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The Impact of Diabetes Mellitus on the 
Nervous System
The incidence of diabetes mellitus (DM) is increasing in 
accordance with the growth of obesity in the world’s pop-
ulation (Maiese et al., 2011a, 2013c; Rutter et al., 2012; Jia 
et al., 2014; Xu et al., 2014a). Obesity can lead to DM (Lim 
et al., 2014) as well as independently result in metabolic 
dysfunction. Excess body fat can precipitate pancreatic β 
cell injury (Shao et al., 2013), cellular inflammation (Essser 
et al., 2014), impaired growth factor release (Maiese et al., 
2005b, 2012a; White, 2014; Zhang et al., 2014c), changes in 
protein tyrosine phosphatase signaling (Chong and Maiese, 
2007; Xu et al., 2014a), oxidative stress (Maiese et al., 2013c; 
Liu et al., 2014), and insulin resistance (Maiese et al., 2007a; 
Caron et al., 2014; Essser et al., 2014). With the significant 
increases in DM and obesity, the World Health Organiza-
tion estimates that DM will be the seventh leading cause of 

death in the year 2030 (World Health Organization, 2011). 
Worldwide, approximately 347 million individuals suffer 
form DM. In the United States (US) alone, 21 million in-
dividuals are diagnosed with DM. Yet, of equal concern is 
that an estimated additional 8 million individuals presently 
remain undiagnosed with DM but remain susceptible to the 
ill effects of this disease (Centers for Disease Control and 
Prevention, 2014). It is believed that DM costs US employers 
$69 billion in reduced productivity and another $176 billion 
for direct medical costs. This represents a significant cost 
for the country especially with the Centers for Medicare and 
Medicaid Services reporting that the US spends 2.8 trillion 
on healthcare that equals $8,915 per person and 17.2 percent 
of the Gross Domestic Product.

Although some overlap exists, DM can be divided into ei-
ther non-insulin dependent (Type 1) DM or insulin depen-
dent (Type 2) DM (Maiese et al., 2010a, 2013b). In approx-
imately 90% of individuals with DM, Type 2 DM is present 
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and usually occurs in individuals over the age of 40. It pres-
ents with a progressive deterioration of glucose tolerance with 
early β-cell compensation (Maiese et al., 2007b, 2013c). Loss 
of insulin secretion can result from impaired β-cell function, 
prolonged exposure to free fatty acids and hyperglycemia, and 
the absence of inhibitory feedback through plasma glucagon 
levels. Type 1 DM occurs in the remaining 10% of patients 
with DM and it is considered to be the result of an autoim-
mune disorder associated with the alleles of the human leuko-
cyte antigen class II genes within the major histocompatibility 
complex (Maiese et al., 2007b). Loss of insulin production 
and homeostasis occurs as a result of the destruction of pan-
creatic β-cells with inflammatory infiltration of the islets of 
Langerhans. Approximately 90% of patients with Type 1 DM 
have increased titers of autoantibodies (Type 1A DM), but 
the remaining 10% of Type 1 DM individuals do not have 
serum autoantibodies. These individuals have maturity-onset 
diabetes of the young (MODY) that can be the result of β-cell 
dysfunction with autosomal-dominant inheritance (Type IB 
DM). Type 1 and Type 2 DM are not completely independent 
entities since almost 10% of individuals with Type 2 DM may 
have elevated serum autoantibodies similar to Type 1 DM. In 
addition, insulin resistance also may be a component of Type 
1 DM in some patients. 

