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Abstract

Percutaneous cochlear implantation (PCI) is a minimally invasive image-guided cochlear implant 

approach, where access to the cochlea is achieved by drilling a linear channel from the skull 

surface to the cochlea. The PCI approach requires pre- and intra-operative planning. Computation 

of a safe linear drilling trajectory is performed in a pre-operative CT. This trajectory is mapped to 

intra-operative space using the transformation matrix that registers the pre- and intra-operative 

CTs. However, the difference in orientation between the pre- and intra-operative CTs is too 

extreme to be recovered by standard, gradient descent based registration methods. Thus far, the 

registration has been initialized manually by an expert. In this work we present a method that 

aligns the scans completely automatically. We compared the performance of the automatic 

approach to the registration approach when an expert does the manual initialization on 11 pairs of 

scans. There is a maximum difference of 0.18 mm between the entry and target points of the 

trajectory mapped with expert initialization and the automatic registration method. This suggests 

that the automatic registration method is accurate enough to be used in a PCI surgery.
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I. Introduction

Cochlear implantation (CI) is a procedure in which an electrode array is surgically implanted 

in the cochlea to treat hearing loss. The electrode array, inserted into the cochlea via either a 

natural opening (the round window) or a drilled opening (cochleostomy), receives signals 

from an external device worn behind the ear. The external device is composed of a 

microphone, a sound processor and a signal transmitter component. The microphone senses 

sound signals. The sound processor selects and arranges sound sensed by the microphone. 

The signal transmitter converts the processed sound into electrical impulses and sends them 

to the internal receiver, which delivers the impulses to the electrodes in the implanted array. 

The electrodes send the electrical impulses to different regions of the auditory nerve. 

Conventionally, CIs require wide surgical excavation of the mastoid region of the temporal 

bone so that the surgeon can locate sensitive ear anatomy and achieve access to the cochlea. 

We have recently introduced a minimally invasive image-guided CI procedure referred to as 

percutaneous cochlear implantation (PCI) [1]. In PCI, access to the cochlea is achieved by 

drilling a linear channel from the outer part of the skull into the cochlea that passes within 

millimeters of, and avoids damage to, critical ear anatomy. The drilling trajectory is 

computed on a pre-operative CT scan prior to surgery using algorithms that we have 

developed to find a path that optimally preserves the safety of critical components of the ear 

including the ossicles, cochlea, external auditory canal, facial nerve, and chorda tympani [2]. 

The pre-operatively computed trajectory is guided by a customized microstereotactic frame, 

a device designed by our group that constrains the drill bit to follow the computed drilling 

trajectory to achieve safe access to the cochlea [3].

The PCI approach consists of pre-operative planning, intra-operative registration, drill guide 

fabrication, and drilling, which are summarized as follows: (1) Pre-operative planning: A 

CT scan of the patient is acquired prior to surgery. Ear anatomy is automatically identified 

and accurately segmented using algorithms we have previously validated and reported on 

[4]–[7]. These algorithms rely on models of the anatomy defined on an atlas image. The 

algorithms start by automatically registering the atlas image to the pre-operative image. An 

optimally safe drilling trajectory is computed based on the segmented ear anatomy [2]. (2) 

Intra-operative registration: On the day of surgery three fiducial markers are implanted on 

the region of the skull behind the patient’s ear – typically located at the inferior, posterior, 

and superior regions of the temporal bone. The marker consists of an anchor that is screwed 

into the bone, a metal sphere that serves as a fiducial marker, and a tubular extender that 

connects the two. Then, an intraoperative CT scan of the head with the markers in place is 

obtained using a flat panel volumetric computerized tomography (fpVCT) machine - the 

xCAT ENT mobile CT scanner (Xoran Technologies, Ann Arbor, MI) with voxel size of 0.3 

× 0.3 × 0.3 mm3. The pre- and intra-operative images are manually brought into rough 

alignment. The manual alignment can be performed either by manually translating and 

rotating the images or selecting three or more homologous points in each scan. 

Subsequently, the images are automatically registered using an intensity-based rigid-body 

registration method that uses mutual information (MI) as the similarity measure [8]. The 

marker centers are identified automatically [9]. Next, the pre-operatively computed drilling 

trajectory is transformed, using the obtained rigid body transformation, into the intra-
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operative image space, and thus into the same space as the identified fiducial markers. (3) 

Drill guide fabrication: The customized microstereotactic frame, which we refer to as a 

Microtable, is a patient specific drill guide that is manufactured from a slab of Ultem 

(Quadrant Engineering Plastic products, Reading, PA). Fabrication of the microtable 

necessitates the determination of the location and depth of four holes. Three of the holes 

couple to the spherical extenders mounted on the bone-implanted markers and the fourth 

hole (targeting hole) is determined such that it is collinear with the drilling trajectory. In 

addition, the lengths of the three legs that connect the tabletop of the Microtable to the 

markers need to be specified. The intra-operative component of our proprietary software 

generates the command file required to manufacture the Microtable using a CNC machine 

(Ameritech CNC, Broussard Enterprise, Inc., Santa Fe Springs, CA). The CNC machine 

takes approximately four minutes to fabricate one Microtable. (4) Drilling: After 

sterilization, the Microtable is mounted on the marker spheres, and a drill press is attached to 

the targeting hole. Finally, drilling is performed with a 1.5 mm diameter drill bit, which is 

guided along the pre-operatively planned drilling-trajectory through the targeting hole and 

perpendicular to the tabletop of the Microtable. Fig. 1 illustrates the Microtable mounted on 

a patient’s head with surgical drill attached.

