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Introduction
Cell-based therapy is a promising strategy for improving pe-
ripheral nerve regeneration. Schwann cells and mesenchymal 
stem cells (MSCs) are commonly used in cell-based therapies 
for neural injuries and disorders (Alsanie et al., 2013; Hsu et 
al., 2013). Although Schwann cells are the most important 
support cells in tissue grafting, their clinical use is limited 
because autologous Schwann cells are difficult to obtain and 
amplify, and they rapidly lose their phenotypic characteristics 
(Kingham et al., 2007). MSCs are multipotent, tissue-specif-
ic stem cells that are easily isolated (Zhu et al., 2014). MSCs 
exert trophic, anti-inflammatory and immunomodulatory 
effects. These characteristics make MSCs the most attractive 
support cell in cell-based therapy for neurological diseases 
(Caplan, 2009).

Bone marrow is the main autologous source of MSCs 
used to treat nerve injury (Huang et al., 2014; Ma, 2014). 
Human bone marrow mesenchymal stem cell transplanta-
tion was used for treating neurological diseases in several 
clinical trials with encouraging early or long-term results 

(Kumar et al., 2009; Dai et al., 2013; Jiang et al., 2013). 
However, some patients may not be able to use their own 
cells because of age or underlying diseases (Romanov et al., 
2003). Human umbilical cord-derived MSCs (hUCMSCs) 
represent a “younger” stem cell type and have higher pro-
liferation rates and greater expansion capacity than bone 
marrow mesenchymal stem cells in vitro. hUCMSCs are 
regarded as an alternative source of bone marrow mesen-
chymal stem cells because of favorable intrinsic properties, 
such as high self-renewal capacity (Li et al., 2014; Zhang et 
al., 2014). Additionally, their use is ethically less problem-
atic, and they are abundantly available, hypo-immunogenic 
and non-tumorigenic (Fong et al., 2014). A number of 
experimental and clinical trials have examined the efficacy 
and safety of treating neurological diseases with hUCMSCs 
(Bongso and Fong, 2013; Cui et al., 2014). However, the 
mechanisms underlying the ability of hUCMSCs to enhance 
nerve regeneration remain to be elucidated.

Wang et al. (2009) analyzed the beneficial effects of MSCs 
on peripheral nerve regeneration. Their findings suggested 
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that cell replacement, growth factor production, extracellu-
lar matrix molecule synthesis, immune modulation, and 
other factors may be involved. Thus, MSCs may contribute 
to nerve regeneration by secreting growth factors and de-
positing basal lamina components, thereby establishing a 
favorable microenvironment for nerve regeneration (Caplan 
and Dennis, 2006). In the present study, we investigated the 
paracrine effects of hUCMSCs by analyzing neurotrophic 
factor expression and extracellular matrix production by 
these cells. Furthermore, we examined the effects of hUCM-
SC-conditioned medium on Schwann cell properties and 
neurite outgrowth from dorsal root ganglia.

Materials and Methods
hUCMSC culture and identification
A total of 18 healthy human umbilical cords were obtained 
from healthy mothers at the General Hospital of Chinese 
PLA following their informed consent. All experimental 
procedures were approved by the Institutional Ethics Com-
mittee, Chinese PLA General Hospital in China. hUCMSCs 

were isolated and cultured as previously described (Peng et 
al., 2011). The hUCMSCs were cultured for expansion in 
Dulbecco’s modified Eagle’s medium (DMEM)/F12, con-
taining 10% fetal bovine serum and 100 U/mL penicillin/
streptomycin, at 37°C in a 5% CO2 incubator. When the 
cultures reached 80% confluence, cells were resuspended 
with 0.25% ethylenediamine tetraacetic acid and reseeded 
in new culture flasks. Single-cell suspensions were washed 
three times in PBS, counted, and adjusted to the appropri-
ate concentrations. 106 cells per sample were stained with 
anti-CD29, CD44, CD90, CD105, CD71, CD73, CD34 and 
CD45 antibodies (1:1,000; BD Pharmingen, San Diego, CA, 
USA). A FACScan machine (Gilson, Middleton, WI, USA) 
was used to analyze antibody binding. To evaluate the multi-
potent differentiation capacity of stem cells, second passage 
hUCMSCs were treated with osteogenic induction medium, 
adipogenic induction medium or chondrogenic medium 
for 21 days as described previously (Liu et al., 2012). After 
the differentiation process was completed, cells were stained 
with Alizarin red for osteoblasts, Oil-red O for adipocytes, 
and Safranin O for chondrocytes.