DM affects all components of the central and peripheral 
nervous systems. For example, DM can foster retinal disease 
(Tang et al., 2011; Fu et al., 2012; Busch et al., 2014), injury 
to the neuroglialvascular unit (Busch et al., 2014), angiogen-
esis impairment (Chen et al., 2012), endothelial cell demise 
(Chong et al., 2007; Hou et al., 2010a; Chong et al., 2011b; 
Schaffer et al., 2012; Liu et al., 2013c; Wang et al., 2014; 
Zhang et al., 2014c), endothelial cell senescence (Arunacha-
lam et al., 2014), dysfunctional maintenance and mobiliza-
tion of endothelial progenitor cells (Barthelmes et al., 2014; 
Kim et al., 2014), and peripheral nerve disorders (Schmeichel 
et al., 2003; Gomes and Negrato, 2014). Although it is es-
timated that 60–70% of individuals with DM can develop 
some degree of peripheral neuropathy, the incidence of 
disorders such as peripheral neuropathy can be difficult to 
assess since the course of the disease may occur over several 
years, initial progression of the disease may be sub-clinical, 
and improved control of DM may lead to correction of prior 
clinical deficits. DM also can result in memory loss (Zhao et 
al., 2013; Mao et al., 2014; Du et al., 2015), neuropsychiatric 
disorders (Aksu et al., 2012; Reagan, 2012), stroke (Jiang et 
al., 2014), and impairment of neuronal longevity (White, 
2014). Furthermore, complications of DM such as insulin 
resistance and dementia has been reported in patients with 
Alzheimer’s disease (Maiese et al., 2007b; Sonnen et al., 
2009), indicating that some neurodegenerative disorders 
may be the result of impaired cellular metabolism similar to 
that which occurs during DM (Kapogiannis et al., 2014). 

Diabetes Mellitus, Oxidative Stress, and 
Programmed Cell Death
The generation of reactive oxygen species (ROS) leading to 
the induction of oxidative stress can be a critical determinant 

of neuronal and vascular cell injury during DM (Yang et al., 
2011b; Bagul and Banerjee, 2013; Liu et al., 2013b; Maiese et 
al., 2013b, c; Peng et al., 2013; Weinberg et al., 2014; Xu et al., 
2014b). ROS can alter cellular metabolic pathways (Maiese 
et al., 2010a, 2011a; Fu et al., 2012; Gomes and Negrato, 
2014; Xu et al., 2014b) and influence epigenetic pathways 
(Maiese et al., 2008b; Fraineau et al., 2014; Jenwitheesuk et 
al., 2014; Xin et al., 2015) with subsequent nervous system 
deficits that lead to cognitive loss (Chong et al., 2005a; Kim 
et al., 2015; Wright and Harding, 2015), post-traumatic in-
jury (Harish et al., 2015), and stroke (Chong et al., 2005b; 
Peng et al., 2015). ROS include superoxide free radicals, ni-
tric oxide, hydrogen peroxide, and singlet oxygen that result 
in mitochondrial dysfunction, DNA destruction, cell injury, 
and protein misfolding (Chong et al., 2005b; Maiese et al., 
2013b; Asaithambi et al., 2014; Chen et al., 2014a; Palma et 
al., 2014; Zeldich et al., 2014). Protective pathways within the 
body and nervous system can serve to limit the deleterious 
effects of ROS and oxidative stress. These include vitamins 
such as B, C, D, and K (Maiese et al., 2009; Bowes Rickman 
et al., 2013; Miret and Munne-Bosch, 2014; Xu et al., 2014b; 
Yousef and Mohamed, 2015) as well as catalase, glutathione 
peroxidase, and superoxide dismutase (Li et al., 2012; Muley 
et al., 2012; Maiese et al., 2013b; Vishwas et al., 2013; Akasaki 
et al., 2014; Gezginci-Oktayoglu et al., 2014; Mao et al., 2014; 
Moghaddasi et al., 2014; Palma et al., 2014; Srivastava and 
Shivanandappa, 2014; Zhou et al., 2014b).

