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Analysis of unstable modes distinguishes
mathematical models of flagellar motion

P. V. Bayly and K. S. Wilson

Mechanical Engineering and Materials Science, Washington University in Saint Louis, 1 Brookings Drive,
Box 1185, Saint Louis, MO 63130, USA

The mechanisms underlying the coordinated beating of cilia and flagella remain

incompletely understood despite the fundamental importance of these orga-

nelles. The axoneme (the cytoskeletal structure of cilia and flagella) consists of

microtubule doublets connected by passive and active elements. The motor

protein dynein is known to drive active bending, but dynein activity must be

regulated to generate oscillatory, propulsive waveforms. Mathematical models

of flagellar motion generate quantitative predictions that can be analysed to

test hypotheses concerning dynein regulation. One approach has been to seek

periodic solutions to the linearized equations of motion. However, models

may simultaneously exhibit both periodic and unstable modes. Here, we inves-

tigate the emergence and coexistence of unstable and periodic modes in three

mathematical models of flagellar motion, each based on a different dynein regu-

lation hypothesis: (i) sliding control; (ii) curvature control and (iii) control by

interdoublet separation (the ‘geometric clutch’ (GC)). The unstable modes

predicted by each model are used to critically evaluate the underlying hypoth-

esis. In particular, models of flagella with ‘sliding-controlled’ dynein activity

admit unstable modes with non-propulsive, retrograde (tip-to-base) propa-

gation, sometimes at the same parameter values that lead to periodic,

propulsive modes. In the presence of these retrograde unstable modes, stable

or periodic modes have little influence. In contrast, unstable modes of the GC

model exhibit switching at the base and propulsive base-to-tip propagation.
1. Introduction
Flagella and cilia undergo bending deformations under the action of dynein, a

motor protein powered by ATP hydrolysis. To produce bending, dynein mol-

ecules form an array of cross-bridges between pairs of microtubule doublets

that comprise the flagellar cytoskeleton (the axoneme), and exert forces that

cause sliding of one doublet relative to the other. These active shear forces inter-

act with passive structural elements (doublets, nexin links and radial spokes) to

produce bending [1]. Dynein activity must be coordinated in order to produce

oscillatory, propulsive waveforms.

The mechanism of dynein regulation has been an active field of investigation

for many years. In a remarkable series of experimental and theoretical studies

[2–16], Brokaw explored a number of potential feedback mechanisms. Hines &

Blum [17] contributed a seminal paper in which a detailed continuum model

of the flagellum was derived, including delayed curvature feedback. Later,

Murase and co-workers [18–21] proposed the ‘excitable’ dynein concept, in

which sliding beyond a specific threshold stimulates dynein activity. Julicher

and co-workers [22–24] further developed the concept of sliding-controlled, col-

lective dynein behaviour to explain flagellar oscillation. These authors postulated

a positive feedback mechanism in which the force per dynein head decreases as

sliding velocity increases, which allows more dynein to be recruited, thus increas-

ing net shear force [22]. Lindemann [25–27] proposed the ‘geometric clutch’ (GC)

model of dynein regulation, in which the spacing between doublets controls the

level of dynein cross-linking. In the GC model, interdoublet spacing is affected

by cumulative shear force and curvature, providing a plausible explanation for

mechanical feedback. The details of flagellar synchronization and mechanics

remain topics of active research.
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Figure 1. Schematic of a prototypical flagellum showing tangent angle, c(s, t). (b) Magnified view of a section of flagellum showing the sliding displacement,
D(s, t), internal shear force f (s, t) and effective diameter a. In some sliding-controlled models, sliding at the base D(0, t) is permitted even if transverse motion of
the base is constrained.
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The predictions of theoretical models of flagella mechanics

and dynein regulation may be obtained by computer simulation

or mathematical analysis. Typically, these models are expressed

as partial differential equations (PDEs) for the flagellar angle as a

function of time and axial position [17,22–24]. In computer

simulation, time-marching algorithms are used to iteratively

solve the discretized equations of motion [17,26]. Alternatively,

closed-form solutions may be found for simplified versions of

the equations. Solutions to linearized models, valid for small-

amplitude oscillations, are composed of linear combinations of

characteristic modes of oscillation (eigenfunctions). For example,

in a mathematical model based on sliding-controlled dynein

regulation [22,23], oscillatory (periodic) modes were found

that closely matched experimental measurements of the flagellar

waveform. However, in this prior study, only periodic (neutrally

stable) modes were sought, leaving open the possibility of

coexisting unstable (growing) or decaying modes.

This study explores the range of behaviour of recent math-

ematical models of flagellar motion. The solution methods

from references [22–24] are generalized to find and characterize

unstable modes. The paper briefly reviews flagellar mechanics,

dynein regulation models (sliding-controlled, curvature-

controlled and separation-controlled), and the associated

eigenvalue problems. Solution methods for these eigenvalue

problems are described briefly, and unstable and neutrally

stable modes are found for each model. In particular, in recent

sliding-controlled models, exponentially growing oscillatory

solutions with retrograde (tip-to-base) propagation exist at the

same physical parameter values shown to produce flagella-

like, anterograde, periodic modes. In contrast, the least stable

modes of the GC model exhibit switching at the base and

propulsive base-to-tip propagation.
2. General equations of flagellar mechanics
2.1. Nonlinear equations of motion
Hines & Blum [17] derived the equations of motion for a

flagellum in two-dimensions, modelling it as a slender elas-

tic beam in viscous fluid, subjected to both active and

passive internal shear forces (figure 1). These equations,

summarized below, form the basis for the flagella models

considered here [17,22–24].

The equations of force equilibrium, neglecting inertia,

at any point along the flagellum are written in terms of

the flagellar tangent angle, c, the net internal tangen-

tial and normal force components (T, N ) and the external

viscous force components per unit length (qT and qN)

[17,28].

