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New experimental results on collagen fibre dispersion in human arterial

layers have shown that the dispersion in the tangential plane is more signifi-

cant than that out of plane. A rotationally symmetric dispersion model is not

able to capture this distinction. For this reason, we introduce a new non-

symmetric dispersion model, based on the bivariate von Mises distribution,

which is used to construct a new structure tensor. The latter is incorporated

in a strain-energy function that accommodates both the mechanical and

structural features of the material, extending our rotationally symmetric dis-

persion model (Gasser et al. 2006 J. R. Soc. Interface 3, 15–35. (doi:10.1098/

rsif.2005.0073)). We provide specific ranges for the dispersion parameters

and show how previous models can be deduced as special cases. We also

provide explicit expressions for the stress and elasticity tensors in the

Lagrangian description that are needed for a finite-element implementation.

Material and structural parameters were obtained by fitting predictions of

the model to experimental data obtained from human abdominal aortic

adventitia. In a finite-element example, we analyse the influence of the

fibre dispersion on the homogeneous biaxial mechanical response of aortic

strips, and in a final example the non-homogeneous stress distribution is

obtained for circumferential and axial strips under fixed extension. It has

recently become apparent that this more general model is needed for

describing the mechanical behaviour of a variety of fibrous tissues.
1. Introduction
Physiological and pathological changes in the cardiovascular system directly

influence the mechanical behaviour of arterial walls [1]. It is, therefore, of cru-

cial importance to improve understanding of the mechanical properties of the

constituents of arterial walls, including the inherent features of anisotropy

and nonlinearity. These properties, among others, pose formidable challenges

in the constitutive modelling and numerical analysis of such tissues and can

be clearly connected to the underlying structure of the tissues. The passive

mechanical behaviour of an arterial wall is governed mainly by the matrix

material (which consists of water, elastin, proteoglycans, etc.) and the collagen

fibre reinforcement. The anisotropy is associated with the local mean alignment

of the collagen fibres, which also stiffen their response when under tension,

leading to their significant nonlinear characteristics. The fibres are not perfectly

aligned but are dispersed around their mean direction, and the amount and

character of the dispersion depends on the topography, the particular layer of

the vessel considered and the respective (patho)physiological condition, inter
alia. Fibre dispersion in arterial walls has been documented and analysed in,

for example, [2–5]; for an overview of the structural quantification of collagen

fibres in arterial walls, see [6]. In particular, the study in [5] identified the pres-

ence of two fibre families in the intima, media and adventitia of human aortas;

they are helically and almost symmetrically arranged with respect to the cylin-

der axis. Often a third and sometimes a fourth family is present in the intima in

the respective axial and circumferential directions. Recent work [7] has revealed

that, while helical fibre structures are present in human elastic arteries, in more
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muscular arteries (as for the murine basilar artery) and veins

(such as the porcine jugular vein) a transition from the helical

arrangement to two nearly orthogonal fibre families aligned

in the circumferential and axial directions can be observed,

and it is suggested that this is to ensure optimal efficiency

of the vasculature. Observations of dispersion for other tis-

sues, including the myocardium, corneas and articular

cartilage, can be found in [8,9], [10,11] and [12], respectively.

Several mechanical models accounting for the dispersion

of collagen fibres have been proposed. Fibre dispersion can

be represented either directly by incorporation in a strain-

energy function via a probability density function (PDF) or

by a generalized structure tensor, for example. Following

[13], these two approaches are referred to as ‘angular inte-

gration’ (AI) and ‘generalized structure tensor’ (GST).

Cortes et al. [13] compared the results of the two formulations

on the basis of the energy function introduced in [14] and the

GST in [15]. As was pointed out in, for example, [16] one

approach is to consider the strain energy w(l) of a single col-

lagen fibre as a function of the fibre stretch l and to integrate

this over the unit sphere S to obtain the total free-energy

function Cf of the fibres per unit reference volume, i.e.

Cf ¼ n
ð

S
r(N)w(l)dS, (1:1)

where n is the number of fibres per unit reference volume, N

is a unit vector describing the orientation of an individual

fibre and r is the relative angular density of fibres normalized

according to

1

4p

ð
S
r(N)dS ¼ 1: (1:2)

The region of the unit sphere where fibres are in tension is

defined by the set of N for which l . 1, where l ¼ (C : N �
N)1/2 is the stretch in the direction N, C is the right

Cauchy–Green tensor and a double contraction is defined

by C : N � N ¼ (CN) . N. This is the AI approach.

In the GST approach, the energy function is associated

with a GST H and is given by

Cf ¼ Cf(C, H), (1:3)

where H is defined by

H ¼ 1

4p

ð
S
r(N)N�NdS, with trH ¼ 1, (1:4)

the latter following from (1.2).

By comparing these approaches, we see that (1.1) requires

integration over the unit sphere at each point, while for the

strain-energy function (1.3) no such integration is needed

once H has been determined by (1.4)1 or prescribed. On the

one hand, the AI approach allows identification and exclu-

sion of individual fibres under compression, while, on the

other hand, this is not quite so straightforward on the basis

of (1.4)1. For a detailed discussion of the latter issue, see

[17,18].

In chronological order, we now provide a short overview

of the main existing continuum mechanical models which

take fibre dispersion into account. Probably the study in

[19] was the first to consider fibre dispersion in the analysis

of fibrous connective tissues, with the tissue structure (fibre

orientation) being accounted for in the strain energy via an

orientation density function. The approach [20] incorporates

a two-dimensional AI distribution in a strain-energy function
based on the Beta distribution, but neglects the out-of-plane

dispersion of the fibres, while a planar fibre dispersion was

used in [21] with a Gaussian PDF to study the biaxial behav-

iour of arterial walls and aortic valves. In [22], the Gaussian

distribution was used to compute the so-called splay invariants

to represent two- and three-dimensional fibre dispersions,

which the authors applied to aortic valve tissues.

In [14], the use of an exponential strain-energy function

was motivated following [23], and this model was extended

to the case of fibre dispersion in [15] based on the struc-

ture tensor (1.4)1. Therein, we used a rotationally symmetric

distribution of collagen fibres. In addition, the model [15]

was applied to several other tissues, including the cornea

[24] and articular cartilage [25], while, in [26], the constitutive

model of [14] was applied with the fibre orientations uni-

formly distributed over the azimuthal angle. A structure

tensor based on a planar counterpart of that in [15] was

defined in [27,28] and used in [29].