Patients with Type 2 DM have serum markers of oxidative 
stress with ischemia-modified albumin (Kurban et al., 2011). 
Interestingly, brief periods as well as chronic exposure of 
hyperglycemia that can occur during DM can lead to ROS 
(Yano et al., 2004; Monnier et al., 2006). Formation of ROS 
and activation of caspases (Weinberg et al., 2014) can occur 
through advanced glycation end products (AGEs), entities 
that lead to complications in DM (Maiese, 2008; Chong 
and Maiese, 2012). In addition, glucolipotoxicity caused 
by elevated plasma glucose and high lipid levels promotes 
oxidative stress with cytochrome c release, caspase activa-
tion, and apoptosis in pancreatic β-cells (Liu et al., 2012b). 
High fat diets (Ribeiro et al., 2009) and free fatty acids also 
have been shown to result in ROS generation, lead to mito-
chondrial DNA damage, and result in pancreatic β-cell dys-
function (Rachek et al., 2006). During oxidative stress with 
DM, opening of the mitochondrial membrane permeability 
transition pore occurs to promote cytochrome c release and 
caspase activity (Hou et al., 2010a, b; Chong et al., 2011b; 
Tang et al., 2011; Cardoso et al., 2012; Du et al., 2015; Mao 
et al., 2014). Alterations in uncoupling proteins (UCPs) also 
occur that influence cell survival during DM (Maiese et al., 
2007a; Liu et al., 2013b; Zhang et al., 2014b). Uncoupling 
of respiration by UCPs can alter ATP synthesis, fatty acid 
release, and glucose oxidation. Ultimately, mitochondrial 
dysfunction and UCP activity can then be followed by pro-
grammed cell death with apoptosis and autophagy (Fu et al., 
2012). 

Apoptosis (Maiese et al., 2010b; Damasceno et al., 2013; 
Gomes and Negrato, 2014; Wang et al., 2014; Xu et al., 
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2014b) and autophagy (Maiese et al., 2012b, 2013b; Yama-
da and Singh, 2012; Jia et al., 2014) are pathways of pro-
grammed cell death that play significant roles in controlling 
cell survival during DM and oxidative stress. With apoptosis, 
there exists an early phase that consists of the loss of plasma 
membrane lipid phosphatidylserine asymmetry that can 
identify cells for disposal by microglia in the nervous system 
(Schutters and Reutelingsperger, 2010; Wei et al., 2013; Wil-
liams and Dexter, 2014). A later phase in apoptosis results in 
cell death with DNA degradation (Chong et al., 2005b, 2006; 
Favaloro et al., 2012; Folch et al., 2012; Shao et al., 2013; 
Nguyen et al., 2014). During DM, apoptosis results in the 
death of neurons (Das et al., 2011; Aksu et al., 2012; Kimura 
et al., 2013; Mao et al., 2014), pancreatic β-cell loss (Deng et 
al., 2009; Choi et al., 2010; Miao et al., 2013), and endothe-
lial cell destruction (Chong et al., 2007; Hou et al., 2010b; 
Hamed et al., 2011; Chen et al., 2012; Arunachalam et al., 
2014).

Autophagy has three categories that permit cells to recycle 
cytoplasmic components and eliminate dysfunctional or-
ganelles for tissue remodeling (Maiese et al., 2012b; Cai and 
Yan, 2013; Chen et al., 2014b, c; Nakka et al., 2014). Of the 
three categories for autophagy, microautophagy employs the 
invagination of the lysosomal membrane for the sequestra-
tion and digestion of cytoplasmic components (Maiese et al., 
2012b). In chaperone-mediated autophagy, cytosolic chap-
erones transport cytoplasmic components across lysosomal 
membranes. The most prevalent category of autophagy is 
macroautophagy that consists of the sequestration of cyto-
plasmic proteins and organelles into autophagosomes. These 
autophagosomes then combine with lysosomes for degra-
dation and are subsequently recycled for future cellular pro-
cesses. Autophagy has both a beneficial and detrimental side 
during DM (Chong et al., 2012c; Maiese et al., 2013c; Chen 
et al., 2014b; Min et al., 2014; Nakka et al., 2014). Exercise 
in mice has been shown to initiate autophagy and regulate 
glucose homeostasis (He et al., 2012). In addition, autophagy 
can improve insulin sensitivity during high fat diets in mice 
(Liu et al., 2014). Without autophagy, obesity may progres-
sion to DM, since experimental studies illustrate that auto-
phagy haploinsufficiency in murine animal models of obesi-
ty can lead to increased insulin resistance with elevated lipids 
and inflammation (Lim et al., 2014). Autophagy also may 
be necessary to eliminate misfolded proteins and non-func-
tioning mitochondria to prevent β-cell dysfunction and the 
onset of DM (Liu et al., 2013d). Yet, as noted, autophagy can 
play a detrimental role in DM. Although apoptosis may be a 
greater contributor to neuronal death than autophagy (Wang 
et al., 2012b), autophagy can impair endothelial progenitor 
cells, lead to mitochondrial oxidative stress, and prevent the 
formation of new blood vessels during elevated glucose ex-
posure (Kim et al., 2014). AGEs also result in the induction 
of autophagy and vascular smooth muscle proliferation that 
can lead to atherosclerosis (Hu et al., 2012) and cardiomy-
opathy (Lee et al., 2012b). Furthermore, increased activation 
of autophagy can lead to loss of cardiac and liver tissue in 
diabetic rats during attempts to achieve glycemic control 

through diet modification (Lee et al., 2014). 