The manual registration in the intra-operative registration step of the process is typically 

performed by selecting three or more homologous points in each scan. The transformation 

matrix that registers these points is used to roughly align the scans. This article presents a 

method to automate the process. It is important because: (1) manually initializing the 

registration process requires someone who is expert in both temporal bone ear anatomy and 

in using the planning software to be present at every surgery; and (2) the registration step is 

a time critical process because it must be completed before the next step of the intervention 

– creation of a customized microstereotactic frame – can be undertaken. Since this is a 

critical bottleneck, manual intervention is often stressful as extra time required to perform 

this step may prolong the surgical intervention.

Several properties of the intra-operative images obtained with the fpVCT complicate 

automation of this process. While using a fpVCT machine is desirable because it is portable 

and acquires images with relatively low radiation dose, the images acquired are noisy and 

suffer from severe intensity inhomogeneity. This diminishes the capture range of standard 

gradient descent-based registration techniques. Table I shows the capture ranges of the 

intensity-based registration for the image pairs used in this study. To compute the capture 

range the three translations and three rotation angles were modified in increments of 1mm 

and 1°, respectively, from the optimal solution until the error distance between the “entry” 

and “target” points along the drilling trajectory mapped using the optimal transformation 

and the new transformation is above 0.5 mm. The translation and rotation capture ranges are 

computed as the smallest of the three final translations and the three final rotation angles. As 

can be seen in the table, the capture range can be as small as 8 mm translation or 9° rotation. 

Furthermore, the position, orientation, and field of view (FOV) of the patient’s head in the 

intra-operative CT are unconventional and inconsistent. Thus, the variation in head 

orientation and position is much larger than the capture range of the image registration 

algorithm. The inconsistent FOV results in exclusion of regions of the patient’s head, which 
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prevents the use of orientation matching techniques such as alignment of the pre- and intra-

operative images by principal components analysis. Fig. 2 shows a typical pre-registered 

intra-operative image (shown in bluescale) overlaid with a pre-operative image (grayscale) 

in axial, coronal, and sagittal views.

We have recently presented a method for a coarse registration that is accurate enough to 

replace the manual initialization process currently used in the intra-operative registration 

step [10]. This method relies on extracting corresponding features from each image and 

computes a transformation that best aligns these features. Although this method leads to 

results that are as accurate as the manual initialization-based approach, it cannot be used in 

the clinical workflow because it still requires some manual intervention and is too slow to be 

used in the operating room. In this work, we present a completely automatic registration for 

pre- and intra-operative image registration. We have tested this approach on 11 pre- and 

intra-operative images. It is fast and leads to results that are as accurate as those achieved 

using the manual initialization-based approach. This suggests that the automatic approach 

we propose can be used for PCI surgery.

II. Methods

A. Data

In this study, we conducted experiments on 11 pairs of pre- and intra-operative CT scans. In 

the planning processes, we also use a pre-operative atlas scan and an intra-operative 

reference scan. The scans are acquired from several scanners—GE BrightSpeed (GE 

Healthcare, Milwaukee, WI), Philips Mx8000 IDT, Philips iCT, and Philips Brilliance 64 

(Philips Medical Systems, Eindhoven, the Netherlands) for pre-operative imaging, and a 

portable fpVCT machine (xCAT ENT, Xoran Technologies, Ann Arbor, MI) for intra-

operative imaging. Each pair of testing images consists of pre- and intra-operative CT scans 

of the same patient. Typical scan resolutions are 768 × 768 × 145 voxels with 0.2 mm × 0.2 

mm × 0.3 mm voxel size for pre-operative images and 700 × 700 × 360 voxels with 0.3 mm 

× 0.3 mm × 0.3 mm.