A PDF based on the von Mises distribution taking account

of a non-rotationally symmetric fibre dispersion and based on

the micro-sphere model was suggested in [30], and an ellip-

soidal distribution with a power-law strain-energy function,

based on the AI formulation, was employed in [31] and applied

to cartilage. Based on the AI approach with the von Mises

distribution Raghupathy & Barocas [32] derived a closed-

form solution for a simple exponential fibre stress–strain law

and applied their model to planar biaxial extension of a bioar-

tificial tissue. The study of Federico & Gasser [33] adopted the

model of Gasser et al. [15] and included the limiting case of an

in-plane arrangement of fibres following the AI approach,

which was also used in [34] with a planar von Mises distri-

bution to examine the in-plane dispersion of collagen fibres.

In [35], the Bingham distribution was used and was claimed

to be ‘clearly superior to the p-periodic von Mises distribution

in modelling the collagen organization in vascular tissue’,

which we have not found to be the case in this study. The

model [15] was extended in [36] to incorporate a higher order

statistical measure of dispersion in order to reduce differences

between the GST and AI formulations. In a recent paper [17],

we have introduced a fibre dispersion model with a weighted

energy function that allows the exclusion of fibres which are

under compression. The model, based on the AI approach,

has been developed for plane strain and for three-dimensional

deformations appropriate for finite-element implementation

(see also the discussion in [18] on the exclusion of compressed

fibres using the GST approach). A summary of the main

models discussed above is listed in table 1.

The model in [15] has proved to be very successful, but

recently it was shown in [5] that an axisymmetric model of

collagen fibre dispersion is not appropriate, and a more

general dispersion model is required to accommodate the

new findings. Hence, based on the structure tensor approach

initiated in [15], we introduce here a bivariate von Mises distri-

bution that enables the dispersion data to be captured. In

particular, for arteries, the out-of-plane dispersion is relatively

narrow while the in-plane dispersion is more significant. This

work provides a natural extension of the constitutive setting

documented in [14,15] to a more general context.

This work is structured as follows. In §2, we introduce the

mathematical framework for describing fibre dispersion

illustrated by the use of the bivariate von Mises distribution.

This is particularly appropriate for use with the new exper-

imental data, which indicate that the current models are not



Table 1. Overview of the main existing continuum mechanical models which take fibre dispersion into account, listed in chronological order of appearance. The
column ‘formulation’ describes the approach originally presented in the cited paper (GST, generalized structure tensor; AI, angular integration); PDF, probability
density function; ‘parameters’ refer to the parameters describing the fibre dispersion (not material or any other parameters). The abbreviations ‘RS’, ‘NS’ and ‘IP’
refer to rotationally symmetric, non-symmetric and in-plane, respectively. For the parameters in some of the references listed, we have used notation from this
paper for consistency.

refs formulation PDF parameters 2D/3D dispersion

Sacks [20] AI Beta g, d 2D IP

Driessen et al. [21] AI Gaussian s 2D IP

Freed & Doehring [37] AI/GST Gaussian s 2D/3D RS

Gasser et al. [15] GST von Mises k 3D RS

Alastrué et al. [30] AI von Mises various 3D NS

Ateshian et al. [31] AI ellipsoidal ji, ai, i ¼ 1, 2, 3 3D NS

Raghupathy & Barocas [32] AI von Mises b 2D IP

Federico & Gasser [33] AI von Mises b 3D RS

Agianniotos et al. [34] AI von Mises b 2D IP

Gasser et al. [35] AI Bingham k1, k2 3D NS

Pandolfi & Vasta [36] GST/AI von Mises k, k̂ 3D RS

Holzapfel & Ogden [17] AI von Mises A, B, C, D, �k 2D/3D RS/NS

Melnik et al. [18] GST von Mises k 3D RS

this work GST bivariate von Mises kip, kop 3D RS/NS/IP

N
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Figure 1. A unit vector N(F, Q) representing a general fibre direction
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sufficiently general to capture the collagen fibre structure. Then

we introduce a PDF which accounts for these experimental

observations, and it is shown how the new model reproduces

several special cases from the literature. The continuum mech-

anical framework associated with the dispersion structure

introduced in §2 is presented in §3. In §4, the theory of §3 is

applied in three representative numerical simulations with

the aim of showing the efficacy and capability of the propo-

sed structural model. Finally, §5 summarizes the proposed

fibre dispersion model and discusses future developments of

our work.
defined by the angles F and Q with respect to rectangular Cartesian
unit basis vectors e1, e2, e3.
2. Mathematical representation of fibre
dispersion

2.1. Structure tensor for the fibre dispersion
Motivated by the experimental results documented in [38],

we introduce the coordinate system shown in figure 1,

where the unit vector N is an arbitrary fibre direction in the

reference (undeformed) configuration, expressed in terms of

the two angles F and Q by

N(F, Q) ¼ cosQ cosFe1 þ cosQ sinFe2 þ sinQe3, (2:1)

where F [ [0, 2p], Q [ [�p=2, p=2] and e1, e2, e3 are unit rec-

tangular Cartesian basis vectors. Locally, e1 and e2 define the

tangential plane of a cylindrical coordinate system and e3 the

corresponding outward radial direction. For a circular cylinder,

e1 is taken to be the circumferential direction and e2 the axial

direction. Although the coordinate system is similar to that

introduced in [15], there is a subtle but important difference:

our approach does not involve symmetry about a preferred

direction since recent experimental results [38] have suggested

that the fibre dispersion is not rotationally symmetric.
We describe r(N), which appears in (1.1), as the prob-

ability density of the fibre orientation N in the reference

configuration as a function of F and Q. In the following,

we write either r(N) or r(F, Q), and this is normalized

according to (1.2), equivalently

1

4p

ð
S
r(F, Q)dS ¼ 1, (2:2)

where dS ¼ cosQdFdQ. (Note that the usual spherical polar

angles are p/2 2 Q and F.)

Another requirement is that the PDF has to be indepen-

dent of the sense of N so that r(N) ; r(2N), which is

equivalent to r(F, Q) ¼ r(F þ p, 2Q). Based on the exper-

imental results presented in [38], we introduce two

additional symmetries, namely the in-plane symme-

try r(F, Q) ¼ r(F þ p, Q) and the out-of-plane symmetry

r(F, Q) ¼ r(F, 2Q).