Targeting Trophic Factors for DM in the 
Nervous System
For the nervous system, a number of avenues are being pur-
sued to treat the complications of DM and oxidative stress. 
These include the modulation of sirtuins (Hou et al., 2010b; 
Maiese et al., 2011b; Chong et al., 2012a; Halperin-Sheinfeld 
et al., 2012; Shao et al., 2013; Arunachalam et al., 2014; Mo-
roz et al., 2014), metabotropic receptors (Lin and Maiese, 
2001; Maiese et al., 2007b, 2008c; Domin et al., 2014; Jantas 
et al., 2014; Domin et al., 2015), nicotinamide adenine dinu-
cleotide (NAD+) precursors (Maiese et al., 2009, 2011a; Zhou 
et al., 2009; John et al., 2012; Carneiro et al., 2013; Ghasemi 
et al., 2014), protein tyrosine phosphatases (Chong and 
Maiese, 2007; Chen et al., 2012; Xu et al., 2014a; Geldman 
and Pallen, 2015), anti-oxidant therapies (Schaffer et al., 
2012; Bagul and Banerjee, 2013; Gomes and Negrato, 2014; 
Xu et al., 2014b; Yousef and Mohamed, 2015), and trophic 
factors (Maiese et al., 2005b, 2008d, 2012a; Barthelmes et 
al., 2014; Hamed et al., 2014; Wang et al., 2014; White, 2014; 
Zhang et al., 2014c).