@T
@s
�N

@c

@s
þ qT ¼ 0 (2:1)

and

@N
@s
þ T

@c

@s
þ qN ¼ 0: (2:2)

Similarly, the moment balance for any element along the

flagellum may be written as

@MB

@s
� af þN ¼ 0, (2:3)

where MB is the moment owing to elastic bending, a is the effec-

tive diameter and f is the net interdoublet shear force (from

distributed active dynein arms and passive elements such as

radial spokes or nexin links). The velocity of any point along

the flagellum can be written as v ¼ vNeN þ vTeT. The spatial
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derivatives of the normal and tangential components of

velocity are

@vT

@s
¼ vN

@c

@s
(2:4)

and

@vN

@s
¼ @c
@t
� vT

@c

@s
: (2:5)

Finally, constitutive properties are postulated for the beam and

surrounding fluid. The flagella is modelled as a slender elastic

beam with flexural rigidity EI

MB ¼ EI
@c

@s
, (2:6)

and the fluid at low Reynolds number is assumed to provide

resistive force proportional to velocity [17]

qT ¼ �cTvT (2:7)

and

qN ¼ �cNvN : (2:8)

The equilibrium, kinematic and constitutive equations can be

combined to form two equations describing the motion of a

slender elastic beam with internal shear moving in viscous

fluid [17,23].

T,ss � a(fc,ss þ f,sc,s)þ EI(c2
,ss þ c,sssc,s)

þ cT

cN
(EIc,sssc,s � Tc2

,s � af,sc,s) ¼ 0 (2:9)

and

1

cN
(af,ss þ T,sc,s þ Tc,ss � EIc,ssss)

þ 1

cT
(EIc2

,sc,ss � afc2
,s þ T,sc,s) ¼ c,t, (2:10)

where (.),a ¼ @(.)/@a.

2.2. Linearized equation and boundary conditions
To describe small-amplitude motion about a straight,

equilibrium configuration, equation (2.10) may be linearized to

obtain a much simpler equation [22,23,29] which can be written

EIc,ssss � af,ss þ cNc,t ¼ 0: (2:11)

Solutions to equation (2.11) must also satisfy appropriate

boundary conditions. For example, if the flagellum is fixed

at its proximal end (s ¼ 0) and free at its distal end (s ¼ L),

solutions must satisfy

— (2.11) (i) Zero angle at base: c(0, t) ¼ 0

— (2.11) (ii) Zero normal velocity at base: EIc,sss(0, t) 2

af,s(0, t) ¼ 0

— (2.11) (iii) Zero moment at distal end: EIc,s(L, t) ¼ 0

— (2.11) (iv) Zero transverse force at distal end: EIc,ss(L, t) 2

af(L, t) ¼ 0

To solve the equation or perform stability analysis, specific

models of dynein regulation may be used to express f in

terms of c and system parameters.
3. Models of dynein regulation
Models of dynein regulation are equations that relate the

interdoublet shear force f(s, t) to mechanical variables such
as curvature or sliding velocity. Examples explored in this

paper are the model of sliding-controlled regulation described

in reference [22], the implementation of curvature-controlled

feedback described by Hines & Blum [17], and the model of

dynein control by interdoublet spacing: the ‘GC’ hypothesis,

proposed originally by Lindemann [25–27].
3.1. Sliding-controlled dynein regulation
3.1.1. Basic equations of sliding-controlled dynein regulation
Several recent studies [22–24] have suggested that inter-

doublet sliding provides the feedback necessary to produce

sustained, propulsive flagellar oscillations. Interdoublet

sliding displacement is related to bending by the kinematic

relationship [17,22]

D(s, t) ¼ D0 þ a(c(s, t)� c(0, t)), (3:1)

where D0 ¼ D(0, t) represents sliding permitted at the base of

the flagellum.

In the hypothesized feedback mechanism, local interdoub-

let sliding reduces the load per dynein motor, leading to

recruitment of more dyneins, and greater net force [22–24].

The detailed explanation of this hypothesis is given in reference

[22] and is summarized briefly here. The active shear force is

related to the incremental change in probability of dynein

cross-linking, dp, and to the local sliding velocity, @D/@t.

f(s, t) ¼ �2r�fdpþ 2r�pf 0
@D

@t
: (3:2)

The parameters r, �f , �p and f 0, which are all positive and real,

have the following meaning: r is the linear density of dynein

arms; �f is the maximum force per dynein arm, �p is the mean

baseline attachment probability and f0 is the magnitude of the

slope of the dynein force–velocity curve. Because the force

per dynein head decreases with velocity, dynein cross-linking

probability changes in response to sliding speed, as described

by the equation

@(dp)

@t
¼ 1

t

�p(1� �p)f 0

fc

@D

@t
� dp

� �
, (3:3)

where t is the characteristic time for this effect and fc is a

characteristic force for cross-link detachment. This relation-

ship can lead to an increase in net shear force in response

to increasing sliding rate, which is mathematically equivalent

to negative friction or stiffness.
3.1.2. Eigenvalue problem for sliding-controlled dynein
regulation

To describe the response of the flagellum, characteristic

modes of oscillation are sought. Generalizing the approach

of references [22–24], separable solutions of the form

c(s, t) ¼ exp (st) ~c (s), (3:4)

are sought withs¼ aþ iv (a andv are real). Each such solution

that satisfies the equation of motion, and all boundary conditions,

is a valid solution mode. Ifa . 0, the mode grows exponentially.

If M such modes are found with exponentssm and shape, ~c
(m)

(s),

then a solution can also be formed from any linear combina-

tion of these modes: c(s, t) ¼
PM

m¼1 amesmt~c
(m)

(s). In general,

for arbitrary initial conditions, the least stable mode will

dominate the response.
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Consistent with the assumed form for c, analogous

expressions for force, sliding displacement and cross-linking

probability, for example, are [22]

f(s, t) ¼ exp (st)~f (s); D(s, t) ¼ exp (st)D̃( s);

dp(s, t) ¼ exp (st)d~p( s):
(3:5)

The sliding-controlled model of reference [22] can be

expressed in terms of a complex mechanical impedance

x(s), using equation (3.5) in equations (3.1)–(3.3):

~f(s) ¼ x(s)~D(s); ~D(s) ¼ ~D0 þ a(~c(s)� ~c(0)): (3:6)

The complex impedance, x(s), is defined in terms of dynein

kinetics (following appendix B of [22]), by substituting

the assumed solution form into the equation governing

cross-linking probability (equation (3.3))

d~p ¼
�p(1� �p)f 0

fc

s

1þ st
~D: (3:7)

Again, following appendix B of reference [22], the expression for

d~p may then substituted into the equation for shear force

(equation (3.2))

~f(s) ¼ �2r�f
�p(1� �p)f 0

fc

s

1þ st
~D

� �
þ 2r�pf 0s~D(s): (3:8)

The complex impedance, x(s), is now written compactly in

terms of the characteristic exponent, s

x(s) ¼ �As

1þ st
þ Bs, (3:9)

A ¼ 2r�p(1� �p)�f f 0

fc
(3:10)

and B ¼ 2rrf 0 (3:11)

where the derived parameters A and B are positive and real.

