of bone to its elementary components, namely

hydroxyapatite (HA) crystals, collagen, non-collagenous proteins

(NCPs) and water.

A micromechanics approach is ideal for modelling the mech-

anical properties of bone owing to the tissue’s heterogeneity and

complex structure. The basic concept behind it is to hierarchically

label the representative volume elements (RVEs) in the bone

structure. Based on the micromechanics approach framework,

the RVEs should have two main aspects: first, the characteristic

dimension of these volume elements (l ) should be considerably

larger than the characteristic length (d ) of the elements construct-

ing them and at the same time extremely smaller than the

characteristic dimensions (L) of the architecture built by the

RVEs (i.e. d� l� L). Second is the ability of RVEs to be divided

into phases with constant material properties.

At each level of hierarchy, the phases and their properties are

defined (volume fractions f and elastic stiffnesses c). Based on

the linear elasticity estimate of continuum micromechanics and

assuming constant elastic modulus for the phases in the RVEs,

the homogenized stiffness of RVEs, C0
est, can be determined

as [44,45]

C0
est ¼

Xn

r¼1

frcr:(Iþ P0
r :(cr � C0))�1:

Xn

s¼1

fs(Iþ P0
s :(cs � C0))

�1

" #�1

,

(2:1)
where n is the number of phases in the RVEs, c is the phase stiff-

ness, I is the fourth-order unity tensor and C0 is the

homogeneous elastic matrix stiffness which is included in the

phases. Tensor P0 is related to the Eshelby tensor [60] (P0 ¼

S0Esh: C0,21), which characterizes the interaction between phases

in the RVEs.

In micromechanics modelling, the elastic stiffness of RVEs

found in each level of hierarchy will be used as phase stiffness

for the analysis of subsequent levels. There are several estimates

in the literature for choosing C0. The Mori–Tanka scheme [61,62]

is the model which chooses C0 ¼ Cmatrix, meaning that there is

an inclusion phase consisting of small particles embedded in

the continuous-matrix phase. This model, which is best suited

for particle-reinforced composites, has an explicit solution. The

self-consistent scheme [63,64] is the model which chooses

C0 ¼ C0
est, meaning that the phases are dispersed with the stiff-

ness properties of homogenized RVEs. For the self-consistent

scheme, equation (2.1) is reduced to a set of nonlinear equations.

Here, the micromechanics representation of each phase and

corresponding elastic modulus tensors are derived.

2.7.1. Nanoscale

2.7.1.1. Interaction of water and non-collagenous proteins with

hydroxyapatite
At the nanostructural level, HA crystals, water and NCPs

(figure 5) interact with each other. At this level, phases are
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dispersed, thus warranting the use of a self-consistent scheme

CHA,w ¼
Xn

r¼1

f̂rcr:(Iþ Pr:(cr � CHA,w))�1:

Xn

s¼1

f̂s(Iþ Ps:(cs � CHA,w))�1

" #�1

: (2:2)

HA minerals are platelet shaped [65–68], and water is con-

sidered to have a spherical shape. Volume fractions of HA and

water are f̂HA and f̂wn1, with a sum equal to 1,

f̂HA þf̂wn1 ¼ 1: (2:3)

Platelet-shaped HA minerals make the RVE matrix anisotropic.

Using Laws formula [69,70] for determining the P tensor in a trans-

versely isotropic matrix, the P tensor can be found for water and

HA (appendix A.1). Assuming isotropic material properties for

water and HA, the corresponding elastic matrices can be written as

cHA ¼ 3KHAIvol þ 2GHAIdev (2:4)

and

cwn1 ¼ 3KwIvol þ 2GwIdev, (2:5)

where KHA, GHA, Kw and Gw are the isotropic stiffness properties of

the HA and water. Ivol and Idev are, respectively, the volumetric

and deviatoric part of the fourth-order unity tensor (Ivol¼ 1/
3dijdkl and Idev¼ I 2 Ivol). For highly mineralized tissues, radial

stiffness was shown to be equal to axial stiffness [71], which

means that HA isotropically contributes to the bone tissue stiffness.