Figure 1 Biological characteristics of human umbilical cord mesenchymal stem cells (hUCMSCs).
(A) Phase contrast images of passage 2 hUCMSCs. hUCMSCs can be differentiated into osteogenic (B; Alizarin red staining), adipogenic (C; Oil-
red O staining) and chondrogenic lineages (D; Safranin O staining) following treatment with different culture media. Scale bars in A–D: 200 µm. (E) 
Flow cytometry showing that hUCMSCs are positive for CD29, CD44, CD90, CD105, CD71 and CD73, and negative for CD34 and CD45.
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Extracellular matrix components deposited by hUCMSCs
To identify the extracellular matrix components deposited 
by hUCMSCs, we reconstituted the 3D cell-free extracel-
lular matrix microenvironment as previously described 
(Lai et al., 2010). hUCMSC-derived extracellular matrix on 
coverslips was fixed with 4% formaldehyde and incubated 
with mouse anti-human collagen type I monoclonal an-
tibody, mouse anti-human laminin monoclonal antibody 
or mouse anti-human fibronectin monoclonal antibody 
(1:200; Sigma, St. Louis, MO, USA) overnight at 4°C in a 
humidified chamber. After washing three times with PBS, 

the samples were conjugated with FITC-labeled goat an-
ti-mouse IgG (1:250; Beijing Zhongshan Biological Reagent 
Company, Beijing, China) for 2 hours at room temperature. 
The stained samples were examined under a fluorescence 
microscope (Olympus, Tokyo, Japan).

Human cytokine antibody array analysis
Two hUCMSC cell lines were expanded to 107 cells and har-
vested at passage 2. Proteins were isolated and assayed with a 
RayBioHuman Cytokine Antibody ArrayKit (R&D Systems, 
Minneapolis, MN, USA). The membrane was blocked with 

Figure 2 hUCMSCs express and secrete extracellular matrix and neurotrophic factors that enhance nerve regeneration.
(A–C) Extracellular matrix components deposited by hUCMSCs were visualized by immunofluorescence staining. Arrows indicate positive expres-
sion. FITC was the dye. Scale bars: 200 µm. (D) Cytokine antibody array assay revealed neurotrophic factor expression. hUCMSC-1 and hUCM-
SC-2 represent cultures derived from different umbilical cords. (E, F) BDNF, GDNF, HGF, NT-3, bFGF, NGF-β and VEGF protein levels were 
detected in hUCMSC-conditioned medium and control medium by ELISA. All data are expressed as the mean ± SD. Statistical analysis was per-
formed using one-way analysis of variance followed by Tukey’s test. **P < 0.01, vs. control (blank) medium. hUCMSCs: Human umbilical cord-de-
rived mesenchymal stem cells; IL-6: interleukin-6; BDNF: brain-derived neurotrophic factor; TGF-β: tumor growth factor-β; EGF: epidermal 
growth factor; NAP-2: neutrophil activating protein-2; NT-3: neurotrophin-3; HGF: hepatocyte growth factor; GDNF: glial-derived neurotrophic 
factor; VEGF: vascular endothelial growth factor; IGF-1: insulin-like growth factor-1; PDGF: platelet-derived growth factor; NT-4: neurotrophin-4; 
LIF: leukemia inhibitory factor; SCF: stem cell factor; bFGF: basic fibroblast growth factor; NGF-β: nerve growth factor-β; ELISA: enzyme linked 
immunosorbent assay.
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blocking buffer, incubated with the protein sample for 1–2 
hours, and then incubated with diluted biotin-conjugated 
antibodies (ready to use) and horseradish peroxidase-con-
jugated streptavidin for 2 hours. After incubation with 
detection buffer, the membrane was exposed to X-ray film, 
and signals were detected using a chemiluminescence im-
aging system, Fluorchem 9000 (Alpha Innotech Corp., San 
Leandro, CA, USA). Relative cytokine expression levels were 
quantified by densitometry.