Growth factors are of particular interest since complica-
tions of DM and oxidative stress may be exacerbated during 
the loss of trophic factors (Figure 1). In experimental an-
imal models of DM, oxidative stress may lead to reduced 
expression of insulin-like growth factor-1 (IGF-1), increased 
apoptosis of prefrontal cortex neurons, and subsequent anx-
iety (Aksu et al., 2012). In addition, insulin producing cells 
derived from stem cells may require the specific presence 
of fibroblast growth factor (FGF) and epidermal growth 
factor (EGF) (Czubak et al., 2014), growth factors that have 
been demonstrated to block neuronal injury during oxi-
dative stress (Maiese et al., 1993). EGF also promotes the 
neuroprotective effects of glucagon-like peptide-1 against 
neuronal cell apoptosis in cell culture models of DM (Kimu-
ra et al., 2013) and FGF may block vascular disease during 
DM (Zhang et al., 2013). Erythropoietin (EPO) is another 
trophic factor of interest for DM since it can prevent retinal 
and photoreceptor injury from insults such as excessive light 
(Colella et al., 2011), oxidative stress (Shen et al., 2014) and 
DM (Busch et al., 2014). EPO can have multiple beneficial 
effects and lead to reduced blood glucose levels in animal 
models of DM and obesity (Katz et al., 2010), attenuate ox-
idative stress and apoptosis in Schwann cells mediated by 
AGEs (Yu et al., 2015), and protect endothelial cells during 
experimental models of DM (Chong et al., 2007, 2011b). 
Furthermore, EPO can limit high glucose-induced oxidative 
stress in renal tubular cells (Dang et al., 2010), control the 
detrimental effects of obesity in animal models (Zhang et al., 
2014c), promote wound healing during DM (Hamed et al., 
2014), and foster cellular mitochondrial function and energy 
metabolism (Wang et al., 2014). Through improvement of 
vascular perfusion by EPO (Kang et al., 2014), EPO may ulti-
mately lead to cognitive repair (Hralova et al., 2013), reduce 
seizure occurrence (Castaneda-Arellano et al., 2014), and 
block peripheral nerve injury during DM (Yu et al., 2014).
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Cellular Pathways of Wingless, the CCN 
Family, and Stem Cells
However, growth factors such as EPO rely upon multiple 
cellular pathways to exert cellular protection (Chong et al., 
2002, 2003, 2012b; Maiese et al., 2008a; Chamorro et al., 
2013; Kwon et al., 2014; Ma et al., 2014; Parvin et al., 2014; 
Schafer et al., 2014; Zhang et al., 2015). In regards to DM 
and oxidative stress, EPO relies upon the wingless pathway 
of Wnt proteins (Figure 1). Wnt proteins are cysteine-rich 
glycosylated proteins that control multiple processes in-
volving neuronal development, angiogenesis, immunity, 
tumorigenesis, fibrosis, and stem cell proliferation (Li et al., 
2006; Maiese et al., 2008e; Wexler et al., 2011; Zeljko et al., 
2011; Heo et al., 2013; Berwick and Harvey, 2014; Thorfve 
et al., 2014). In the nervous system, Wnt signaling may be 
instrumental in the pathogenesis of disorders such as Par-
kinson’s disease (Marchetti et al., 2013; Berwick and Har-
vey, 2014), protect against neuronal mitochondrial injury 
and cerebral ischemia (Chong et al., 2010; Xing et al., 2012, 
2014), limit spinal cord injury (Gonzalez-Fernandez et al., 
2013), maintain microglial and macrophage integrity and 
function (Shang et al., 2010; Wang et al., 2015), and serve 
as an anti-depressant (Pilar-Cuellar et al., 2013). Through 
pathways that involve the Wnt1 protein, EPO blocks cerebral 
endothelial cell injury in models of experimental diabetes 
(Chong et al., 2007). EPO prevents the loss of Wnt1 expres-
sion that would occur in the absence of EPO during elevated 
glucose. In studies that block Wnt1 with a Wnt1 antibody, 
EPO protection is neutralized, indicating that Wnt1 is vital 
for the protection of EPO during elevated glucose exposure 
such as DM (Chong et al., 2007). EPO also may require Wnt 
signaling for the preservation of mesenchymal stem cells 
(Danielyan et al., 2009), to control “pro-apoptotic” forkhead 
transcription factors in DM (Chong et al., 2011b), foster the 
maintenance of immune cells of the nervous system during 
oxidative stress (Shang et al., 2011), and block β-amyloid 
(Aβ) toxicity in microglia of the brain (Shang et al., 2012b). 

Independent of EPO, Wnt1 and Wnt signaling can block 
autophagy (Wang et al., 2012b; Fu et al., 2014; Geng et al., 
2014; Ortiz-Masia et al., 2014) and apoptotic endothelial 
cell injury during elevated glucose exposure (Chong et al., 
2007) (Figure 1). Wnt signaling also promotes human β-cell 
proliferation (Aly et al., 2013), fosters the repair of diabetic 
wounds (Sun et al., 2014), impacts the vasculature of the 
brain (Guo et al., 2012), and prevents cognitive decline during 
aging and potential concomitant disease such as during DM 
(Bayod et al., 2014a). Components of the Wnt pathway also 
have increased expression in the brain during periods of 
exercise (Bayod et al., 2014b) that may assist against insulin 
resistance. Given the complexities of the Wnt signaling path-
way and the ability of Wnt to promote angiogenesis (Chong 
et al., 2011a; Cui et al., 2012; Lee et al., 2012a; Maiese, 2014d), 
it should be noted that Wnt signaling in some cases can po-
tentiate injury such as vascular leakage and inflammation 
during DM retinopathy (Lee et al., 2012a), promote retinal 
oxidative stress (Zhou et al., 2011; Liu et al., 2013c), and 
lead to keratoconus cornea (Iqbal et al., 2013). Furthermore, 

Wnt1 and Wnt signaling pathways are proliferative in nature 
and can result in tumorigenesis. In the nervous system Wnt 
signaling may lead to malignant glioma development (Liu et 
al., 2012a; Tu et al., 2013), malignant melanoma (Uzdensky 
et al., 2013), and metastatic disease (James et al., 2012; Kafka 
et al., 2014; Klinke, 2014; Knoblich et al., 2014). In addition, 
growth factors such as EPO with prolonged exposure can 
have non-beneficial effects such as the proliferation of cancer 
(Maiese et al., 2005a; Hedley et al., 2011; Zhang et al., 2014a), 
increased risk during cardiac conditions and hypertension 
(Palazzuoli et al., 2014), inflammation, and blood-brain bar-
rier injury (Ogunshola et al., 2013).