For the exploration of the volume fraction–radial stiffness relation

to the point where the volume fraction of HA is equal to 1, the iso-

tropic elastic stiffness of HA is equal to 100 GPa. Based on the

relation: C11,HA ¼ EHA(1 2 vHA)/((1 þ vHA)(122vHA)) and assum-

ing vHA ¼ 0.27 [72], the elastic modulus, bulk modulus and shear

modulus of HA can be found as 79.76, 57.8 and 31.4 GPa, respect-

ively (table 2). Equation (2.2) leads to five coupled nonlinear

equations, which should solve simultaneously to reach five

constants of the transversely isotropic matrix CHA,w.
2.7.1.2. Interaction of water and non-collagenous proteins with

collagen
At this level, fibrillar collagen molecules are attached to each

other, and the space between them is filled with water and

NCPs. Considering collagen molecules as a matrix and the inter-

space water and NCPs as an inclusion, from the Mori–Tanaka

scheme, the corresponding stiffness can be written as

Ccol,w ¼ [f̂colccol þf̂wn2cwn2:(Iþ Pwn2:(cw � ccol))
�1]:

[f̂colIþf̂wn2(Iþ Pwn2:(cw � ccol))
�1] �1:

(2:6)



Table 2. Isotropic mechanical properties of bone elementary components.

component
elastic
modulusa (Gpa)

Poisson’s
ratio (v)

bulk modulus, K
(GPa)

shear modulus, G
(GPa) reference

hydroxyapatite 79.76 0.27 57.8 31.4 [71]

collagen 5.4 0.28 4.1 2.1 [73]

water and non-

collagenous protein

0 0.49 2.3 0

aOnly two of these parameters are independent. The other two can be found based on universal relations for isotropic material.
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Assuming isotropic material properties for the collagen matrix,

the corresponding elastic modulus matrix can be written as

ccol ¼ 3KcolI
vol þ 2GcolI

dev, (2:7)

where Kcol and Gcol are, respectively, the bulk modulus and shear

modulus of the collagen stiffness matrix (table 2). Because the

matrix is isotropic, the Pcol tensor is defined based on the cylindrical

inclusions embedded in an isotropic matrix (appendix A.2).

Volume fractions of phases are f̂col and f̂wn2 for collagen and

water, respectively, where

f̂col þf̂wn2 ¼ 1: (2:8)

2.7.2. Submicroscale
At this level, the organic and mineral phases interact with water

and with each other. Stiffness matrices of mineral and organic

phases come from RVEs at the nanolevel. Dispersion of the

phases in the RVEs warrants the use of a self-consistent scheme:

Csubm ¼
Xn

r¼1

frcr:(Iþ Pr:(cr � Csubm))�1:

Xn

s¼1

fs(Iþ Ps:(cs � Csubm))�1

" #�1

, (2:9)

where Csubm is the stiffness of submicroscale. Volume fractions of

phases occupying the RVEs are fHA,w, fcol,w and fwn3, where

fHA,w þ fcol,w þ fwn3 ¼ 1 : (2:10)

Spherical phase inclusions are chosen for mineral and

water phases (i.e. Pmin ¼ Pw ¼ Psph) and cylindrical phase

inclusions are chosen for organic phases (i.e. Pmat ¼ Pcyl; appen-

dix A.1).

2.7.3. Microscale
At a microstructural level, lacunae containing osteocytes are

enclosed by the continuous bone matrix. From the Mori–

Tanaka scheme, considering the bone material as a matrix

and lacunae as spherical inclusions with volume fractions of

fsubm and flac, the stiffness of bone material at the microscale,

Cmic, becomes

Cmic ¼ [fsubmcsubm þ flacclac:(Iþ Plac:(clac � csubm))�1]:

[fsubmIþ flac(Iþ Plac:(clac � csubm))�1]�1, (2:11)

where clac ¼ 3KwIvol þ 2GwIdev, Plac ¼ Psph for a transversely

isotropic matrix and

fsubm þ flac ¼ 1: (2:12)

The non-zero terms of Plac are presented in appendix A.1.