It is assumed that the material behaviour does not depend

on the sense of N, so that the strain energy depends on N

only through the tensor product N � N ([14]; see also
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Figure 2. Unit vector M in the (e1, e2) plane, a is the angle between M
and e1, while Mn ¼ e3 is the unit out-of-plane vector given by e1 � e2.
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[15,39]), via a symmetric second-order tensor, introduced in

(1.4)1, which we now write as

H ¼ 1

4p

ð2p

F¼0

ðp=2

Q¼�p=2

r(F, Q)N�N cosQdFdQ, (2:3)

the components of which involve only r(N) and the sines and

cosines of the angles F, Q . The tensor H is a structure tensor

involving the fibre dispersion via r(N). This is associated

with a dispersion of fibres about a single mean direction,

the mean direction of N, which, according to the data in

[38], has a very small component out of plane. We therefore

assume here that the mean fibre direction, say M, lies in the

tangential plane defined by e1 and e2. An explicit expression

for M will be written down below.

In terms of its components Hij, we write H ¼ Hijei � ej and

note that, due to the symmetries of r(N), the off-diagonal com-

ponents H13 and H23 vanish, and the only non-zero components

of H are therefore H12 and the diagonal components H11,

H22, H33. Thus, H has four non-zero components, and, because

trH ¼ 1 by (1.4)2, only three of them are independent:

H11, H22, H12, with H33 ¼ 1�H11 �H22: (2:4)

In [38], it was also observed that the dispersions in the

two planes are essentially independent, which means that

the PDF can be decomposed in the form

r(F, Q) ¼ rip(F)rop(Q), (2:5)

where rip(F) and rop(Q) describe the in-plane and out-of-

plane dispersions, respectively. Since the symmetry of the

PDF has to be fulfilled, we require that

rip(F) ¼ rip(Fþ p) and rop(Q) ¼ rop(�Q):

Without taking explicit account of these symmetries, the

normalization in equation (2.2) is now written as

1

4p

ð2p

0

rip(F)dF

ðp=2

�p=2

rop(Q) cosQdQ ¼ 1: (2:6)

Without loss of generality, we can choose the normalization

of rip so that

1

2p

ð2p

0

rip(F)dF ¼ 1, (2:7)

and hence (2.6) reduces toðp=2

�p=2

rop(Q) cosQdQ ¼ 2: (2:8)

Let us now define

kop ¼
1

4

ðp=2

�p=2

rop(Q)cos3QdQ, (2:9)

which is a measure of the out-of-plane dispersion and is con-

sistent with the definition, in slightly different notation, given

in eqn (4.1) in [15] for the case in which the dispersion is rota-

tionally symmetric. By definition, kop is non-negative and

from (2.8) and (2.9) it must satisfy kop � 1/2. Thus,

0 � kop � 1=2: (2:10)

If rop ; 1, giving an isotropic distribution, then kop ¼ 1/3.

Note that if rip ¼ 1 then (2.7) is automatically satisfied, but on

the other hand equation (2.7) does not necessarily imply that

rip ¼ 1. However, when rip ¼ 1 we obtain H11 ¼ H22 ¼ kop,

H33 ¼ 12 2kop and H12 ¼ 0 and this corresponds to a
transversely isotropic distribution with mean fibre direc-

tion e3. The lower limit kop ¼ 0 corresponds to the case in

which all the fibres are in the e3 direction (no dispersion),

while the upper limit kop ¼ 1/2 corresponds to a planar dis-

tribution in the (e1, e2) plane. For isotropy, we have rip ¼

rop ¼ 1 and kop ¼ 1/3. In general, rip and rop are separate

measures of the fibre dispersions, in plane and out of

plane, respectively.

We now define �k11, �k22 and �k12 by

�k11 ¼
1

2p

ð2p

0

rip(F)cos2FdF,

�k22 ¼
1

2p

ð2p

0

rip(F)sin2FdF

9>>>=>>>; (2:11)

and

�k12 ¼
1

2p

ð2p

0

rip(F) sinF cosFdF, (2:12)

and hence by (2.11)

�k11 þ �k22 ¼ 1: (2:13)

Together, �k11, �k22 and �k12 characterize the in-plane dis-

persion. Note that �k12 ¼ 0 when rip ¼ 1 and also when the

mean in-plane direction is either e1 or e2, as discussed below.

In general, we now have

Hab ¼ 2kop�kab, a, b [ {1, 2}, H11 þH22 ¼ 2kop

and H33 ¼ 1� 2kop:

)
(2:14)

At this point, we note that the structure tensor H has the

form

H ¼
X3

j¼1

H jjej � ej þH12(e1 � e2 þ e2 � e1), (2:15)

and we emphasize, as noted above, that it is associated with

a dispersion that has a single mean direction. We shall

relate this to the model of dispersion discussed in [15]

when considering special cases in §2.2.

An alternative way of writing the above representation is

the form

H ¼ AIþ BM�Mþ (1� 3A� B)Mn �Mn, (2:16)

where the unit vector M ¼ cosae1 þ sinae2 is the in-plane

mean fibre direction, a being the angle between M and e1,

and Mn is a unit out-of-plane vector (see figure 2), while A
and B are constants.

By comparing (2.15) and (2.16), we find that the com-

ponents Hij are related to A, B and the angle a by

H11 ¼ Aþ Bcos2a, H22 ¼ Aþ Bsin2a and

H12 ¼ B sin a cosa,

)
(2:17)
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Figure 3. The von Mises distribution (2.21) plotted against F for three differ-
ent values of the parameter a: (1, 3, 5), corresponding to the continuous, short
dashed and long dashed curves, respectively. For a ¼ 0 we have rip ; 1,
while, for a!1, rip becomes a delta function.
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from which we obtain

2A ¼ 2kop � B, B2 ¼ (H11 �H22)2 þ 4H2
12 (2:18)

and

tan 2a ¼ 2�k12

�k11 � �k22
: (2:19)

By defining B ¼ 2kop
�B and A ¼ kop

�A, we obtain

�A ¼ 1� �B and �B2 ¼ (�k11 � �k22)2 þ 4�k2
12, (2:20)

where �A and �B depend only on the in-plane distribution.

Note that �B is invariant with respect to the rotation of the

in-plane axes.

For any given distribution rip, we can calculate �k11, �k22

and �k12 and hence the angle a and the constants �A and �B,

while kop is obtained when rop is given. Note that H contains

only two independent parameters. Note also that for a ¼ 0 or

p/2 the dispersion parameter �k12 ¼ 0.