Equation (3.9) corresponds to the ‘active’ part of equation B9

in [22]. For the special case of the neutrally stable, periodic

response [22,23] the characteristic exponent s ¼ iv, and

x(iv) ¼ k þ ivl. The effects of the feedback-controlled dynein

motors can be combined into dynamic stiffness (k) and friction

(l) coefficients

k ¼ �Av2t

1þ v2t2
; l ¼ B� A

1þ v2t2
: (3:12)

Passive stiffness and friction may also be included, but these

contributions are considered negligible by the authors of refer-

ence [22]; the values of k and l are expected to both be negative.

Substitution of equations (3.5)–(3.6) into the linearized

equation of motion equation (2.11), as in [22], leads to

EI
d4 ~c

ds4
� a2x

d2~c

ds2
þ scN ~c ¼ 0: (3:13)

Following [22], equation (3.13) is written in non-dimensional

form as

~c
0000 � �x~c

00 þ �s~c ¼ 0, (3:14)

with non-dimensional parameters defined as in [22]

�s ¼ s
L

; �s ¼ scNL4

EI
;

�x ¼ xa2L2

EI
and (�)0 ¼ d(�)

d�s
: (3:15)

The boundary conditions for the fixed-free case are also written

in non-dimensional form [22]

— (3.16) (i) Zero angle at base: ~c(0) ¼ 0
— (3.16) (ii) Zero normal velocity at base: ~c
000(0)� �x ~c

0
(0) ¼ 0

— (3.16) (iii) Zero bending moment at distal end: ~c
0
(1) ¼ 0

— (3.16) (iv) Zero transverse force at distal end: ~c
00
(1)�

�x(~D0 þ ~c(1)� ~c(0)) ¼ 0

where �D0 ¼ ~D0=a describes the interdoublet sliding at the

base [22].

Two cases of the sliding-controlled model, described

originally in references [22,23], are considered here.

Case 1: sliding at the proximal end is resisted by base

stiffness, ks, and friction, gs, leading to the expression [22]

�D0 ¼ G ~c(0)�
ð1

0

~c(�s)d�s
� �

(3:17)

where

G ¼ �x

�xþ �ks þ �s�gs
; �ks ¼

ksa2L
EI

; �gs ¼
gsa2

L3cN
: (3:18)

Case 2: sliding at the proximal end of the flagellum is

prohibited: D0 ¼ 0.
3.2. Curvature-controlled dynein regulation
3.2.1. Basic equations of curvature-controlled dynein regulation
Hines & Blum [17] implemented curvature control in a conti-

nuum model of the swimming flagellum of the form of

equations (2.9)–(2.10). The shear force f (s, t) is defined by

the expression

af(s, t) ¼ Sr(s, t)� Sd(s, t), (3:19)

where Sr is the shear force owing to deformation of passive

components and Sd is the active dynein force. Local dynein

shear force is dynamically regulated by curvature, according

to the equation

@Sd

@t
¼ 1

t
�m0

@c

@s
� Sd

� �
, (3:20)

where m0 (N m) determines the effect of curvature feedback

on dynein activity. Hines & Blum [17] suggest that the pas-

sive component of shear is related to interdoublet sliding

displacement D(s,t) by the nonlinear relationship

Sr ¼ k1D 1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2D

2

q� �
: (3:21)
3.2.2. Eigenvalue problem for curvature-controlled dynein
regulation

By direct analogy to the sliding-controlled model in §3.1.2,

separable solution forms (equations (3.4)–(3.5)) are

substituted into the equations for the curvature-controlled

model of Hines & Blum [17] (equations (3.19)–(3.21) and

(2.11)). The corresponding non-dimensional differential

equation and boundary conditions for the fixed-free case

are [17]

~c
0000 �

�d

1þ �h�s
~c
000 þ �s ~c ¼ 0, (3:22)

— (3.23) (i) Zero angle at base: ~c(0) ¼ 0.

— (3.23) (ii) Zero normal velocity at base: ~c
000(0)� �d=

(1þ �h�s) ~c
00
(0) ¼ 0.

— (3.23) (iii) Zero bending moment at distal end: ~c
0
(1) ¼ 0.
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— (3.23) (iv) Zero transverse force at distal end: ~c
00
(1)� �d=

(1þ �h�s) ~c
0
(1) ¼ 0:

As before, �s ¼ scNL4=EI. The new non-dimensional variables

are �h ¼ tEI=cNL4 (the ratio of the dynein time constant to the

viscoelastic time constant of the flagellum) and �d ¼ m0L=EI
(the ratio of the characteristic dynein moment m0 to the

moment required to bend the flagellum to curvature 1/L).

Note that passive shear forces may be added to account for

elastic or dissipative shear elements, but in the linearized ver-

sion of the original model, the passive shear-restoring force

(equation (3.21), to linear order) is zero.
.Soc.Interface
12:20150124
3.3. Dynein regulation by interdoublet spacing: the
geometric clutch hypothesis

3.3.1. Basic equations of the geometric clutch model
The GC model was proposed by Lindemann [25–27] and

implemented as a discretized computer simulation. A version

of the model, expressed as a set of PDEs, was derived recently

[28] and is briefly summarized here. In the GC model, the net

shear force is f ¼ fP þ fR, where fP and fR are the net shear

forces in the principal and reverse directions, exerted between

pairs of doublets on opposite sides of the axoneme. Including

shear forces owing to passive stiffness and friction, net shear

force is thus expressed as [28]

f ¼ ��f(p1 � p0)Aþ 2kTacþ 2bTa
@c

@t
: (3:24)

The probabilities p0 and p1 are system parameters that rep-

resent the baseline and maximum probabilities of dynein

cross-linking, and �f is the maximum dynein force per unit

length. The variable A ¼ AP2 AR represents net dynein

activity in the principal bend direction. The parameters kT

and bT represent stiffness and damping in shear. (Note the

sign convention for shear force here is opposite that of reference

[28], and consistent with references [22,23].)