2.7.4. Macroscale
The structure of cortical and trabecular bone becomes different at

this level. Therefore, the modelling has been divided into cortical
and trabecular bone (figure 5). The Haversian canals contain

blood vessels and nerve cells; therefore, it is reasonable to assign

water stiffness to them (chav ¼ 3KwIvol þ 2GwIdev). The volume

fractions of phases in the RVEs are fhav and fmic, where

fhav þ fmic ¼ 1: (2:13)

For cortical bone, considering bone microstructure as a matrix

and Haversian canals as inclusions and using the Mori–Tanaka

scheme, the stiffness matrix can be written as

Cmac ¼ [fmiccmic þ fhavchav:(Iþ Phav:(chav � cmic))�1]:

[fmicIþ fhav(Iþ Phav:(chav � cmic))�1]�1: (2:14)

Finally, to model the stiffness of trabecular and cortical bone

structure (Cbone), porosities in trabecular bone have considered as

spherical inclusions, and medullary cavity and restoration cavities

in cortical bone have been considered as cylindrical inclusions

in a transversely isotropic matrix (Ppor ¼ Psph, Pcav ¼ Pcyl). Because

porosities and cavities are vacant, their stiffnesses are set to zero

(cpor ¼ ccav ¼ 0). Using the Mori–Tanaka scheme, from equation

(2.1) Cbone can be written as

Cbone ¼ [fMcM þ fNcN:(Iþ PN:(cN � cM))�1]:

[fMIþ fN(Iþ PN:(cN � cM))�1]�1 (2:15)

and

fM þ fN ¼ 1, (2:16)

where subscript M stands for mac and mic and subscript N stands

for cav and por regarding cortical and trabecular bone, respectively.
2.7.5. Elementary-phase stiffness values and modelling
parameters

Having a micromechanics model in hand, the elementary-phase

stiffness values of the bone structure should be determined

(i.e. KHA, GHA, Kcol, Gcol, Kw, Gw,). Table 2 shows the values

which are chosen for the model. The phase stiffness matrices can

be built based on these properties (cHA, ccol, cw). Then, the tissue-

specific composition data should be determined: f̂col, f̂wn1, f̂HA

and f̂wn2 for nanoscale; fHA,w, fcol,w and fwn3 for submicroscale;

fsubm and flac for microscale; and fmic, fhav, fmac, fcav (cortical

bone), fpor, fmic (trabecular bone) for macroscale.

First, the volume fractions of bone elementary componentsfcol,

fHA and fwn are determined from experimental data. Having min-

eral density (r�min ¼ mmin=Vbone) as a ratio of mineral mass mmin to

bone volume Vbone, found from mCT analysis (table 3) and the

mass density of HA as rHA¼ 3 g cm23 [74] the volume fraction of

HA can be obtained as

fHA ¼ fmin ¼
r�min

rHA

: (2:17)

Bone mineral content (BMC), which is the ratio of mineral mass

(mmin) over dry bone mass (mdry), is determined using ashing



Table 3. Composition and axial module of elasticity of cortical and trabecular bone.

structure BV/TV (Fbone) mineral density (mg cm23) FHA (equation (2.17)) Fcol (equation (2.18)) Eexp (MPa)