hUCMSC conditioned medium preparation and 
enzyme-linked immunosorbent assay (ELISA)
Second passage hUCMSCs were seeded in DMEM/F12 con-
taining 10% fetal bovine serum. After the cells reached 90% 
confluence, the medium was replaced with DMEM/F12 me-
dium containing 1% fetal bovine serum, followed by culture 
for an additional 48 hours at 37°C in a humidified 5% CO2 
incubator. The hUCMSC-conditioned medium was collect-
ed, filtered through a 0.22-µm filter, and immediately frozen 
at −80°C until use. DMEM/F12 medium containing 1% fetal 
bovine serum was used as a control. The conditioned media 
were analyzed using human brain-derived neurotrophic 
factor (BDNF), glial-derived neurotrophic factor (GDNF), 
hepatocyte growth factor (HGF), neurotrophin-3 (NT-3), 
basic fibroblast growth factor (bFGF), nerve growth factor 
(NGF)-β and vascular endothelial growth factor (VEGF) 
ELISA kits (Boster, Wuhan, China) according to the manu-
facturer’s protocols. All samples were analyzed in triplicate, 
and the optical density was measured at 450 nm (Wellscan 
MK3, Labsystems Dragon, Helsinki, Finland).

Schwann cell harvest and culture with hUCMSC-
conditioned medium
Schwann cells were harvested from the sciatic nerves of spe-
cific-pathogen-free 3-day-old Sprague-Dawley rats (provided 
by Animal Center of Military Academy of Medical Sciences 
of Chinese PLA; license No. SCXK (Jun) 2012-0004) as previ-
ously described (Gu et al., 2012). To determine Schwann cell 
viability in hUCMSC-conditioned medium, MTT assay was 
performed as previously described (Yang et al., 2008). Briefly, 
Schwann cells (1 × 104 cells/well) were seeded into 96-well 
plates and incubated with hUCMSC-conditioned medium 
or control medium (DMEM/F12 containing 1% fetal bovine 
serum) for 12, 24 or 48 hours. Optical density was measured 
using a microplate reader (Beckman, Brea, CA, USA) at 570 
nm. Five replicates from each sample were measured.

EdU/Hoechst 33342 double staining
According to the EdU Labeling/Detection Kit manual (Ribo-
bio, Guangzhou, China), Schwann cells were cultured in 24-
well plates at 5 × 104 cells per well and incubated in 10 µM 
EdU labeling medium for 48 hours at 37°C in a humidified 
5% CO2 incubator. At the appropriate time, cultured cells 
were fixed with 4% paraformaldehyde for 30 minutes. After 
three PBS washes, staining was performed with 200 µL of 1 × 
Apollo® reaction cocktail at 37°C for 30 minutes. Following 
permeabilization with 0.2% Triton X-100 in PBS, the cells 
were stained with 5 g/mL Hoechst 33342 dye for 30 minutes, 

and observed under a fluorescence microscope (Olympus). 
The percentage of EdU-positive cells was calculated.

Western blot assay
Schwann cells were cultured in hUCMSC-conditioned me-
dium or control medium for 48 hours. Total protein concen-
tration was then determined. Protein samples were separated 
at 120 V on 10% gels by sodium dodecyl sulfate polyacryl-
amide gel electrophoresis, and then the separated proteins 
were transferred onto polyvinylidene difluoride membranes 
and incubated with rabbit anti-human NGF-β monoclonal 
antibody (1:500; Chemicon, Temecula, CA, USA), rabbit 
anti-human BDNF monoclonal antibody (1:500; Chemi-
con) or mouse anti-β-actin antibody (1:2,000; Santa Cruz 
Biotechnology, Santa Cruz, CA, USA). The membranes were 
incubated with horseradish peroxidase-conjugated goat an-
ti-rabbit IgG (1:1,000, Santa Cruz Biotechnology) or goat 
anti-mouse IgG (1:1,000, Santa Cruz Biotechnology) for 1 
hour, treated with an enhanced chemiluminescence substrate 
for 1 minute, and developed by exposure to Kodak X-OMAT 
light-sensitive film (Kodak, Rochester, NY, USA). Protein ex-
pression was expressed as the ratio of the optical density of 
the target protein to that of β-actin.