A downstream target in the Wnt1 pathway is Wnt1 induc-
ible signaling pathway protein 1 (WISP1), a protein that is 
present in the brain, epithelium, heart, kidney, lung, pancreas, 
placenta, ovaries, small intestine, and spleen (Maiese, 2014d). 
WISP1, also known as CCN4, is a member of the six secreted 
extracellular matrix associated CCN family of proteins that 
are mediators of skeletal system development, vascular repair, 
cellular survival, and extracellular matrix growth. The CCN 
term is defined by the first three members of the family that 
include Cysteine-rich protein 61, Connective tissue growth 
factor, and Nephroblastoma over-expressed gene.

Initial studies demonstrated that WISP1 stops p53 mediat-
ed DNA damage and apoptosis (Su et al., 2002). Subsequent 
work with WISP1 further illustrated the ability to prevent 
apoptosis (Price et al., 2004; Venkatesan et al., 2010; Wang et 
al., 2013), control caspase activation (Venkatesan et al., 2010; 
Wang et al., 2012a, 2013), and oversee autophagy (Maiese et 
al., 2012b; Wang et al., 2012b). For regeneration and/or re-
pair of injury in the nervous system, WISP1 may have a crit-
ical role. The expression of WISP1 is increased during oxida-
tive stress in neurons and the presence of WISP1 is necessary 
for neuronal protection by reducing the expression of the 
Bim/Bax complex, increasing the expression of Bclx(L)/Bax 
complex, and blocking cytochrome c release with caspase 3 
activation (Wang et al., 2012a). WISP1 also autoregulates its 
own expression by maintaining the activity of β-catenin and 
limiting the induction of autophagy (Wang et al., 2012b). 
In addition, WISP1 can protect neurons by controlling the 
forkhead transcription factor FoxO3a, a modulator of cellu-
lar metabolism and cell survival (Maiese et al., 2008b; Chong 
et al., 2011b; Uranga et al., 2013; Fong et al., 2014; Safarian 
et al., 2014; Zeldich et al., 2014). Furthermore, WISP1 pro-
motes the nuclear trafficking and increased activity of the 
silent mating type information regulation 2 homolog 1 (S. 
cerevisiae) (SIRT1) which can lead to neuronal protection 
(Wang et al., 2013) and block apoptotic injury (Hou et al., 
2010b; Tanno et al., 2010; Hou et al., 2011). 

In regards to DM and the control of cellular metabo-
lism, WISP1 is one of several genes that are over-expressed 
during pancreatic regeneration, suggesting that WISP1 
may oversee stem cell development during DM (Lim et al., 
2002) (Figure 1). WISP1 can regulate induced pluripotent 
stem cell reprogramming (Yang et al., 2011a; Jung et al., 
2014) and stem cell migration (Lough et al., 2013). Expres-
sion of WISP1 also is increased during human adipocyte 
differentiation (Murahovschi et al., 2014) and may support 
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vascular regeneration during saphenous vein crush injury 
(Price et al., 2004). WISP1 fosters vascular smooth muscle 
proliferation that can assist with tissue repair during injury 
(Reddy et al., 2011; Liu et al., 2013a), but modulates cellular 
senescence (Du et al., 2014) and does not promote excessive 
cellular proliferation in aging vascular cells (Marchand et al., 
2011), a component of atherosclerosis. WISP1 expression 
also is affected by weight change in humans and increases 
during insulin resistance in glucose-tolerant individuals 
(Murahovschi et al., 2014), indicating that WISP1 may rep-
resent an important reparative process in individuals with 
DM.