In §2.1.1, we consider a particular choice of the density

functions rip and rop.
8

2.1.1. Using the bivariate von Mises distribution as the dispersion
distribution

The work of Schriefl et al. [38] documented angular datasets

for the in-plane collagen dispersions of the intima, media

and adventitia of human non-atherosclerotic thoracic and

abdominal aortas and common iliac arteries. The out-of-

plane angles were measured separately for each layer,

showing that the out-of-plane dispersions are very similar

at all anatomic locations and for each layer. Moreover, each

mean fibre angle was found to be very close to tangential.

Motivated by these results we now model, as illustrative

examples, each of rip(F) and rop(Q) with p-periodic von

Mises distributions [40], so the overall PDF is a bivariate

von Mises distribution, featuring the symmetries that were

discussed in §2.1.

For rip(F), we consider the basic von Mises distribution

rip(F) ¼ exp (a cos 2F)

I0(a)
, (2:21)

where the so-called concentration parameter a is a constant

and I0(a) is the modified Bessel function of the first kind of

order 0 defined by

I0(x) ¼ 1

p

ðp
0

exp(x cosa)da, (2:22)

which provides a normalization factor leading to (2.11) inde-

pendently of a. Equation (2.22) corresponds to a distribution

that is symmetric about F ¼ 0. Plots of the circular distri-

bution (2.25) for different concentration parameters a are

shown in figure 3, and we note that, as a!1, rip becomes

a delta function. For this special case of symmetry, we use

the notation k11, k22 and k12. It follows from (2.25) using

the definitions (2.15) and (2.16) that k12 ¼ 0 and

k11 ¼
1

2
þ I1(a)

2I0(a)
and k22 ¼

1

2
� I1(a)

2I0(a)
, (2:23)

where

I1(x) ¼ 1

p

ðp
0

exp(x cosa) cosada (2:24)

is the modified Bessel function of the first kind of order 1.
If the distribution is symmetrical about F ¼ a instead of

F ¼ 0, thenF is replaced byF 2 a in (2.21) and the appropriate

values of �k11 and �k12 are given by

�k11 ¼ k11cos2aþ k22sin2a,

�k12 ¼ (k11 � k22) sina cosa

)
(2:25)

and �k22 is given by (2.13). From now on, whenever k12¼ 0 we

use the notation kip instead of k22.

Equation (2.8) is satisfied by taking rop(Q) to be a von

Mises distribution of the form

rop(Q) ¼ 2

ffiffiffiffiffi
2b
p

r
exp [b(cos 2Q�1)]

erf(
ffiffiffiffiffi
2b
p

)
, (2:26)

where b is a constant concentration parameter and erf is the

error function defined by

erf(x) ¼ 2ffiffiffiffi
p
p

ðx

0

exp(�j2)dj: (2:27)

Note that (2.26) has a similar shape to (2.21) but is marginally

different from the distribution used in [15], and gives a

somewhat better fit to the narrow out-of-plane dispersion.

For the distribution (2.26), a closed-form expression for

kop from (2.9) is obtained in the form

kop ¼
1

2
� 1

8b
þ 1

4

ffiffiffiffiffiffi
2

pb

r
exp (�2b)

erf(
ffiffiffiffiffi
2b
p

)
: (2:28)

Figure 4 shows a plot of kop as a function of the concentration

parameter b. Note in particular that kop¼ 1/3 when b ¼ 0.

We use maximum-likelihood estimates to obtain the par-

ameters a and b in the PDFs, rip(F) and rop(Q), from the

angular datasets of Schriefl et al. [38]. Although it is possible

to determine the parameters of a PDF by minimizing the

sum of squared errors, this method has several disadvantages,

as pointed out in [5], and hence we prefer to identify the par-

ameters by using a maximum-likelihood estimate. In figure 5,

we show experimental data from the adventitia of a human

non-atherosclerotic abdominal aorta obtained from picrosirius

polarization, in combination with a universal stage [38]. To

produce the fit, we used the maximum-likelihood estimate to

obtain the concentration parameters a and b. In figure 5a, we

show the in-plane bi-modal distribution of rip of F with
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Figure 4. Plot of kop versus the concentration parameter b according to
equation (2.28). Note that 0 � kop � 1/2 and kop ¼ 1/3 when b ¼ 0.
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a ¼+47.998 giving a ¼ 2.54, which is obtained from (2.21)

using F þ a and F 2 a instead of F. In figure 5b, we show

the out-of-plane probability density rop of Q obtained from

(2.26), where b ¼ 19.44.
2.2. Special cases of fibre dispersions
Our model includes several existing dispersion models

as special cases of (2.16), which are discussed in the

following section.
2.2.1. Transversely isotropic dispersion
In [15], we considered a transversely isotropic dispersion for

which H has the form

H ¼ kIþ (1� 3k)M�M, (2:29)

where k is a single dispersion parameter associated with a

transversely isotropic dispersion about M. Note that here

we are taking M to lie in the (e1, e2) plane (figure 2). In

[15], k had the form

k ¼ 1

4

ðp
0

r(Qk)sin3QkdQk,

where Qk is measured from M and is different from the Q

used here. The connection between Qk and Q is obtained

from M . N ¼ cosQk, with N given by (2.1) and M ¼

cosae1 þ sinae2, in the form cosQk ¼ cosQcos(F 2 a).

Equation (2.29) is recovered as a special case of (2.16) by

taking k ¼ 1 2 2kop, which corresponds to A ¼ k, B ¼ 1 2 3k.
2.2.2. Perfect alignment
If both concentration parameters a and b become infinite,

there is no dispersion in either plane and we obtain the

model proposed in [14]. With a!1, rip becomes an in-

plane delta function, and with b!1 we have kop! 1/2.