In the GC model, dynein activity is coupled to global flagel-

lar motion by tension and curvature [28]. The distributed shear

force causes a difference in tension between doublets in each

active pair: SP(s, t) ¼
Ð L

s fPdz and SR(s, t) ¼
Ð L

s fRdz. If the

doublets are curved, these tension differences lead to a com-

ponent of force (SP(@c=@s) or SR(@c=@s)) that separates the

doublets or draws them together. After adding the two sides

together and linearizing, only the baseline difference in ten-

sion, S0, appears in the equation governing net dynein

activity, A. The following expressions are obtained [28]

@A
@t
¼ � 1

tN
A� CSS0

@c

@s
(3:25)

and

S0 ¼ 2

ðL

s

�fp0 dz ¼ �2�fp0(L� s): (3:26)

The time constant tN describes the local dynein kinetics. The

resting ‘isometric’ difference in tension, S0, provides a baseline

level of coupling between curvature and dynein activity even

when the flagellum is almost straight. The parameter CS con-

trols the magnitude of the coupling [28]. The stability of a

straight flagellum is significantly affected when the baseline

tension difference S0 . 0.
3.3.2. Eigenvalue problem for the geometric clutch model
Solutions to the flagella equations with GC dynein regulation

are sought in the separable form above (equations (3.5)), and

substituted into the expressions for dynein activity (equations

(3.24)–(3.26)) and flagellar motion (equation (2.11)). The

resulting expressions are combined and simplified to obtain

the following equation for ~c

EI
d4 ~c

ds4
� c1(s)

d2

ds2
(L� s)

d ~c

ds

� �
� c2(s)

d2 ~c

ds2
þ scN ~c ¼ 0,

(3:27)

with coefficients

c1(s) ¼ 2p0(p1 � p0)a�f2CStN=(tNsþ 1) (3:28)

and

c2(s) ¼ 2a2(kT þ sbT): (3:29)

In non-dimensional form, the equation becomes

~c
0000 � [�c1(�s)(1� �s) ~c

0
]00 � �c2(�s) ~c

00 þ �s ~c ¼ 0, (3:30)

or its equivalent,

~c
0000 � �c1(�s)(1� �s) ~c

000 � [�c2(�s)� 2�c1(�s)] ~c
00 þ �s ~c ¼ 0: (3:31)

where the new non-dimensional parameters are �c1 ¼ c1L2=EI
and �c2 ¼ c2L2=EI.

The corresponding boundary conditions are

— (3.32) (i) Zero angle at base: ~c(0) ¼ 0:

— (3.32) (ii) Zero normal velocity at base: ~c
000

(0)�
[�c1(�s)(1� �s) ~c0]0 � �c2

~c
0
(0) ¼ 0:

— (3.32) (iii) Zero bending moment at distal end: ~c
0
(1) ¼ 0:

— (3.32) (iv) Zero transverse force at distal end: ~c
00
(1)�

�c2( ~c(1)� ~c(0)) ¼ 0:

By comparing equation (3.31) with the analogous equa-

tions describing sliding-controlled models (equation (3.14))

[22–24] and curvature-controlled models (equation (3.22))

[4,10,17,30], it is apparent that the GC model includes feed-

back from both curvature (the term containing ~c
000

) and

shear deformation (the term containing ~c
00
). Notably, both

terms become more destabilizing when c1(s) increases [28].

An important feature of the curvature-feedback term in the

GC model is that it is proportional to 1� �s. The feedback is thus

strongest at the proximal end, which encourages switching at

the base and thus proximal-to-distal propagation. The factor

of 1� �s also complicates the solution of the eigenvalue

problem, so that numerical methods (weighted residual or

finite-element calculations, e.g.) are required to find the natural

modes and frequencies of oscillation.
3.4. Nonlinear-restoring force
The equations of sections 3.1–3.3 describe linearized models of

the forces between doublets. These models either omit elastic

shear forces or permit elastic force to remain proportional to

displacement. In fact, it is likely that forces from passive

components of the axoneme will increase nonlinearly with dis-

placement [23]. Such nonlinearity does not affect the linear

models above, but prevents unstable modes from growing

without limit. Accordingly, in simulations, an additional non-

linear-restoring shear force proportional to the cube of the
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shear displacement was added. In each case, the shear force is

fsim(s, t) ¼ f(s, t)þ k3D
3, (3:33)

where D(s, t) is defined by equation (3.1), and f (s, t) by

equations (3.2), (3.19) or (3.24). The nonlinear-restoring

force of equation (3.33) approximates the assumed stiffening

behaviour of elastic elements [4,23]. When the lineari-

zed model is unstable, the value of k3 may determine the

amplitude of simulated oscillations.
J.R.Soc.Interface
12:20150124
4. Solution of the eigenvalue problem
The spatial differential equations derived in sections 3.1–3.3

are summarized here.

Sliding-controlled: ~c
0000 � �x ~c

00 þ �s ~c ¼ 0, (3.14).

Curvature-controlled: ~c
0000 � �d=(1þ �h�s) ~c

000 þ �s ~c ¼ 0, (3.22).

GC: ~c
0000 � �c1(�s)(1� �s) ~c

000 � [�c2(�s)� 2�c1(�s)] ~c
00 þ �s ~c ¼ 0.

(3.31).

The behaviour of each model, for a given set of boundary

conditions, can be described in terms of the characteristic

modes, or eigenfunctions. Exact expressions for the eigen-

functions in terms of exponential functions can be found

for the sliding-controlled and curvature-controlled models,

as described below (§4.1); the eigenvalues themselves must

be found numerically. The GC model requires a numeri-

cal approach to find eigenvalues and eigenfunctions.