In relation to cellular mechanisms that impact DM, WISP1 
employs metabolic pathways that involve the mechanistic 
target of rapamycin (mTOR) to prevent the injury to the 
central nervous system (Chong et al., 2012c; Maiese, 2014c). 
WISP1 through mTOR downstream pathways that modulate 
the proline rich Akt substrate 40 kDa (PRAS40) (Shang et 
al., 2012a) and tuberin (tuberous sclerosis 2) TSC2 (Shang 
et al., 2013) can increases cell survival for microglial cells 
against oxidative stress and Aβ toxicity. mTOR is closely tied 
to cellular metabolism (Maiese et al., 2013a, 2014a; Johnson 
et al., 2015) and independently can prevent apoptotic injury 
in pancreatic β-cells (Zhou et al., 2014a), lead to pancreatic 
β-cell proliferation (Miao et al., 2013), inhibit neuronal cell 
apoptosis during DM through the EGF receptor (Kimura 
et al., 2013), and limit vascular disease with atherosclerosis 
(Peng et al., 2014). WISP1 also controls the post-translation-
al phosphorylation of AMP activated protein kinase (AMPK) 
that is involved in glucose homeostasis (Chong and Maiese, 
2012; Maiese et al., 2013c; Kopp et al., 2014; Martinez de 
Morentin et al., 2014). AMPK regulates the activity of the 
hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) 
(TSC1/TSC2) complex that is an inhibitor of mTOR Com-
plex 1 (mTORC1) (Maiese, 2014b). The ability of WISP1 to 
oversee AMPK activity is vital to control cellular metabolism 
during DM (Martinez de Morentin et al., 2014). WISP1 
modulates AMPK activation by differentially decreasing 
phosphorylation of TSC2 at Ser1387, a target of AMPK, and 
increasing phosphorylation of TSC2 at Thr1462, a target 
of protein kinase B (Akt) (Shang et al., 2013). This enables 
WISP1 to provide a minimal level of TSC2 and AMPK activ-
ity to control both cell survival and cell metabolism (Shang 

et al., 2013). Under some scenarios, increased AMPK activity 
can reduce insulin resistance and diminished oxidative stress 
mediated through the activation of autophagy (Liu et al., 
2014). AMPK activation also can result in correcting met-
abolic parameters of cells (Jessen et al., 2010) and prevent 
adipocyte differentiation, lipid accumulation, and obesity 
(Lai et al., 2012). Yet, the degree of AMPK activity remains 
an important consideration, since in some experimental 
models of Type 2 DM, AMPK activation promotes apoptotic 
cell death in pancreatic islet cells (Guan et al., 2014).

However, similar to the pathways of Wnt1, WISP1 is a 
proliferative agent and may have a role in tumor cell devel-
opment and proliferation (Maiese, 2014d) (Figure 1). Under 
some circumstances, WISP1 independently may result in 
cancer growth (Klinke, 2014) and increased combined ex-
pression of Wnt1, WISP1, survivin, and cyclin-D1 may be 
suggestive that these pathways work synergistically to lead 
to tumorigenesis with the inhibition of apoptosis (Khor et 
al., 2006). During chronic ethanol consumption, WISP1 is 
associated with hepatic cell proliferation that may be not 
only reparative, but also associated with liver cancer (Mercer 
et al., 2014). WISP1 expression in the nervous system also is 
increased in neurofibromatosis type 1 tumorigenesis (Pas-
mant et al., 2010). Variants of WISP1 have been described 
to be extremely aggressive in promoting cell growth (Tanaka 
et al., 2003), but non-variant WISP1 expression may block 
tumor cell invasion, motility, and metastases (Soon et al., 
2003). Differential expression of CCN family members 
in breast cancer also has suggested that WISP1 may func-
tion to limit breast cancer growth (Davies et al., 2007) and 
Notch1 activation that leads to increased WISP1 expression 
can suppress melanoma growth (Shao et al., 2011). Yet, 
WISP1 may be able to limit metastatic disease only under 
certain cellular conditions, since some studies also suggest 
that WISP1 may promote distant metastatic disease (Ono et 
al., 2013).

Future Considerations for Promoting 
Neuronal Protection in DM
DM can lead to significant complications in the central as 
well as the peripheral nervous systems. Complications can 
include loss of vision due to retinal disease, impaired cog-

Figure 1 Therapeutic strategies in metabolic disease with trophic factors, wnt signaling, and WISP1.