The structure tensor is then H ¼M �M, and all fibres are

oriented in the in-plane direction of M. This corresponds to

A ¼ 0, B ¼ 1 in (2.16).
2.2.3. Isotropic dispersion
An isotropic fibre dispersion is represented by a uniform dis-

persion in each plane, meaning that r(F, Q) is independent of

F and Q, with rip ¼ rop ¼ 1, so that, for the von Mises distri-

butions, a ¼ b ¼ 0, while kop ¼ 1/3, and the structure tensor

is given by H ¼ (1/3)I. Thus, there is no preferred direction

(k ¼ 1/3), with A ¼ 1/3, B ¼ 0 in (2.16).
2.2.4. Planar dispersion
A dispersion with fibres oriented only in plane was presented

in [27,39]. In this case, there is no out-of-plane contribution to

H, which can be written as

H ¼ k1þ (1� 2k)M�M, (2:30)

where 1 is the two-dimensional identity in the considered

plane with the normalization and dispersion parameter

given by

1

p

ðp=2

�p=2

r(Q)dQ ¼ 1 and k ¼ 1

p

ðp=2

�p=2

r(Q)sin2QdQ: (2:31)

Note that the normalization (2.31)1 is equivalent to (2.7) bear-

ing in mind the different ranges of angles used, and k is

equivalent to �k22 as defined in (2.11)2. The in-plane PDF r(Q)

satisfies r(2Q) ¼ r(Q). For the von Mises distribution (2.26),

this corresponds to b!1 and kop! 1/2. Equation (2.30) is

obtained from (2.16) by setting A ¼ k ¼ �k22, B ¼ 122k. Note

that this is a two-dimensional distribution but its application

is not restricted to use in two dimensions.
2.2.5. Planar isotropic dispersion
If a dispersion features perfect out-of-plane alignment, b!1

and kop! 1/2, and is fully dispersed in plane so that a! 0,

rip ¼ 1, then it is planar isotropic. For this case, the structure

tensor is simply H ¼ (1/2)1, corresponding to A ¼ 1/2, B ¼ 0

in (2.16).
2.2.6. Summary of the special cases
The special cases discussed above are summarized in table 2.

Figure 6 is a visualization of r(N)N for (a) the general case for

which H is given by equation (2.16), (b) the transversely iso-

tropic dispersion given in §2.2.1 with H given by (2.29),

(c) the case of perfect alignment according to §2.2.2, (d ) the

isotropic case according to §2.2.3 and (e) the case of planar

dispersion given by equation (2.30).
3. Continuum mechanical framework
We consider a (stress-free) reference configuration, denoted

V0, and a deformed (spatial) configuration, denoted V. The

deformation map x(X) transforms a material point X [ V0

into a spatial point x[V. With this deformation map we

define the deformation gradient F(X) ¼ @x(x)/@X and its

determinant J ¼ detF(X), where J is the local volume ratio;

we require J . 0.

Following [42,43], we apply the multiplicative decompo-

sition of F into a spherical (dilatational) part J1/3I and a

unimodular (distortional) part F ¼ J�1=3F, with detF ¼ 1.

We define the right Cauchy–Green tensor and its modified

counterpart as C ¼ FTF and �C ¼ F
T
F, respectively, with the

related invariants I1 ¼ trC and �I1 ¼ tr�C.
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Figure 5. (a) Probability density rip(F þ a), rip(F 2 a) plotted against F with the concentration parameter a ¼ 2.54 and with two mean fibre directions
located at a ¼+47.998 and (b) probability density rop(Q) against Q with the parameter b ¼ 19.44.

(a) (b) (c) (e)(d)

Figure 6. Visualization of the fibre dispersion defined by r(N)N, with r ¼ rip(C)rop(Q) according to (2.21) and (2.26), where the distance from the centre to
the surface represents the probability of finding a fibre in the direction N. The plots have been scaled differently and represent (a) a non-rotationally symmetric
dispersion, (b) a rotationally symmetric dispersion, (c) perfectly aligned fibres, (d ) a three-dimensional isotropic fibre dispersion and (e) a planar fibre dispersion. The
planar isotropic case corresponds to a circle in (e). (Online version in colour.)

Table 2. Special cases of the present model based on the von Mises distributions (2.21) and (2.26). TI, transversely isotropic dispersion; ID, isotropic dispersion;
PA, perfect alignment; PD, planar dispersion; PI, planar isotropic dispersion.

case conc. parameter dispersion parameter structure tensor H reference

TI — k ¼ 122kop kI þ (123k)M �M [15]

PA a!1, b!1 kop! 1/2, k ¼ 0 M �M [14]

ID a ¼ b ¼ 0 kop ¼ k ¼ 1/3 (1/3)I [15,41]

PD b!1 kop! 1/2, k ¼ �k22 k1 þ (122k)M �M [27,39]

PI a! 0, b!1 kop! 1/2 (1/2)1 [35,39]
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Since we treat an artery as an elastic material, we assume

the existence of a strain-energy function C(C, H4, H6) that

depends on the macroscopic deformation through C and

the underlying tissue structure through the structure tensors

H4 and H6, which describe the fibre alignment and dispersion

for two fibre families. Based on (2.16), these are defined by

Hi ¼ AIþ BMi �Mi þ (1� 3A� B)Mn �Mn, i ¼ 4, 6

(3:1)
and M4 and M6 lie in the (e1, e2) plane, and Mn normal to

that plane.

For computational purposes, we assume that it is possible

to split the strain-energy function into two parts as

C(C, H4, H6) ¼ Cvol(J)þCiso(�C, H4, H6), as shown in [5,44].

The function Cvol is a purely volumetric contribution while

Ciso represents the energy contribution of an isochoric

(volume preserving) deformation through �C. The second

Piola–Kirchhoff stress tensor S is given by S ¼ 2@C/@C.

Using the decoupled form of C, we can identify two stress



Table 3. Parameters for the proposed model.

parameter interpretation range identification

c (kPa) stiffness of (isotropic) ground matrix (0, 1)

mechanical testsk1 (kPa) parameter with dimension of stress [0, 1)

k2 ( – ) dimensionless parameter [0, 1)

kip dispersion in plane [0, 1]

histology/imaging
kop dispersion out of plane [0, 1/2]

M4, M6 mean fibre directions a [ [0, p/2]

Mn normal to the mean fibre plane —

}
}
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contributions so that S ¼ Svol þ Siso. Using well-known

results from tensor analysis (e.g. [44]), and the chain rule,

we obtain

Svol ¼ pJC�1, Siso ¼ J�2=3Dev�S, (3:2)

where p ¼ dCvol(J )/dJ is the constitutive equation for the

hydrostatic pressure and

�S ¼ 2
@Ciso

@ �C
(3:3)

is the so-called ‘fictitious’ isochoric second Piola–Kirchhoff

stress tensor. The deviator in the Lagrangian configuration is

defined by Dev(†) ¼ P : (†), where P ¼ I� (1=3)C�1 � C is a

projection tensor that furnishes the correct deviatoric operator

in the Lagrangian setting, and (I)ABCD ¼ 1=2(dACdBD þ dADdBC)

is a fourth-order identity tensor.