Accordingly, the method of weighted residuals and the

finite-element method, both of which may be applied to all

models, are invoked (§4.2).
4.1. Eigenvalue analysis by substitution of an assumed
exponential solution

4.1.1. Solution of the eigenvalue problem for the sliding-
controlled model

The eigenvalue problem for the sliding-controlled model

(equation (3.14) together with the boundary conditions

equation (3.16)) may be solved as follows [22]. The differen-

tial equation for the mode shape, equation (3.14) is satisfied

by exponential solutions of the form

~c (s) ¼ A eb�s: (4:1)

Substitution of the assumed form into the equation of motion

leads to the characteristic polynomial

b4 � �xb2 þ �s ¼ 0: (4:2)

For a given value of �s, the general solution to equation (3.14)

can be constructed using the four roots of equation (4.2)

~c(�s) ¼ A1eb1�s þ A2eb2�s þ A3eb3�s þ A4eb4�s: (4:3)

Equations (3.17) and (3.18) can be used to eliminate �D0 from

the boundary condition equations, leading to a matrix

equation of the form below (a representative column of the
4 � 4 matrix is shown):

� � � 1 � � �
� � � b3

n � �xbn � � �
� � � bnebn � � �

� � � b2
nebn þ �x 1� G� ebn þ G

bn
(ebn � 1)

� �
� � �

2
666664

3
777775

A1

A2

A3

A4

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

, n ¼ 1, 2, 3, 4:

(4:4)

If sliding at the base is not permitted, the base compliance

parameter G ¼ 0.

Note that the values of bn in the matrix above depend not

only on the physical parameters of the model, but also on the

characteristic exponent, or eigenvalue, �s. For a specific par-

ameter set, the eigenvalue problem can thus be written

compactly as

M(�s) � a ¼ 0; a ¼ [A1, A2, A3, A4]T : (4:5)

Non-trivial solutions are found by seeking values of �s

that lead to

D(�s) ¼ det M(�s) ¼ 0: (4:6)

Eigenvalues �sm are found at the zeros of D(�s) (or minima of

jD(�s)j). Mode shapes are found by seeking vectors a (m) that

span the corresponding null-space of the matrix, M(�sm); this

is accomplished by singular value decomposition. The mode

shape ~c
(m)

(�s) is then reconstructed by substituting values for

A(m)
n andb(m)

n (coefficients and roots corresponding to the eigen-

value �sm) into equation (4.3). Results may be expressed in

dimensional form using s ¼ �sEI=cNL4.
4.1.2. Solution of the eigenvalue problem for the curvature-
controlled model

Substituting the assumed exponential form (equation (4.1))

into the equation of the curvature-controlled model, the

characteristic polynomial is found to be

b4 �
�d

1þ �h�s
b3 þ �s ¼ 0: (4:7)

By imposing boundary conditions, the eigenvalue problem is

expressed as the matrix equation (4.8) (again a representative

column of the 4 � 4 matrix is shown)

� � � bn �
�d

1þ �h�s
(ebn � 1) � � �

� � � b2
n �

�d

1þ �h�s
bn � � �

� � � bnebn � � �

� � � b2
nebn �

�d

1þ �h�s
bnebn � � �

2
6666666664

3
7777777775

A1

A2

A3

A4

8>>><
>>>:

9>>>=
>>>;
¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

,

n ¼ 1, 2, 3, 4: (4:8)

As in the sliding-controlled model, characteristic exponents

(eigenvalues) and mode shapes (eigenfunctions) are obtained

by finding the zeros of the determinant D(�s) of the matrix on

the left side of equation (4.8) and reconstructing the mode

shapes using equation (4.3).



Table 1. Parameter values for sliding-controlled model with base sliding—case 1 [22].

parameter value units description

cN 0.0034 pN-s mm22 normal resistive force coefficient

cT 0.0017 pN-s mm22 tangent resistive force coefficient (ct � cN/2)

a 0.185 mm effective diameter of flagellum

L 58.3 mm length of flagellum

EI 1700 pN-mm2 flexural rigidity of flagellum

t 0.004 s dynein time constant

�p 0.03 1 mean probability of cross-linking
�f 3.8 pN dynein stall force

fc 2.0 pN characteristic force

f0 1.8 pN-s mm21 slope of dynein force – velocity curve

ks 94.8 � 1023 pN mm21 sliding stiffness at base

gs 0.273 � 1023 pN-s mm21 sliding friction at base

r 150 1 mm21 density of dynein motors

k3 800 pN mm24 nonlinear shear stiffness
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4.1.3. The eigenvalue problem for the geometric clutch model
It is not possible to use the approach above to find closed-form

expressions for the eigenfunctions for the GC model, owing to

the factor 1� �s in the equation for ~c. Instead, approximate sol-

utions to the eigenvalue problem were sought using numerical

methods. Such methods include finite-element analysis, or the

method of weighted residuals [31]. The method of weighted

residuals is well-suited to this problem, as the flagellar eigen-

functions can be constructed from the vibration modes of an

Euler–Bernouilli beam with corresponding boundary con-

ditions. The application of the method of weighted residuals

to this problem is described in the electronic supplementary

material, part A.
4.2. Finite-element eigenanalysis and time-marching
simulation

To check the stability analysis and characterize the corres-

ponding behaviour, solutions to the equations of motion were

also found using the PDE modelling capability of a commer-

cial finite-element (FE) software package (COMSOL v. 4.3a,

COMSOL, Inc., Burlington, MA). The one-dimensional domain

was discretized into 50 elements with quartic interpolation.