Dorsal root ganglion explant culture and 
immunofluorescence staining
Dorsal root ganglia were dissected from Sprague-Dawley 
rat pups on postnatal day 1 as previously described (Yang et 
al., 2007). Dorsal root ganglion explants were treated with 
hUCMSC-conditioned medium, negative control medium 
or 50 ng/mL NGF-β (positive control) for 72 hours. Neurite 
outgrowth from the explants was observed and analyzed 
using phase contrast microscopy (Olympus). Immunoflu-
orescence staining was also performed. Dorsal root ganglia 
were fixed for 10 minutes in 4% paraformaldehyde at 4°C 
and washed three times with PBS. Dorsal root ganglia were 
immunostained overnight at 4°C with mouse anti-rat neuro-
filament 200 monoclonal antibody (1:500; Sigma) to identify 
axons. The ganglia were then incubated with Alexa 488-con-
jugated goat anti-mouse IgG (1:200; Beijing Zhongshan Bio-
logical Reagent Company) at room temperature for 2 hours. 
Immunostained axons were visualized under a fluorescence 
microscope (Olympus), and images were captured using a 
digital camera (Olympus).

Statistical analysis
All data are expressed as the mean ± SD. Statistical analysis 
was performed using one-way analysis of variance followed 
by Tukey’s test using SPSS 17.0 software package (SPSS, Chi-
cago, IL, USA). A P-value < 0.05 was considered statistically 
significant.

Results
Biological characterization of hUCMSCs
Figure 1A shows a phase contrast image of passage 2 hUCM-
SCs, which are adherent and display a fibroblast-like shape. 
Passage 2 hUCMSCs cultured with different media were 
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characterized by the presence of different cell types due to 
their multi-differentiation potential; osteogenic (Figure 1B), 
adipogenic (Figure 1C) and chondrogenic (Figure 1D) cells 
were revealed by Alizarin red staining, Oil-red O staining 
and Safranin O staining, respectively. Figure 1E illustrates 
that isolated hUCMSCs were positive for the mesenchymal 
markers CD29, CD44, CD90, CD105, CD71 and CD73, but 
negative for CD34 (hematopoietic/endothelial marker) and 
CD45 (hematopoietic marker).

hUCMSCs expressed extracellular matrix and 
neurotrophic proteins related to neurogenesis
We analyzed the composition of extracellular matrix de-
posited by hUCMSCs using immunostaining. As shown in 
Figure 2A, immunostaining revealed the presence of col-
lagen type I, laminin and fibronectin, which are reportedly 
involved in peripheral nerve regeneration (Gao et al., 2013). 
Figure 2B summarizes the results of human cytokine anti-
body array analysis for approximately 79 proteins. As shown, 
14 growth factors were expressed by hUCMSCs at highly 
significant levels. Of particular interest were BDNF, NT-3, 
neurotrophin-4/5 (NT-4/5), GDNF, platelet-derived growth 
factor (PDGF), epidermal growth factor (EGF), leukemia 
inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), 
transforming growth factor-β (TGF-β), interleukin-6 (IL-6), 
neutrophil activating protein-2 (NAP-2), VEGF, HGF and 
stem cell factor (SCF). To quantify the levels of these secreted 
proteins more precisely, hUCMSC-conditioned medium was 
assayed using ELISA. As shown in Figure 2C, D, all samples 
of hUCMSC-conditioned medium assayed contained high 
levels of BDNF, GDNF, HGF, NT-3 and bFGF. NGF-β and 
VEGF were secreted at low levels.

Effect of hUCMSC-conditioned medium on rat Schwann 
cell culture
As shown by the MTT assay, 12 hours of treatment with 
hUCMSC-conditioned medium did not significantly change 
Schwann cell viability compared with control medium treat-
ment. However, 24 and 48 hours of treatment with hUCM-
SC-conditioned medium significantly increased Schwann cell 
viability compared with control medium (Figure 3A). EdU/
Hoechst immunostaining showed that 48 hours of treatment 
with hUCMSC-conditioned medium increased the prolifer-
ation rate of Schwann cells compared with control medium 
(Figure 3B, C). Western blot analysis revealed that NGF-β 
and BDNF protein levels were significantly higher in Schwann 
cells cultured with hUCMSC-conditioned medium for 48 
hours compared with control medium (Figure 3D–F).