The related elasticity tensor C in the Lagrangian description

is written in the decoupled form

C ¼ 2
@S(C)

@C
¼ Cvol þ Ciso, Cvol ¼ 2

@Svol

@C

and Ciso ¼ 2
@Siso

@C
:

9>>=>>; (3:4)

According to [44], we have the specification

Cvol ¼ J~pC�1 � C�1 � 2JpC�1 � C�1 (3:5)

and

Ciso ¼ P : �C : PT þ 2
3Tr(J�2=3�S)eP� 2

3(C
�1 � Siso þ Siso � C�1):

(3:6)

In (3.5), we have used the notation C�1 � C�1 ¼ �@C�1=@C,

where the symbol � denotes the tensor product according

to the rule

(C�1 � C�1)ABCD ¼ 1
2(C
�1
ACC�1

BD þ C�1
ADC�1

BC), (3:7)

and the scalar function ~p is defined by ~p ¼ pþ Jdp=dJ with

the constitutive equation for p given in the line after equation

(3.2). In (3.6), we have also used the definitions

�C ¼ 4J�4=3 @
2Ciso(�C)

@ �C@ �C
, Tr(†) ¼ (†):C,

eP ¼ C�1 � C�1 � 1
3 C�1 � C�1,

9>=>; (3:8)

where �C is the fourth-order fictitious elasticity tensor, Tr(†) is

the trace and eP is the modified projection tensor of fourth

order. The related spatial stress and elasticity tensors may

be derived by push-forward operations on (3.2) and (3.4)1,

respectively [44]. It should be noted here that the compressi-

ble formulation is introduced for computational purposes,
and the incompressibility condition has to be enforced by a

numerical scheme, one example of which is the augmented

Lagrangian method (e.g. [45]).

We emphasize that for a specific material we need to

specify Ciso and hence to calculate its derivatives with respect

to �C, which affects the two expressions (3.3) and (3.8)1. In

§3.1, such a specification is provided.
3.1. Anisotropic strain-energy function
Each of the structure tensors H4 and H6 depends on two

dispersion parameters. We assume that these are the same

for each fibre family. Our approach follows the work of

Holzapfel et al. [14] in which the contributions Cg and Cf

of the ground matrix (non-collagenous material) and the

fibres to the strain energy are added. The artery is treated

as an incompressible, elastic and fibre-reinforced material

with the fibre dispersion accounted for both in plane and

out of plane. Hence, superposition of energies reads

Ciso ¼ Cg(�C)þ
X
i¼4,6

Cfi(�C, Hi): (3:9)

Following [14,46], we model the ground substance with a neo-

Hookean material Cg ¼ c(�I1 � 3)=2, where the parameter c is

the shear modulus in the reference configuration. For the

fibre contributions Cfi, we adopt the exponential functions [15]

Cfi(�C, Hi) ¼
k1

2k2
[exp (k2

�E2
i )� 1], i ¼ 4, 6, (3:10)

where k1 is a parameter with the dimensions of stress and k2 a

dimensionless parameter, while

�Ei ¼ Hi : (�C� I) (3:11)

is a Green–Lagrange strain-like quantity which can be inter-

preted as an averaged or weighted fibre strain, depending on

the fibre dispersion through the structure tensor Hi and the

(isochoric) macroscopic deformation through �C.

Since trHi ¼ 1, we can write �Ei ¼ Hi : �C� 1. Using the

definitions (3.1) of the structure tensors H4 and H6, we obtain

�Ei ¼ A�I1 þ B�Ii þ (1� 3A� B)�In � 1, (3:12)

where

�Ii ¼ �C : Mi �Mi, i ¼ 4, 6, �In ¼ �C : Mn �Mn: (3:13)

The invariants Ii ¼ J2=3�Ii and In ¼ J2=3�In are the squares of

the stretches in the directions Mi and Mn, respectively.

A summary of the parameters used is provided in table 3.



M4

M6

a

a
e1

circumferential

e3 = Mn

axial

e2

Figure 7. A specimen with two symmetric fibre families with mean fibre
directions M4 and M6 lying in the circumferential/axial plane, each
making an angle a with the circumferential direction. The normal direction
to the plane is Mn.
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The strain-energy function used in the proposed model reads

Ciso ¼
c
2

(�I1 � 3)þ k1

2k2

X
i¼4,6

exp [k2
�E2

i ]� 1
n o

: (3:14)

Following [14], we make the common assumption that the

fibres do not resist any compression and are only active in

tension. The invariants Ii are used as switches between fibre

compression and tension so that the anisotropic part Cfi

only contributes to the strain energy when I4 . 1 or I6 . 1.

If one or more of these conditions is not satisfied then the rel-

evant part of the anisotropic function is omitted from (3.14).

For example, if I4 and I6 are less than (or equal to) 1, then the

tissue response is purely isotropic. For discussion of subtle

points regarding the choice of switching criteria, see [17].

In the expressions for the stress and the elasticity tensor,

we need to calculate @Ciso=@ �C and @2Ciso=@ �C@ �C. By using

the chain rule, these are obtained as

@Ciso

@ �C
¼ cIþ c0iHi,

@2Ciso

@ �C@ �C
¼ c00i Hi �Hi, i ¼ 4, 6, (3:15)

where Hi is given by (3.1), and we have introduced the

notations

c0i ¼
@Ciso

@ �Ei
¼ k1

�Ei exp (k2
�E2

i ) and

c00i ¼
@2Ciso

@ �E2
i

¼ k1(1þ 2k2
�E2

i ) exp (k2
�E2

i ):

9>>>>=>>>>; (3:16)
4. Representative examples
Having identified the dispersion parameters of the model in §3,

we now identify the mechanical parameters by fitting the con-

stitutive model to uniaxial data. The proposed constitutive

model is then implemented in the finite-element analysis pro-

gram FEAP, and the parameters obtained are used to obtain

results for a simple biaxial extension of an eight-element

cube and compared with the analytical (Matlab) result. Finally,

numerical results are obtained for the stress distribution in the

non-homogeneous extension of strips of an adventitial layer

cut out along the axial and circumferential directions.
4.1. Parameter fitting to experimental data
In this example, we consider the purely incompressible for-

mulation where the strain-energy function is characterized

by C ¼ C(C, H4, H6). The second Piola–Kirchhoff stress

tensor S is then given by

S ¼ 2
@C

@C
� pC�1

¼ 2
@C

@I1
Iþ

X
i¼4,6

@C

@Ii
Mi �Mi þ

@C

@In
Mn �Mn

 !
� pC�1,

(4:1)

where p in this case denotes the Lagrange multiplier required

to enforce incompressibility. From (4.1), the Cauchy stress

tensor can be computed simply by s ¼ FSFT.