Eigenvalue/eigenfunction calculations (300 maximum iter-

ations, relative tolerance 1 � 1026) and time-marching

simulations (backward differentiation formula, variable time

step, relative tolerance 1 � 1024) were performed. Representa-

tive results were confirmed at finer spatial resolution and

smaller tolerance values.
5. Results: unstable and neutrally stable modes
of flagellar models

For each model, we seek unstable modes that lead to oscil-

lation. Each such mode is characterized by frequency, shape

and propagation direction, which determines propulsive

effectiveness. The basic physical parameters (length, flexural

rigidity, diameter, viscosity) and fixed-free boundary
conditions are consistent between the models. In the first slid-

ing-controlled case, interdoublet sliding is permitted at the

base, for comparison with the results of reference [22]. The

role of unstable modes in initiation and maintenance of fla-

gellar oscillations is investigated by numerical simulations

of fully nonlinear models.
5.1. Unstable and neutrally stable modes of sliding-
controlled models

5.1.1. Case 1: modes of the sliding-controlled model with finite
sliding compliance at the base

Modes from assumed exponential solution: a sliding-controlled

model with fixed-free boundary conditions and sliding per-

mitted at the base [22,23] was analysed by the assumed

solution approach described above. This case, and correspond-

ing parameters (table 1), are chosen for comparison to the

analogous example in reference [22]. Sliding at the base

is permitted, opposed by finite positive stiffness (ks ¼ 94.8 �
10 2 3 N m21) and friction (gs ¼ 0.273 � 1023 N-s m21) as in

[22]. Other parameters were also chosen to match the mechan-

ical impedance used in reference [22]. For example, these

parameters lead to negative effective shear stiffness

(k ¼ 21620 N m22) and friction (l ¼ 27.60 N-s m22) in the

flagellum for the 20.6 Hz mode discussed in [22].

Characteristic exponents in the complex plane are found at

local minima of the determinant magnitude, jD(s)j, shown in

figure 2a,b (results are shown in terms of physical, rather

than dimensionless, variables). Two notable observations can

be made. (i) A periodic solution (complex conjugate eigenfunc-

tions with purely imaginary characteristic exponents: s ¼ iv)

exists. The frequency of this periodic mode corresponds pre-

cisely to the frequency (v/2p ¼ 20.6 Hz) of the periodic

mode reported in reference [22] for these parameters. (ii) Mul-

tiple unstable modes coexist with this periodic mode. Three of

these unstable modes have characteristic exponents with posi-

tive real parts (Re(s) ¼ a . 0). Because of these coexisting

unstable modes, the physical significance of the neutrally

stable 20.6 Hz mode is minimal.
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Results from the method of weighted residuals: complementary

results obtained by the method of weighted residuals are

shown in figure 2c. Figure 2c shows the paths of the eigenvalues

in the complex plane as the baseline probability of dynein attach-

ment, �p, is increased from 0 to 0.04. The final values of the

eigenvalues (red ‘x’ symbols in figure 2c) agree closely with

the values obtained from the local minima of jDj (figure 2a,b).

Mode shapes corresponding to these eigenvalues are

shown in figure 3. The shape of the periodic mode at 20.6 Hz

obtained here matches closely the shape of the periodic mode

at the same frequency in reference [22]. The unstable modes

of this model under the same conditions have not been

described in prior studies; they are expected to influence

physical behaviour more than the coexisting periodic mode.
Figure 4a shows the frequency of the least stable, unstable

mode, as function of the mean cross-linking probability, �p and

flagellum length, L. The white region of the plot indicates par-

ameter combinations for which unstable modes are absent, so

the edge of the coloured region indicates the stability boundary.

Solutions with zero imaginary part (purely real eigenvalues

a . 0) correspond to non-oscillatory unstable modes.

Figure 4b displays the gradient of phase for the least

stable mode, @/ ~c=@s, at each parameter combination. If the

mode exhibits proximal-to-distal (anterograde) propagation,

the phase gradient will be negative. For example, the phase

gradient of the 20.6 Hz mode is negative. However, the

phase gradient of the least stable mode is positive for all par-

ameter combinations in this model, indicating that retrograde
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(distal-to-proximal) propagation is present in this model with

these parameters.
5.1.2. Case 2: stability of the sliding-controlled model
with no sliding at the base

This case provides an opportunity for more extensive com-

parison to results from prior work [23] (figure 5). Periodic

modes were found by the assumed solution method (§4.1)

at frequencies from 1 to 100 Hz, using the same parameter

values as in reference [23]. The values of the complex impe-

dance x corresponding to these periodic solutions are

shown in figure 5 (red markers); the frequency of each

mode is plotted on the vertical axis of figure 5b. Figure 5a
is directly comparable to fig. 3 in [23].

Also shown in figure 5 are the frequencies of all unstable

modes found by the method of weighted residuals, at all

values of the complex impedance, x. The frequency predictions

of the weighted residual method at the boundaries of different

solution regimes agree closely with the frequencies of periodic

modes obtained by the assumed solution approach. These pre-

dictions also match corresponding results in reference [23].

However, for manyof the parametercombinations at which per-

iodic solutions exist, coexisting unstable modes are also found.
Figure 6a shows the locations of eigenvalues of this model

as the mean probability of cross-linking, �p, is varied (other

parameters are as in table 2). The frequency and direction

of the least stable mode are shown in figure 6b,c as functions

of the length of the flagellum (L) and �p. The neutrally stable

mode at 28 Hz, identified by eigenvalues on the imaginary

axis in figure 6 and by the mode shape in figure 7, matches

the corresponding example result from [23].
5.2. Unstable modes of the curvature-controlled model
Eigenvalues, s, of the classic curvature-controlled, fixed-free

flagellum model of Hines & Blum [17], using parameter

values in table 3, are shown in figure 8. The locations of these

eigenvalues in the complex plane are found at local minima

of jD(s)j, which is shown in figure 8a and expanded in figure

8c. Notably, the least stable solutions are oscillatory with the

imaginary parts of the characteristic exponents corresponding

to frequencies of flagellar motion. The paths of eigenvalues in

the complex plane, obtained by the method of weighted

residuals, are shown in figure 8b (expanded in figure 8d )

with the final eigenvalues closely matching the minima of

jD(s)j in figure 8a,c. The mode shape corresponding to the

unstable positive eigenvalue is shown in figure 9.
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Table 2. Parameter values changed for sliding-controlled model with no base sliding—case 2 [22,23]. (L, EI, a, cN are as in table 1.)

parameter value units description

�p 0.01 1 mean probability of cross-linking
�f 5.2 pN dynein stall force

fc 1.0 pN characteristic force

f 0 0.5 pN-s mm21 slope of dynein force – velocity curve

k3 40 pN mm24 nonlinear shear stiffness

Table 3. Parameter values for curvature-controlled model [17]. (L, EI, a, cN

are as in table 1.)