   THERAPEUTIC CONSIDERATIONS IN METABOLIC DISEASE FOR TROPHIC FACTORS, WNT SIGNALING, AND WISP1

1. Growth factors, such as insulin-like growth 
factor-1 (IGF-1), fibroblast growth factor 
(FGF), epidermal growth factor (EGF), and 
erythropoietin (EPO), can foster insulin 
production and stem cell development, 
block oxidative stress, promote glucose 
homeostasis, and prevent apoptotic cell 
death in the nervous system.
2. Trophic factors may directly limit excessive 
serum glucose levels, improve vascular 
function and energy metabolism, and assist 
against the detrimental effects of obesity.

   3. Wnt signaling, that includes the cysteine-

rich glycosylated Wnt proteins, protects 
against neurodegenerative disorders, controls 
programmed cell death through apoptosis and 
autophagy, and is utilized by some trophic 
factors to prevent neurovascular disease during 
diabetes mellitus (DM).
4. Wnt signaling leads to human β-cell 
proliferation, promotes the repair of diabetic 
wounds, has increased expression in the brain 
during exercise that may prevent insulin 
resistance, and inhibits cognitive decline 
during aging and concomitant disease with 
DM.

5. Wnt1 inducible signaling pathway protein 
1 (WISP1), a downstream target in the Wnt1 
pathway, can oversee stem cell development 
during DM and controls the mechanistic
target of rapamycin (mTOR) and AMP 
activated protein kinase (AMPK) to govern 
cellular metabolism and promote neuronal 
viability during DM.
6. Specific and controlled targeting of trophic 
factors, Wnt signaling, and WISP1 is required 
since these entities also play a role in vascular 
leakage, excessive angiogenesis, pancreatic 
islet cell death, and tumorigenesis.
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nition with dementia that my involve Alzheimer’s disease, 
destruction of the blood brain barrier that results in isch-
emic cerebral disease, and peripheral nerve dysfunction. At 
the cellular level, neuronal cell injury during DM can occur 
through oxidative stress and the generation of ROS that ulti-
mately lead to apoptosis and autophagy. Although apoptosis 
usually results in cell death, autophagy under some circum-
stances can be protective during DM and may control insu-
lin resistance and prevent β-cell dysfunction. 

Given the complex cellular processes that can result in 
neuronal cell injury during metabolic disease, novel targeting 
with trophic factors, Wnt, WISP1, and the oversight of stem 
cell proliferation may offer new strategies to prevent the com-
plications of DM in the nervous system. Growth factors such 
as IGF-1, FGF, EGF, and EPO can modulate glucose homeo-
stasis and prevent neuronal injury during oxidative stress and 
DM. EPO also employs pathways of Wnt signaling to protect 
against cerebral endothelial cell injury, block “pro-apoptotic” 
pathways, and maintain the integrity of immune cells of the 
nervous system. Independently, Wnt signaling that involves 
Wnt1 and WISP1 (CCN4) is becoming recognized as a vital 
neuroprotective component during DM to modulate stem 
cell proliferation, repair diabetic wounds, reverse cognitive 
decline, increase human β-cell proliferation, promote vascu-
lar regeneration, and control programmed cell death through 
apoptosis and autophagy. Cellular mechanisms of Wnt and 
WISP1 govern primary metabolic pathways of mTOR and 
AMPK. However, it appears that the degree of activation of 
these biological systems is an important consideration in 
developing therapies for DM, since Wnt signaling as well 
as growth factors can affect vascular leakage in sensitive 
regions such as the retina as well as promote tumor devel-
opment in the nervous system. WISP1, also a proliferative 
protein, can similarly lead to tumor growth while promot-
ing reparative regeneration of tissues. Downstream, AMPK 
under some scenarios may result in the death of pancreatic 
islet cells. Yet, WISP1 also has been reported not only to be 
neuroprotective especially during DM, but also potentially 
block the spread of metastatic disease. Future development 
of novel strategies for metabolic disease in the nervous sys-
tem must continue to elucidate the potential varied clinical 
outcomes of the Wnt and WISP1 pathways and precisely 
target mechanisms that drive outcomes for neuronal repair 
and regeneration.
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