The strain-energy function in the present formulation

reads

C ¼ c
2

(I1 � 3)þ k1

2k2

X
i¼4,6

exp [k2E2
i ]� 1

� �
, (4:2)
where

Ei ¼ AI1 þ BIi þ (1� 3A� B)In � 1, i ¼ 4, 6: (4:3)

The anisotropic term in (4.2) only contributes when the fibres

are extended, i.e. when I4 . 1 or I6 . 1. For the case that one

or more of these conditions is not satisfied then the relevant

part is omitted from (4.2).

We now consider a tissue specimen with two fibre families

in the reference configuration with mean directions illustrated

in figure 7. The unit vectors M4 and M6, which are symmetri-

cally disposed in the circumferential/axial plane, each make

an angle a with the circumferential direction, so that

[M4] ¼ [cos a, sin a, 0]T and

[M6] ¼ [cos a, �sin a, 0]T,

9=; (4:4)

while the normal direction to the plane is [Mn] ¼ [0, 0, 1]T. The

deformation gradient matrix and the right Cauchy–Green

matrix are

[F] ¼ diag[l1, l2, l3] and [C] ¼ diag[l2
1, l2

2, l2
3], (4:5)

where l1, l2, l3 denote the principal stretches. Hence, the

required invariants read

I1 ¼ l2
1 þ l2

2 þ l2
3, (4:6)

Ii ¼ C : (Mi �Mi) ¼ l2
1cos2aþ l2

2sin2a, i ¼ 4, 6 (4:7)

and In ¼ C : (Mn �Mn) ¼ l2
3: (4:8)

Since Ii is the same for i ¼ 4 and 6, we obtain c04 ¼ c06, where

here, in analogy with (3.16)1, c0i ¼ k1Ei exp (k2E2
i ), i ¼ 4, 6.

By using Ei in the strain-energy function (4.2), we obtain the

derivatives of the strain-energy function as

@C

@I1
¼ c

2
þ 2Ac04,

@C

@Ii
¼ Bc0i, i ¼ 4, 6,

@C

@In
¼ 2(1� 3A� B)c04:

9>>=>>; (4:9)

Hence, the non-zero components of the Cauchy stress are

s11¼ [cþ 4(Aþ Bcos2a)c04]l2
1 � p, (4:10)

s22¼ [cþ 4(Aþ Bsin2a)c04]l2
2 � p (4:11)

and s33¼ [cþ 4(1� 2A� B)c04]l2
3 � p: (4:12)

The constants A and B can be deduced from (2.17) and (2.18) as

A ¼ 2kopkip and B ¼ 2kop(1� 2kip): (4:13)

Together with the incompressibility condition (l1l2l3 ¼ 1), the

implicit equations (4.10)–(4.12) with s22 ¼ s33 ¼ 0 can then be

used to obtain p, l2 and l3 in terms of l1, thus giving an

expression for s11 in terms of l1, the material parameters c,

k1 and k2 and the structural parameters kip, kop and a.



Table 4. Summary of material and structural parameters.

material parameters structural parameters

c (kPa) k1 (kPa) k2 ( – ) kip ( – ) kop ( – ) a (88888)

value 10.07 5.89 21.62 0.116 0.493 +47.998

R2 0.998 0.877 0.916 ( – )
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Figure 8. Fitting of the proposed model to the results of a uniaxial tension
test. The good quality of fit is reflected in the high coefficient of determination,
R2 ¼ 0.998. The model (Cauchy) stresses at a stretch of 1.3 are 16.6 (axial) and
12.2 kPa (circumferential)—see also figure 11. (Online version in colour.)
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To determine the material parameters of our model, we use

the structural data provided in figure 5 (mean fibre angle a and

concentration parameters a, b) and experimental data (from

uniaxial tension tests) from the adventitia of a human non-

atherosclerotic abdominal aorta. A least-squares objective

function is chosen as the L2-norm of the error between the

model prediction of the Cauchy stress in the circumferential

and the axial directions, and the corresponding experimental

data. We use the function LSQNONLIN in Matlab (v. R2010b;

The MathWorks Inc., Natick, MA, USA), which uses the

Levenberg–Marquardt algorithm to find the minimum. The dis-

persion parameters kip from (2.23)2 with the value of a, and kop

from (2.28) with the value of b, can be determined from the ima-

ging data provided in figure 5. Imaging and material data were

obtained from different but comparable tissues.

To quantify the goodness of the fit, we calculate the

coefficient of determination R2, which is given by

R2 ¼ 1� Serr

Stot
, (4:14)

where Serr and Stot are the sums of squares of the differences

between model/experiment and the mean of experiment/

experiment, respectively [47]. We obtained a good fit with

R2 ¼ 0.998. The parameters identified are listed in table 4.

Figure 8 shows the result of fitting the proposed model to

data from uniaxial tension tests.
4.2. Biaxial extension: comparison of Matlab and
finite-element results

In this section, we demonstrate the efficacy of the proposed

constitutive model by using eight hexahedral Q1/P0 finite

elements for a cube (10 � 10 � 10), which is reinforced by

two symmetric fibre families, as depicted in figure 7. The

cube is subjected to homogeneous biaxial extension in

the 1,2-plane, which here we call ‘in plane’, as shown in

figure 9; the 2,3-plane we call ‘out of plane’. The mesh is

unstructured according to figure 9. The material parameters

used are those documented in table 4. We investigate four

different cases of fibre dispersion: (i) structural parameters

taken from table 4, which is the reference case; (ii) high align-

ment out of plane and isotropy in plane; (iii) less alignment

out of plane and isotropy in plane; (iv) isotropy in both out

of plane and in plane. For a summary see table 5.