parameter value units description

t 0.015 s dynein time constant
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Oscillation frequencies and phase gradients for the least

stable modes of the curvature-controlled model are shown in

figure 10. As the curvature feedback parameter m0 is decreased

the modes become stable, as is characteristic of the underlying

Hopf bifurcation. All the unstable modes in this parameter

range exhibit anterograde (proximal-to-distal) propagation.
m0 1600 pN-mm characteristic bending

moment

k3 150 pN mm24 nonlinear shear stiffness

5.3. Unstable modes of the geometric clutch model
Figure 11 illustrates the increasing baseline probability of dynein

attachment, p0 on the eigenvalues of the GC model of the flagel-

lum. A dynamic instability occurs when complex eigenvalues

cross into the right half plane with non-zero imaginary part:

Re(s) . 0; Im(s) = 0. Increasing the baseline probability of

cross-bridge attachment, p0, encourages instability. The modes

corresponding to the least stable eigenvalues at p0 ¼ 0.05 (with

other parameters as in table 4) are shown in figure 12.
5.4. Results of finite-element analysis and numerical
simulation

Eigensolutions were also obtained by FE analysis of the line-

arized models using COMSOL PDE modelling software, as
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described above. Characteristic exponents and mode shapes

found by FE eigenanalysis (not shown) correspond closely

to those found by the method of weighted residuals, shown

in figure 3, figure 7, figure 9 and figure 12.

Numerical simulations (i.e. time-marching) of the full

nonlinear flagellum equations in the time domain with fixed-

free boundary conditions were performed in COMSOL to
investigate the behaviour of the dynein regulation models at

finite amplitudes. Time-marching simulation allows explora-

tion of nonlinear, transient and non-periodic behaviour.

Simulations were performed for the sliding-controlled model

(equations (2.9) and (2.10) with equations (3.1)–(3.3)), for the

curvature-controlled model (equations (2.9) and (2.10) and

equations (3.19)–(3.21)), and for the GC model (equations
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phase gradient ,0, for v . 0. For all parameter combinations shown, the least stable mode exhibits anterograde propagation.

Table 4. Parameter values for the geometric clutch model [28]. (L, EI, a, cN are as in table 1.)

parameter value units description

t 0.05 s dynein time constant

p0 0.05 1 baseline probability of cross-linking

p1 0.15 1 maximum probability of cross-linking

fr 2000 pN mm21 maximum dynein force per unit length

kT 12.5 pN mm22 passive shear stiffness

bT 0.25 pN-s mm22 passive shear friction

Cs 0.50 mm pN-s21 interdoublet force and dynein coupling factor

k3 30 pN mm24 nonlinear shear stiffness
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(2.9) and (2.10) and equations (3.24)–(3.26)). A nonlinear elastic

shear force (equation (3.33)) was included in each model for

simulation; the value of the nonlinear coefficient k3 was

adjusted to control amplitude (i.e. to produce oscillations of

comparable amplitude in each model).

Simulation of each system led to oscillatory solutions with

moderate amplitude (figure 13). Each row of figure 13 shows

(i) snapshots of the waveform colour-coded by time; (ii) time

series of angle at the tip and tension at the base; (iii) ‘phase

plots’ of flagellar angle at s ¼ 3L/4 and s ¼ L and (iv) the fun-

damental mode obtained by Fourier analysis. Simulations of

the sliding-controlled model with sliding at the base (case 1)

lead to oscillatory waves with retrograde propagation.

The positive mean value of tension at the base (T0) signifies

backward propulsive force. The sliding-controlled model

without sliding at the base (case 2) exhibits non-propulsive,

retrograde waves similar to the least stable mode of the line-

arized version. The curvature-controlled model exhibits clear

anterograde wave propagation that leads to a forward

propulsive force (negative T0). The GC model exhibits pro-

pulsive, anterograde propagating waves that resemble the

single unstable mode.

Fourier analysis of the steady-state spatio-temporal pat-

tern of c(s, t) from simulation was performed along the

time dimension ( fft; Matlab
TM

, The MathWorks, Natick,

MA) to obtain the frequency and shape of the
fundamental mode of oscillation (figure 13 and table 5).

The relative contribution of the fundamental mode to the

simulated response was measured by the ratio of its magni-

tude to the summed magnitudes of all the Fourier

coefficients (table 5). The similarity of the fundamental

mode from simulation to the unstable modes of the linearized

model (obtained by weighted residuals eigenanalysis) was

measured by the magnitude of the correlation coefficient

between the two shapes (corrcoef; Matlab
TM

, The MathWorks;

table 5).

Finally, the sensitivity of flagellar behaviour to model

parameters can be determined from the changes in eigen-

values as the parameter is varied. Electronic supplementary

material, figure S5 shows the effects of flagellar length, L,

flexural rigidity, EI and resistive force coefficient, cN on

eigenvalues of each model.
6. Discussion and conclusion
Unstable and neutrallystable periodic modes were identified for

the sliding-controlled [22–24], curvature-controlled [17], and

doublet separation-controlled (GC) [25–27] models of flagellar

motion. Sliding-controlled models are characterized by sliding

impedances with negative effective stiffness and friction coeffi-

cients. Previous studies of sliding-controlled models [22–24]
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have focused on the existence of and characterization of the neu-

trallystable periodic solutions. The current analysis confirmsthe

existence of periodic modes that closely resemble observed

flagellar behaviour. However, the uniqueness of these solu-

tions was not demonstrated in prior studies, leaving open the

possibility of coexisting unstable modes. In this study, we find

that at the same parameter values that give rise to neutrally

stable periodic modes in the sliding-controlled model, multiple

unstable modes exist which exhibit retrograde (distal-to-

proximal) wave propagation. Such unstable modes would

dominate the response of a physical system.

The fixed-free, curvature-controlled model, derived orig-

inally by Hines & Blum [17] also exhibits an unstable mode

at the parameter values in table 3. This unstable mode was

characterized by anterograde, propulsive bend propagation.

The dynamically unstable mode found in the present

study parallels the propulsive modes of oscillation found by

time-marching simulation in reference [17]. The existence of

propulsive waveforms does not imply that this particular

curvature-controlled model of flagellar motion is completely

satisfactory. Others, including the authors of the original

study [17], have noted that this model of curvature control is

not based on a specific biophysical mechanism, and the orig-

inal model relies on parameter values (particularly flexural

rigidity) that may not be accurate. However, the ability

to model stable, propulsive, oscillatory solutions as well as

transient behaviour confirms the value of this seminal model.