cort. 0.681 1031.404 0.344 0.363 11 547.87

cort. 0.582 1039.963 0.347 0.39 6807.52

cort. 0.502 1023.679 0.341 0.361 3681.35

cort. 0.539 991.172 0.33 0.261 6882.1

cort. 0.593 1035.283 0.345 0.331 6558.1

cort. 0.533 1024.222 0.341 0.363 4533.97

cort. 0.71 1033.027 0.344 0.335 11 201.11

cort. 0.714 1008.662 0.336 0.267 9516.63

cort. 0.68 1016.562 0.339 0.3 10 884.01

cort. 0.682 1013.443 0.338 0.295 9975.74

cort. 0.628 1008.42 0.336 0.277 10 449.87

cort. 0.626 1003.777 0.335 0.27 9012.52

cort. 0.543 1048.647 0.35 0.328 4197.04

cort. 0.53 1024.542 0.342 0.36 5574.04

cort. 0.723 1053.653 0.351 0.282 10 903.1

cort. 0.642 1033.69 0.345 0.332 11 500.08

cort. 0.698 1025.488 0.342 0.356 11 729.17

cort. 0.699 1062.7 0.354 0.284 9000.9

cort. 0.576 1009.146 0.336 0.289 5197.7

cort. 0.578 1020 0.34 0.315 7664.45

trab. 0.444 789.609 0.263 0.218 2982.19

trab. 0.451 786.057 0.262 0.211 2243.71

trab. 0.509 709.283 0.236 0.194 2482.5

trab. 0.536 753.249 0.251 0.205 6346.28

trab. 0.443 682.138 0.227 0.155 3186.72

trab. 0.483 696.437 0.232 0.185 814.56

trab. 0.452 657.295 0.219 0.173 3184.05

trab. 0.533 651.083 0.217 0.218 5576.47

trab. 0.391 598.734 0.2 0.344 698.32

trab. 0.375 591.434 0.197 0.189 598.32

trab. 0.485 617.37 0.206 0.118 341.62

trab. 0.455 671.77 0.224 0.163 828.85

trab. 0.548 685.158 0.228 0.16 871.05

trab. 0.444 685.957 0.229 0.169 2396.38

trab. 0.414 618.033 0.206 0.182 3866.67

trab. 0.449 615.078 0.205 0.155 3264.69

trab. 0.496 688.174 0.229 0.177 4191.65

trab. 0.472 659.889 0.22 0.164 2884.53

trab. 0.368 631.535 0.211 0.196 1707.21

trab. 0.458 598.071 0.199 0.334 915.11
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analysis). Taking the mass density of organic matrix as rorg �
rcol ¼ 1.41 g cm23 [74,75], forg reads as

forg ¼
1� BMC

BMC

� �
rHA

rorg

fHA: (2:18)
Here, the mass densities of protein and collagen are assumed to

be the same. Approximately 90% of the mass density of protein is

collagen [59,74], therefore fcol ¼ 0.9forg (table 3). Then, the volume

fraction of water and non-collagenous protein can readily be found as

fwn ¼ 1� fcol � fHA: (2:19)



Table 4. Macro-, micro-, nano- and compositional-level properties of rat cortical and trabecular bone found by this study.

variable modality units cortical bone cancellous bone p value

bone tissue density pycnometry g cm23 2.17 (0.017) 2.16 (0.07) 0.78

mineral content gravimetry % 66.63 (7.64) 68.90 (9.94) 0.42

matrix content gravimetry % 28.97 (7.64) 26.55 (9.93) 0.42

stiffness mechanical testing N mm21 7199 (270) 719 (68) ,0.001

yield load mechanical testing N 737 (110) 43 (23) ,0.001

bone volume fraction mCT imaging mm3 mm23 0.59 (0.03) 0.37 (0.04) ,0.001

bone-surface-to-volume ratio mCT imaging mm2 mm23 3.84 (0.19) 14.44 (2.91) ,0.001

modulus of elasticity (E) mechanical testing GPa 8.50 (2.86) 2.47 (1.68) ,0.001

yield strength (YS) mechanical testing GPa 0.13 (0.02) 0.03 (0.01) ,0.001

tissue modulus nano-indentation GPa 18.98 (5.73) 18.27 (3.77) 0.46

hardness nano-indentation GPa 0.74 (0.25) 0.73 (0.21) 0.72

total protein amino acid analysis % 11.80 (4.11) 11.57 (3.43) 0.90

total collagen amino acid analysis % 10.50 (3.84) 9.58 (3.27) 0.59

collagen content in protein amino acid analysis % 88.57 (2.04) 82.04 (3.20) ,0.001

PO4 (non-apatitic) FT-IR % 10.42 (1.95) 9.52 (1.30) 0.25

HPO4 FT-IR % 30.60 (4.74) 28.91 (4.80) 0.44

CO3 FT-IR % 3.63 (1.48) 2.56 (1.12) 0.11

C/P FT-IR — 0.056 (0.002) 0.058 (0.003) 0.09

protein-to-mineral ratio FT-IR — 0.77 (0.09) 0.70 (0.05) 0.89

Ca content chemical analysis mg mg21 of bone 261.19 (100.40) 298.61 (20.135) 0.29

PO4 content chemical analysis mg mg21 of bone 18.74 (5.46) 19.26 (4.23) 0.76
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The total volume fraction of water and non-collagenous proteins

can be written as

fwn ¼ f̂wn1 � fcol,w þf̂wn2 � fHA,w þ fwn3: (2:20)