The maximum of each stretch, (l1, l2) in the 1 and 2 direc-

tions, respectively, is 1.15 and the corresponding Cauchy

stresses (s11, s22) are computed from equations (4.10)–(4.12)

using Matlab. In addition, these relationships are compared

with results obtained from a finite-element computation

using FEAP [48]. The cube is stretched simultaneously in

the 1 and 2 directions under displacement-driven conditions

using the Newton–Raphson method. Figure 10a,b shows
plots of the Cauchy stresses s11 and s22 versus the stretches

l1 and l2, respectively. Note that, for case (iv), the stresses

in the 1 and 2 directions are the same since the in-plane

and out-of-plane dispersions are isotropic.
4.3. Extension of adventitial strips
In this section, we illustrate the results of the finite-element

implementation of the proposed constitutive model, simulat-

ing uniaxial extension tests related to experiments on strips

performed in our laboratory in Graz, Austria. The strips were

taken from an adventitial layer cut out along the axial and cir-

cumferential direction of a human non-atherosclerotic

abdominal aorta. The strips, each with initial length, width

and thickness of 10.0, 3.0 and 0.5 mm, respectively, were sub-

jected to a stretch of 1.3. Both ends of each strip were

constrained so as to model the mounting in the testing machine

and were not allowed to deform. The resulting deformation of

each strip was therefore non-homogeneous. We assume uni-

form material parameters over the adventitial strips with

values provided in table 4. Two symmetric fibre families, as

shown in figure 7, are assumed to make an angle a of

+47.998 with the circumferential direction and to show a dis-

tribution characterized by kip ¼ 0.116 and kop ¼ 0.493, as also

provided in table 4. We use 3200 hexahedral elements, apply-

ing the mixed Q1/P0 element throughout the simulation.

Figure 11 shows the element results of the circumferential

and axial specimens, subjected to a stretch of 1.3. Both circum-

ferential and axial specimens show that the Cauchy stresses in

the adventitia can be modelled within the experimentally
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3

Figure 9. Unstructured mesh of a cube discretized by eight hexahedral finite elements. The cube is reinforced by two symmetric fibre families and subjected to
homogeneous equibiaxial extension in the 1,2-plane, illustrated by arrows.

Table 5. Four different cases of fibre dispersion for the homogeneous biaxial extension of a cube. The material parameters are taken from table 4.

case description dispersion parameters

i structural parameters from table 4 kip ¼ 0.116, kop ¼ 0.493

ii high alignment out of plane and isotropy in plane kip ¼ 0.5, kop ¼ 0.48

iii less alignment out of plane and isotropy in plane kip ¼ 0.5, kop ¼ 0.45

iv isotropy in out of plane and in plane kip ¼ 0.5, kop ¼ 1/3
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predicted range of stresses (compare with the experimental

results in figure 8). It turns out that the (axial and circumferen-

tial) stresses in the middle of the specimens are slightly higher

than the model stresses provided in figure 8, which is due to the

boundary conditions used in the present example.
5. Discussion
As several previous approaches have shown (e.g. [15,25,37])

incorporation of fibre dispersion into a continuum mechanical

framework for soft biological tissues is a challenging and

important task. Indeed the mechanical response of such tissues

depends significantly on the tissue structure, in particular the

arrangement of the fibre dispersion.

One of the main goals of our previous papers, e.g. [14,15],

has been to incorporate the structure of biological tissues into

our models in order to capture the physiological and patho-

logical mechanical mechanisms. Recent experimental data

have shown the need for a more general model that takes

account of the non-symmetric arrangement of collagen

fibres. This motivates the introduction, in this paper, of the
bivariate von Mises distribution for describing the collagen

fibre dispersion. By fitting the bivariate PDF to angular distri-

bution data gained from imaging/histological analysis, we

can determine structural parameters that can be integrated

within the framework of continuum mechanics, in particular

hyperelasticity. This allows us to define a strain-energy func-

tion from which the stress and the elasticity tensors can be

computed, thus facilitating an efficient implementation of

the model into a finite-element code.

The proposed constitutive model introduces a new struc-

ture tensor which incorporates in-plane and out-of-plane

fibre dispersions in a clear and simple way, leading to an

invariant-based formulation of the strain-energy function,

generalizing our previous models [14,15]. The strain-energy

function can incorporate different structure tensors for differ-

ent fibre families. In particular, the work of Schriefl et al. [38]

showed that the number of fibre families depends on the

location of the artery and the type of layer, although in most

cases two collagen fibre families were reported. For the most

general case considered here the structure tensor has three

independent components, and these reduce to two when

there is in-plane symmetry (with parameters kip and kop) or
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one when there is rotational symmetry about a single preferred

direction (with parameter k). Various special cases have been

highlighted in §2.2, capturing the cases of rotational symmetry,

in-plane dispersion, transverse isotropy and isotropy.

We have constructed a specific energy function that

illustrates the efficacy of the model using three specific
examples. In the first example, we have demonstrated a

good fit of the model to experimental data using ident-

ified structural parameters as a fixed set. The model was

then used to illustrate the effect of fibre dispersion on

biaxial extension experiments, including a comparison of

analytical and finite-element results. Finally, we have ana-

lysed the three-dimensional non-homogeneous stress

response for a given overall extension of adventitial

strips in the circumferential and axial directions obtained

from a human abdominal aorta. The resulting stress

responses deviate significantly from each other due to

the different mechanical and structural properties in the

two directions.

More data are required to determine the detailed dis-

persion of collagen fibres, not only for the arterial wall but

also for other types of fibrous tissues. To inform the modelling

process, second-harmonic generation, for example, in combi-

nation with optical clearing [49] is a powerful technique for

obtaining collagen fibre dispersion data from various types

of tissues.

In order to analyse the data within a continuum frame-

work, two main approaches are used. First the AI

approach, which is computationally expensive because it

involves an integration over the unit sphere. It does, however,

allow the exclusion of fibres undergoing compression. With

the GST approach, it is possible to extract structural

parameters and to include them in the continuum mechanical

framework to account for the fibre dispersion. For an artery

that exhibits a dispersion with a strong alignment in plane,

the GST seems to be a feasible and very efficient method,

although it does require a minor modification in order to

exclude fibres which are under compression [18].

For further development, as mentioned above, many

more data are needed to inform the modelling process. In

particular, there is a pressing need to obtain in vivo data

in order to construct more realistic models of tissue and

organ mechanics. The model can also be extended to incor-

porate inelastic effects such as damage, viscoelasticity and

muscle activation.
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