The GC model exhibits a dominant unstable mode at the par-

ameter values used here. The mode was characterized by clear

anterograde waveform propagation. Physically, oscillations of

the GC model are the result of a switching mechanism that is

strongest at the base of the flagellum [26,32]. Active shear

in one doublet pair (for example the P side) induces a tension

difference in the doublets on that side, which combined with cur-

vature, produces a transverse force which pushes the doublets
apart and eventually terminates the active shear. This transverse

force corresponds to the ‘global transverse force’ described by

Lindemann [25–27]. At the same time, the corresponding pas-

sive shear force on the opposite doublet pair produces a

transverse force which pulls the doublets on the passive side

together and initiates active shear on that side. The GC model

combines a physically intuitive mechanism with predicted

behaviour that resembles observed waveforms.

Why dowaves propagate from base to tip in some models but

not others? The effect of dynein regulation mechanism on propa-

gation direction is discussed appendix D of reference [22]. To

summarize the result: in models with curvature feedback, propa-

gation direction is determined by the phase of the (complex)

curvature coefficient (equation D7 of reference [22]). In models

with sliding control, propagation direction is not determined

by the equation of motion. Thus, boundary conditions strongly

affect propagation direction in sliding-controlled models. We

hypothesize that in fixed-free, sliding-controlled models, larger

sliding amplitudes at the free end may encourage early switching

at the tip and retrograde propagation.

Nonlinear versions of these models, which more closely

approximate the physical situation, were explored by time-

domain simulation. Even in the nonlinear regime, unstable

modes of the linearized models still appear to have pronounced

effects on observed behaviour (figure 13 and table 5). When

unstable modes exist, damped (decaying) or neutrally stable

modes have relatively little influence on the large-amplitude

behaviour. In addition, when multiple, strongly unstable

modes exist (as in the sliding-controlled model, case 1), the influ-

ence of each individual mode is less clear. The results of this

study complement the recent observation that distinct nonlinear

modes of deformation in flagellar models may arise at large

amplitudes [33] leading to asymmetric waveforms.

The linearized models in this paper are expected to be

quantitatively accurate (say within less than 10%) only for
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Figure 13. Results from simulation of the full nonlinear equations of each model. (Column 1) Successive snapshots of the flagellar waveform from time-marching
simulations; colour shows time increasing from blue (early) to red (later); (column 2, top) time series of angle c(L)at s ¼ L; (column 2, bottom) flagellar tension T0

at the base s ¼ 0. Note that a mean value of T0 , 0 indicates axial compression of the flagellum, corresponding to pushing on the base and propulsive behaviour.
(Column 3) Plot of c(3L/4) versus c(L) (clockwise loop ¼ anterograde propagation; counter-clockwise ¼ retrograde); (column 4) fundamental mode from Fourier
analysis of simulation. Table 5 lists the relative contribution of each such mode and its correlation with unstable modes of the linearized version. (row 1, a – d, SC 1):
sliding-controlled model with sliding at the base (reference [22]; parameters in table 1); oscillation frequency: 27.3 Hz. (Row 2, e – h, SC 2): sliding-controlled model,
with no sliding at the base (reference [23]; parameters in table 2); frequency 31.3 Hz. (Row 3, i – l, CC): curvature-controlled model (reference [17]; parameters in
table 3); frequency 37.8 Hz. (Row 4, m – p, GC): GC model (reference [28]; parameters in table 4); frequency 46.2 Hz. All models used the same basic physical
parameters: length L ¼ 58 mm, flexural rigidity EI ¼ 1700 pN-mm2, diameter a ¼ 185 nm and resistive force coefficient cN ¼ 0.0034 pN-s mm22.

Table 5. Comparison of fundamental oscillation modes from simulation and unstable modes from eigenanalysis of sliding-controlled, curvature-controlled, and
geometric clutch models. Italicized values correspond to the least stable mode.

model

simulation:
fundamental
frequency (Hz)

simulation: relative
amplitude of
fundamental mode

eigenanalysis:
frequencies of
unstable modes (Hz)

correlation coefficients:
simulation to
eigenanalysis

sliding-controlled case 1 27.3 0.881 3.3 0.739

22.5 0.667

30.8 0.272

20.6 0.354

sliding-controlled case 2 31.3 0.972 28.0 0.974

curvature-controlled 37.8 0.929 36.3 0.876

geometric clutch 46.2 0.948 43.2 0.971

32.6 0.804

20.3 0.430
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oscillations with angular amplitudes of approximately 0.3–0.4

radians, or less. Oscillation amplitudes are reported to be

approximately 1 radian [22] in bull sperm and even larger,

asymmetric oscillations are seen in flagella of Chlamydomonas
reinhardtii [34]. While eigenanalysis of linearized models

illuminates the initiation and maintenance of propagating

waves, and provides reasonable estimates of frequency, it

does not provide any information about oscillation amplitudes.

Nonlinear modelling of flagellar motion is a compelling target

of future work. The geometric nonlinearity associated with

large-amplitude motion of the slender Euler–Bernouilli beam

is well understood, but much less is known about the possible

structural and material nonlinearities of the axoneme.

In conclusion, the unstable modes of linear models of flagel-

lar motion illuminate the hypotheses that define each model of

dynein regulation, and clarify the consequences of underlying

assumptions and parameter choices. With reasonable par-

ameter values, the fixed-free GC model exhibits unstable
modes that are propulsive and propagate base-to-tip. In con-

trast, the existence of unstable retrograde (tip-to-base) modes

in current sliding-controlled models, with both fixed and slid-

ing boundary conditions at the base, appears to weaken the

evidence for this hypothesis of dynein coordination. The devel-

opment of models of dynein regulation and flagellar motion

remains an active topic of research. New details of the mech-

anics of flagella are still being uncovered [35] as are the

mechanisms of synchronization between flagella [36,37]. The

stability properties and propagation directions of all modes

should be considered in evaluating proposed mathematical

models and their underlying hypotheses.
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