At nanoscale observation, volume fractions of HA and collagen

(f̂HA andf̂col) can be found as

f̂col ¼
fcol

fcol,w
(2:21)

and

f̂HA ¼
fHA

fHA,w
: (2:22)

Using equations (2.3), (2.8), (2.10), (2.20), (2.21) and (2.22)

and assuming watercontents in the two considered RVEs at the nano-

level are the same (f̂wn1 ¼ f̂wn2), and also the water contents at the

nano- and microlevels are equal (fwn3¼ fwn/2), the volume fraction

composition at the nano- and submicroscale can be found as

f̂wn1 ¼ f̂wn2 ¼
fwn

2� fwn
, (2:23)

fcol,w ¼
2� fwn

2� 2fwn
fcol (2:24)

and fHA,w ¼
2� fwn

2� 2fwn
fHA: (2:25)

At the microlevel, the volume fraction of the lacunae is defined as

the area of lacunae in the examined area divided by the total area.

Here, flac is assumed to be 2% [76–78]. The volume fraction of

Haversian canals is defined as the ratio of the area of Haversian

canals to the total considered area. fhav varies from 2% to 5% for

healthy cortical bone [79], and here it is assumed to be 3% [80].

At last, for determining the volume fraction at the macrolevel
(cortical and trabecular bone), fmac (cortical) and fmic (trabecular)

are assumed to be equal to bone volume fraction (BV/TV). The

experimental data for bone volume fraction can be found in table 3.

2.8. Finite-element analysis
mCT-based finite-element analysis was performed, for both trabe-

cular and cortical bone, to evaluate the proposed micromechanics

model. The models were meshed with eight-node linear hexahe-

dral elements. The material was assumed to be linear elastic with

the elastic modulus taken from experimental tissue modulus

results for each sample (table 4). The number of elements ranged

from 110 000 to 630 000 for trabecular samples and from 990 000

to 1 900 000 for cortical bone samples. To mimic the mechanical test-

ing conditions, the lower surface of the models was fixed, whereas a

linear displacement load was applied at the upper surface of the

model. Then, the reaction forces at the superior surfaces were

evaluated to determine the apparent elastic modulus of the samples.
3. Results
At the macrostructural level, no differences were observed

between cortical and trabecular bone regarding tissue density

(rt), as measured by gravimetric methods (p ¼ 0.78), and

mineral and matrix contents, as assessed by ash content

( p ¼ 0.42 and 0.41, respectively). Nonetheless, stiffness and

yield load values were significantly greater in cortical bone

( p , 0.001 for both cases; table 4).

Cortical bone has a larger volume fraction (p , 0.001) and

a smaller bone-surface-to-volume ratio (BS/BV; p , 0.001)

than trabecular bone. Apparent mechanical properties
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showed that the cortical bone modulus of elasticity (E) and

yield strength (YS) values were approximately four times

greater than those of trabecular bone ( p , 0.001 for both

cases). Both bone types failed at the segment of the smallest

cross section (table 4).

At the nanostructural level, no significant differences in

tissue modulus and hardness were observed between the

two bone types ( p ¼ 0.46 and 0.72, respectively; table 4). Cor-

tical bone demonstrated higher modulus variability than

trabecular bone (standard deviation was 5.73 GPa for cortical

bone and 3.77 GPa for trabecular bone; figure 6). Amino acid

analysis indicated no differences in total protein and collagen

levels between the two bone types ( p ¼ 0.59 and 0.90,

respectively). However, collagen content in cortical speci-

mens was on average 7% greater than that of trabecular

bone specimens ( p , 0.001, table 4).

Non-apatitic phosphate (PO�3
4 ) content did not differ

between groups ( p ¼ 0.25), neither did the HPO4 content in

the hydrated surface layer ( p ¼ 0.44). Carbonate (CO3)

content also showed no difference among trabecular and

cortical specimens ( p ¼ 0.01).