Effect of hUCMSC-conditioned medium on rat dorsal root 
ganglion explants
Rat dorsal root ganglion explants were cultured in con-
trol medium, hUCMSC-conditioned medium or 50 ng/mL 
NGF-containing medium for 3 days. Phase contrast imaging 
and neurofilament 200 immunostaining revealed the extent 
of neurite outgrowth from dorsal root ganglion explants in 
the three different groups (Figure 4A). A comparison of cu-
mulative neurite lengths from cultured dorsal root ganglion 

explants indicated that neurites grew faster in both hUCM-
SC-conditioned medium and 50 ng/mL NGF-containing me-
dium than in control medium (P < 0.01; Figure 4B). hUCM-
SC-conditioned medium treatment of dorsal root ganglion 
explants for 72 hours significantly increased the mean axon 
area ratio (axon area/DRG area) compared with control me-
dium treatment. The mean axon area ratio of hUCMSC-con-
ditioned medium-treated explants was similar to that of 50 
ng/mL NGF-treated explants (P < 0.01; Figure 4C).

Discussion
Numerous studies have shown that MSCs have beneficial 
effects on peripheral nerve reconstruction (Ribeiro et al., 
2013). However, the underlying mechanisms remain un-
clear. Several studies have suggested that the transdiffer-
entiation of MSCs plays a crucial role in peripheral nerve 
regeneration, because the implanted MSCs can differentiate 
into Schwann-like cells at the site of injury (Chen et al., 
2006; Yang et al., 2009). However, some studies have ques-
tioned the transdifferentiation capability of MSCs, because 
the expression of Schwann cell phenotypic markers does 
not prove that these cells function as Schwann cells (Peng 
et al., 2011). Matsuse et al. (2010) demonstrated that after 
transplanting MSCs into the sciatic nerve stump, only a 
few MSCs could spontaneously differentiate into Schwann 
cells in vivo. The current consensus is that MSCs promote 
peripheral nerve through the release of cytokines, growth 
factors and neuroregulatory molecules.

To better understand the role of MSCs in peripheral nerve 
regeneration, we examined the paracrine actions of hUCM-
SCs on neural tissue and Schwann cells. We first performed a 
human cytokine antibody array assay to identify the proteins 
expressed by hUCMSCs. Approximately 79 proteins were 
identified, and we chose 14 proteins that were expressed at 
highly significant levels and that had previously reported 
neurotrophic properties, including BDNF, NT-3, NT-4/5, 
GDNF, PDGF, EGF, LIF, IGF-1, TGF-β, IL-6, NAP-2, VEGF, 
HGF and SCF. These proteins play important roles in en-
hancing angiogenesis and neurogenesis during the develop-
ment and regeneration of peripheral nerves. NGF, BDNF, 
NT-3 and NT-4/5 play crucial roles in neuronal survival, 
differentiation and maintenance. NGF promotes the surviv-
al and differentiation of sensory and sympathetic neurons 
and is the prototypical neurotrophin (Truzzi et al., 2008). 
BDNF supports motor neuron survival and promotes axonal 
growth in motor and sensory neurons (Zhao et al., 2013). 
NT-3 supports the survival, growth and differentiation of 
neurons, and encourages neuronal synapse formation. NT-
4/5 is a recently identified neurotrophin with potential 
neurotrophic effects on various neuronal subpopulations, 
and it promotes the survival of motor and sensory neurons 
(Shakhbazau et al., 2013).

In addition to the four members of the neurotrophin family, 
other growth factors with neurotrophic actions include GDNF 
and FGF. GDNF is a potent survival factor for midbrain dopa-
minergic neurons and many other types of neuronal popula-
tions (Dubový et al., 2011). FGF is a potent mitogen that may 
promote not only glial and Schwann cell proliferation but also 
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angiogenesis to affect the development of both the central and 
peripheral nervous systems (Wang et al., 2008). Some other 
bioactive molecules with neurotrophin-like actions have also 
been tested to determine the possibility of their serving as ad-
ditives in neural scaffolds. These factors include IGF-1, VEGF, 
LIF and PDGF (Verheyen et al., 2013).