There were no differences between groups in carbonate-

to-phosphate (C/P) and protein-to-mineral ratios ( p ¼ 0.09

and 0.89, respectively). Additionally, there were no differ-

ences in calcium and phosphate contents of the two bone

types ( p ¼ 0.29 and 0.76, respectively; table 4).

The mathematical model’s validation is based on elastic

moduli values obtained during mechanical testing (table 3).

The R2 between the experimental and modelling axial stiffness

values is 0.82, which shows relatively high agreement between

the results (figure 7). The average values of axial elastic mod-

ulus (C33) found from micromechanics modelling for cortical

and trabecular bone are 8.40 and 3.02 GPa, respectively. Exper-

imental results show these values to be 8.34 and 2.85 GPa for

cortical and trabecular bone, respectively. Based on the

continuum micromechanics approach, the elastic tensor for

rat cortical and trabecular bone can be evaluated as

Ccortical ¼

5:78 3:12 3:31 0 0 0
3:12 5:78 3:31 0 0 0
3:31 3:31 8:40 0 0 0

0 0 0 4:04 0 0
0 0 0 0 4:04 0
0 0 0 0 0 2:88

2
6666664

3
7777775

(3:1)
and

Ctrabecular ¼

1:98 1:06 1:15 0 0 0
1:06 1:98 1:15 0 0 0
1:15 1:15 2:85 0 0 0

0 0 0 1:34 0 0
0 0 0 0 1:34 0
0 0 0 0 0 0:94

2
6666664

3
7777775
:

(3:2)

Axial displacement contours of cortical and trabecular

bone samples were obtained using finite-element analysis,

as shown in figure 8. The axial displacement contour distri-

bution in cortical bone is more regular than that in

trabecular bone. The elastic moduli derived from finite-

element analysis are shown in figure 7. There was a strong

correlation between finite-element analysis results and

mechanical testing results (R2 ¼ 0.84).
4. Discussion
The aim of this study was to explore the hierarchical nature of

the two major bone types in rats. By using a variety of
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analytical techniques, we were able to characterize the struc-

tural and compositional properties of cortical and trabecular

bone, as well as to determine the best mathematical model to

predict the tissue’s mechanical properties.

Our hierarchical analysis demonstrated that the differ-

ences between cortical and trabecular bone reside mainly at

the micro- and macrostructural levels. Our findings are con-

sistent with those of previous studies: modulus of elasticity

and yield strength values were significantly lower in trabecu-

lar bone specimens [7,24,26,27,29,30]. Although not evidenced

in our study, Choi & Goldstein [7] made the same assevera-

tion, emphasizing the higher mineral density values seen in

trabecular bone. These findings can be explained by the con-

figuration of lamellar/collagen fibres within the tissue, along

with other microstructural characteristics that altogether sup-

port the fact that tissue morphology, and not just mineral

density, plays a major role in determining the mechanical

properties of cortical bone. The wide range of apparent elastic

moduli can be explained by the wide range of bone volume

fraction in the samples. Another factor causing the high

degree of dispersion could be the way of calculating the appar-

ent modulus: the resultant force is divided by the minimum

cross-section area to determine the apparent elastic modulus

(figure 3). Therefore, some of the apparent elastic moduli for

trabecular bone are larger than those of cortical bone.

As shown by previous studies that also used FT-IR, car-

bonate content is significantly greater in cortical bone [13].

This finding may be explained by the critical role played by

this ion during mineralization, coupled to the fact that corti-

cal bone undergoes less remodelling over time. Khun et al.
[11] described the differences in the mineral content and crys-

tal maturation process in young and old animals, which

mirror those seen in cortical and trabecular bone, respect-

ively. For this reason, the differences between the mineral

crystals may be attributed to their age, as well as to contrast-

ing extents of post-translational modifications in the collagen

structure [12,13,19,81]. The higher protein-to-mineral ratio

and collagen content in protein seen in cortical bone seems

to be similarly linked to its mechanical properties. The inter-

molecular cross-linking of collagen strongly determines the

way fibrils are arranged to ultimately provide matrices with

tensile strength and viscoelasticity [82,83]. Although a weak

trend was evidenced in the carbonate-to-phosphate ratio

between bone types, this finding further demonstrates the
reigning similarities of cortical and trabecular bone at the

compositional level.

Analysis performed at the nanostructural level yielded

results that were consistent with previous reports in the literature,

where hardness is basically considered to be similar between

both bone types [19,25,32]. Hodgskinson et al. [19] described a

strong relationship between calcium content and hardness, all

equally similar across specimens compared in this study.

The purpose of mathematical modelling was to predict the

bone’s mechanical properties (i.e. anisotropic elastic moduli)

as a function of the elementary components of the bone. For

mathematical modelling, two approaches have been proposed

in the literature for attributing the anisotropy to the bone struc-

ture, namely ‘mineral-reinforced collagen matrix’ [84–86] and

‘collagen-reinforced mineral matrix’ [71,87,88]. Both these

approaches have been incorporated in the proposed model; the

choice of platelet-shaped HA as an inclusion imposes anisotropy

at the nanoscale and the choice of cylindrical-shaped collagen

molecules as an inclusion imposes anisotropy at the submicros-

cale (figure 5). Regarding the shape of the elementary

constituents of bone, it has been shown that HA crystals have

plate-like shapes [89]. In this study, the HA crystals are assumed

to be plate-like, which affects the Eshelby tensor and eventually

the micromechanics model. Other approaches have employed

spherical shapes to model HA inclusions [41]. The results of

mathematical modelling are highly dependent on the choice of

the mechanical properties of bone elementary components (i.e.

HA and collagen). Here, we used the data from Katz & Ukraincik

[72] and Yang et al. [73] for HA and collagen, respectively. These

values also have been used by Hellmich & Ulm [71] and Hamed

et al. [90] for multi-scale modelling of bone, and the results have

shown good agreement with experimental findings. As seen in

figure 7, finite-element modelling results better correlate with

the mechanical testing results, especially for trabecular bone

samples (R2 ¼ 0.56 for finite-element modelling versus R2 ¼

0.2 for micromechanics modelling). The reason is that microme-

chanics modelling provides more crude results, as the bone

structure become more disorganized.

For comparison, bone mineral, organic and water densities

and bone volume fractions of the samples are plotted along

with the results of other organs and species in the literature

[21,79,91–97] (figure 9). These plots were first reported by

Vuong & Hellmich [97] to verify the universal relation among

the bone constituents. As outlined in Vuong & Hellmich [97],
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these figures can be divided into two regions and be presented

by bilinear functions. Figure 9a–c is plotted based on mineral

(r�min), organic (r�org) and water and non-collagenous protein

(r�wn) densities. Alternatively, extracellular bone density can be

found as

rec ¼ r�min þ r�org þ r�wn: (3:3)

Densities of bone composition elements (r�min, r�org and r�wn)

are plotted versus extracellular bone density in figure 9d.
The volume fractions of bone constituents (fmin, forg and

fwn) versus extracellular bone density are shown in figure 9e.
In figure 9a, in the region with positive slope, the organic

density (r�org) is increased by increasing extracellular bone

mineral density (r�min). This region is represented by growing

organisms and species, whereas the region with negative

slope represents the adult organisms [97]. Figure 9a–e shows

that the reported results in this study for bone composition

densities and volume fractions are comparable to previous

studies in the literature. In addition, our results further validate
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the universal relation between different bone composition

elements [97].

In this study, we did not consider the potential differences

in geometry in the two bone types being compared. We

strongly believe that it would be relevant to address the

roles of lacunae and osteons in the structural properties of tra-

becular and cortical bone. In addition, the inferior resolution

of FT-IR at very small scales introduces another limitation to

our study [18]. In spite of these shortcomings, this study pro-

vides a comprehensive framework for trabecular and cortical

bone properties that can be expanded upon in future studies.
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Appendix A
A.1. P-tensor in a transversely isotropic matrix
For a detailed derivation of the P-tensor for anisotropic

matrices, please refer to [70,98]. For a transversely iso-

tropic material, the non-zero terms of the stiffness matrix

C are C11 ¼ C22,C33,C12,C13 ¼ C23,C44 ¼ C55 and C66 ¼

1/2(C11 2 C22). For spherical inclusions, the non-zero terms

of the P-tensor can be found as

P11¼
1

16

ð1

�1

((2C2
13�6C2

44�5C11C33þ3C12C33þ5C11C44

�3C12C44þ8C33C44)x6þ (6C44�4C2
13þ6C2

44þ5C11C33

�6C12C33�15C11C44þ9C12C44�8C33C44)x4þ5C2
11C33x3

þ (2C2
13�6C44þ3C12C33þ15C11C44�9C12C44)x2

�5C2
11C33xþ3C12C44�5C11C44)(x2�1)=D1dx,

(A1)