Angiogenesis and the growth of new blood vessels also 
play important roles in nerve regeneration. VEGF stimulates 
axonal outgrowth, enhances the survival and proliferation 
of Schwann cells, and improves intraneural angiogenesis by 
promoting endothelial sprouting during peripheral nerve 
regeneration (Verheyen et al., 2013). HGF is a neurotrophic 
factor for motor, sensory and parasympathetic neurons in 
vitro. Li et al. (2008) reported that HGF has potent angio-

genic and neuroregenerative effects in allogeneic grafting of 
peripheral nerves. All of these findings indicate that hUCM-
SCs secrete a variety of cytokines. ELISA was performed to 
analyze proteins secreted by hUCMSCs. The results revealed 
that neurotrophic factors, including BDNF, HGF, GDNF, 
NT-3 and bFGF, are expressed at significantly high levels; 
some other factors (NGF-β and VEGF) were secreted at low 
concentrations.

Neurotrophic factors and extracellular matrix proteins 
are two important growth-inducing factors that promote 
Schwann cell proliferation and stimulate neuronal neurite 
outgrowth. In addition to neurotrophic factors, we also 
examined the expression of extracellular matrix proteins 
secreted by hUCMSCs. Immunostaining results revealed 

Figure 3 Effects of hUCMSC-conditioned medium on Schwann cells.
(A) Viability of Schwann cells cultured in hUCMSC-conditioned medium or control medium (MTT assay). (B) The percentage of proliferating 
Schwann cells cultured in hUCMSC-conditioned medium and control medium for 48 hours (EdU/Hoechst immunostaining). (C) EdU/Hoechst 
double staining of Schwann cells treated with control medium and hUCMSC-conditioned medium for 48 hours. Scale bars: 200 µm. (D–F) NGF-β 
and BDNF protein levels in Schwann cells cultured in hUCMSC-conditioned medium or control medium for 48 hours. All data are expressed 
as the mean ± SD. Statistical analysis was performed using one-way analysis of variance followed by Tukey’s test. **P < 0.01, vs. blank medium. 
hUCMSCs: Human umbilical cord-derived mesenchymal stem cells; MTT: 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NGF: 
nerve growth factor; BDNF: brain-derived neurotrophic factor; h: hours.
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that hUCMSCs deposited extracellular matrix containing 
collagen I, laminin and fibronectin. Collagen, laminin and fi-
bronectin have been shown to play important roles in axonal 
development and growth. Our findings indicate that hUCM-
SC-derived extracellular matrix may contribute to the ability 
of these cells to promote peripheral nerve regeneration.

Bone marrow mesenchymal stem cells promote the pro-
liferation of Schwann cells and enhance neuronal survival 
in co-culture systems in vitro, likely by secreting soluble 
factors and extracellular matrix proteins (Wang et al., 2009). 
Different MSC sources have different secretory factor pro-
files. In this study, we observed that hUCMSC-conditioned 
medium increased Schwann cell viability and proliferation, 
enhanced NGF and BDNF protein expression in Schwann 
cells, and promoted neurite outgrowth from dorsal root gan-
glia. Schwann cells are the primary structural and functional 
cells in the peripheral nervous system and play a crucial role 
in peripheral nerve regeneration, and can secrete various 

neurotrophic factors to promote axon growth. Our results 
demonstrate that the paracrine effects of hUCMSCs main-
tain cell viability, and also promote growth factor secretion 
by Schwann cells. These effects synergistically enhance nerve 
regeneration.

In conclusion, hUCMSCs secrete various neurotrophic 
factors and deposit extracellular matrix proteins to modu-
late Schwann cell behavior and promote neurite outgrowth. 
Our findings suggest that paracrine mechanisms possibly 
underlie the effectiveness of hUCMSC-based cell therapy in 
the treatment of peripheral nerve injuries.
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Figure 4 Effect of hUCMSC-conditioned medium on neurite outgrowth from DRG explants.
(A) Morphology of DRG explants and staining for NF200 after 72-hour treatment with control medium, hUCMSC-conditioned medium or 50 
ng/mL NGF. Scale bars: 500 µm. The neurite outgrowth distance (B) and percentage of axon area/DRG area (C) of the DRG explants were mea-
sured and calculated under a fluorescence microscope. All data are expressed as the mean ± SD. Statistical analysis was performed using one-way 
analysis of variance followed by Tukey’s test. **P < 0.01, vs. blank medium. hUCMSCs: Human umbilical cord-derived mesenchymal stem cells; 
DRG: dorsal root ganglion; NF200: neurofilament 200; NGF: nerve growth factor. 
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