P12¼
1

16

ð1

�1

((2C13�2C2
44�C11C33�C12C33þC11C44þC12C44

þ4C13C44)x6þ (2C11C33�2C2
13�4C2

44�2C13þ2C12C33

�3C11C44�3C12C44�8C13C44)x4þ (2C2
13þ2C2

44

�C11C33�C12C33þ3C11C44þ3C12C44þ4C13C44)x2

�C11C44�C12C44)=D1dx, (A2)

P13¼
1

4

ð1

�1

((C13þC44)x4þ (�C13�C44)x2)=D2 dx , (A3)

P44¼
1

16

ð1

�1

((2C2
13�C2

11þC11C12�2C11C13þ2C12C13�3C11C33

þC12C33þ4C11C44þ8C13C44þ4C33C44)x6

þ (3C2
11�2C2

13�3C11C12þ4C11C13�4C12C13�C12C33

�5C11C44�8C13C44)x4þ (3C11C12�3C2
11

�2C11C13þ2C12C13þ4C11C44)x2

þC2
11�C12C11)=D1dx (A4)
and

P33¼
1

2

ð1

�1

((C44�C11)x4þC11x2)=D2 dx, (A5)

where

D1¼ (C12C2
13þC2

11C33þ2C11C2
44�C2

11C44þ4C13C2
44

þ2C33C2
44�C11C13þ2C13C44�C11C12C33þC11C12C44

�2C11C13C44þ2C12C13C44�3C11C33C44þC12C33C44)x6

þ (2C11C13�2C2
11C33�4C11C2

44�4C13C2
44�2C2

13C44

�2C12C2
13þ3C11C44þ2C11C12C33þ4C11C13C44

�4C12C13C44þ3C11C33C44�C12C33C44)x4

þ (C12C2
13�C11C2

13þC2
11C33þ2C11C2

44�3C2
11C44�2C11C44

�C11C12C33þ3C11C12C44þ2C12C13C44)x2

þC44C2
11�4C12C44C11 (A6)

and

D2¼ (C2
13þ2C44C13þC11C44þC33C44)x4 þ (�C2

13

�2C44C13þC11C33�2C11C44)x2þC11C44

�C11C33: (A7)

For cylindrical inclusions, the non-zero terms of the P-tensor

are written as

P11¼P22¼P66¼
1=8(5C11�3C12)

C11(C11�C12)
, (A8)

P12¼
�1=8ðC11þC12Þ
C11(C11�C12)

(A9)

and P44¼P55¼
1

8C44
: (A10)

For platelet-shape-like inclusions the P-tensor becomes

P33¼
1

C33
: (A11)

A.2. P-tensor in an isotropic matrix
For isotropic material, the stiffness matrix can be written as

C ¼ 3kIvol þ 2mIdev, where k and m are the bulk and shear

modulus, respectively, and Ivol and Idev are the volumetric

and deviatoric part of the fourth-order unity tensor (Ivol ¼ 1/

3dijdkl and Idev ¼ I2Ivol). The P-tensor in an isotropic matrix

for cylindrical inclusions can be written as [45,98]

Pcyl ¼ SEsh
cyl :C�1, (A 12)

where the Eshelby tensor has the following non-zero terms:

SEsh
11 ¼ SEsh

22 ¼
9=4(k þ m)

(3k þ 4m)
, (A 13)

SEsh
12 ¼

1=4(3k � 5m)

(3k þ 4m)
, (A 14)

SEsh
13 ¼ SEsh

23 ¼
1=2(3k � 2m)

(3k þ 4m)
, (A 15)

SEsh
44 ¼ SEsh

55 ¼
1

4
(A 16)

and SEsh
66 ¼

1=4(3k þ 7m)

(3k þ 4m)
: (A 17)
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