B. Overview

In this subsection we present an overview of the process we use to perform automatic 

registration of our pre- and intra-operative CTs. The approach will be detailed in following 

subsections. Our approach consists of two main steps. First, we perform a coarse registration 

using a scheme that is invariant to initial pose. Next, the registration is refined using a 

standard intensity-based registration. The coarse registration sub-routine is also a multistep 

process. Given a “target” pre-operative and “target” intra-operative CT that we wish to 

register, we first register the cortical surface, which is extracted using a level set 

segmentation scheme, of the target intra-operative image to the cortical surface of a 

reference volume, which we refer to as the intra-operative reference volume, using a pose 

invariant surface registration algorithm [11]. This reference volume is registered 

automatically offline to the target pre-operative CT. The final coarse registration between 

the pre- and intra-operative CTs is computed using the compound transformation. This 

multistep approach is used, rather than performing a surface registration between the target 
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pre- and intra-operative CTs directly because the surface registration algorithm is sensitive 

to differences in FOV, and the target pre-operative CT is typically limited in FOV to only 

the temporal bone region. Thus we have instead chosen to perform registration with a 

reference volume in which the entire cortical surface is included.

A flow chart of the pre- to intra-operative CT registration process is shown in Fig. 3. In this 

flow chart, a rectangle represents an operation on images, and a circle represents a 

transformation matrix when the text is in Greek letters and an image when the text is in 

Roman letters. P and I are the target pre- and intra-operative images we want to register. IR 

is the intra-operative reference image. IR is registered by hand once offline to a pre-

operative atlas CT A, and A is automatically registered to P in the pre-operative planning 

stage using standard intensity-based techniques. Thus, using the compound transformation, 

offline registration between IR and P is achieved automatically prior to surgery. The cortical 

surface of IR is extracted with a procedure described in Section II.C. The first step of the 

process that must be performed online intra-operatively is to apply the same surface 

extraction technique done offline on IR to I for cortical surface extraction of the target intra-

operative CT. Then, the cortical surface of I is rigidly registered to the cortical surface of IR 

via a feature-based registration method called spin-image registration described in Section 

II.D [11]. Then, to define the coarse registration between I to P, we combine the 

transformation matrices obtained from the spin-image registration and the offline intensity-

based registration, τa and τb. The final registration transformation τf is obtained by refining 

the coarse registration by performing a standard intensity-based rigid registration between 

the coarsely registered images.

C. Level Set Segmentation of the Cortical Surface

The cortical surface was chosen as the surface of interest for registration because it has 

surface features that are spatially distinct yet similar across subjects. To extract the 3D 

cortical surface in the intra-operative CT images, we use a level set segmentation method 

[12]. The level set evolves a surface using information from a high dimensional function. 

The high dimensional time-dependent function, usually defined as a signed distance map, is 

called the embedding function ϕ(x, t), and the zero level set Γ(x, t) = {ϕ(x, t) = 0} represents 

the evolving surface. The evolution of the surface in time is governed by

(1)

The term D(I) specifies the speed of evolution at each voxel in I, and the mean curvature ∇ • 

∇ϕ/|∇ϕ| is a regularizing term that constrains the evolving surface to be smooth. We 

designed the speed term that guides the evolution of the surface using the result obtained 

after applying a “sheetness” filter to I, described in the following subsection. The level set 

method also requires the initial embedding function ϕ(x, t = 0) to be defined. We initialize 

the embedding function automatically with a procedure described below. In the experiments 

we conducted, α is empirically set to 0.8.
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Sheetness Filter—As will be described below, our speed function and our procedure for 

initialization of the embedding function rely on voxel “sheetness” scores computed by 

applying a sheetness filter to I [13]. The sheetness filter uses the eigenvalues of the local 

Hessian matrix to compute a sheetness score that is high for voxels that are near centers of 

sheet-like structures and low otherwise. To compute this quantity, three ratios, Rsheet, Rblob, 

and Rnoise defined below, are computed. For a given voxel, x, |λ1| ≤ |λ2| ≤ |λ3| are the 

eigenvalues of the local Hessian matrix.

Sheet-like structures result in eignenvalue conditions |λ1| ≈ |λ2| ≈ 0, |λ3| ≫ 0, and the 

corresponding ratio (Rsheet) is zero for these structures. Blob-like structures result in 

eigenvalues conditions |λ1| ≈ |λ2| ≈ |λ3|, and the corresponding ration (Rblob) is zero for 

small aggregations of tissues. Then, the sheetness measure, S, which is defined as the 

maximum score over all scales σ at which the Hessian is computed, can be computed using 

the following equations:

(2)

(3)

(4)

and

(5)

The values of α, β and γ, as suggested in [13], are chosen to be 0.5, 0.5, and 500. Σ refers to 

the scales of the Hessian matrix, which are chosen to be {0.5, 1.0,…, 3 voxels}. At a given 

scale, if λ3 > 0, which occurs when the filter detects a dark structure with bright background, 

S(x) is set to 0 because we wish to detect bone, which is bright in CT. When λ3 ≤ 0, the 

equation is designed so that S(x) is high when a sheetlike structure is detected. The overall 

sheetness score S(x) ∈ [0, 1] will be high for bright sheetlike structures, which includes bone 

as well as some soft tissue structures. Fig. 4b shows the resulting sheetness score H of the 

image I in Fig. 4a.

Level Set Initialization—We initialize the embedding function as a signed distance map 

with zero level inside the external cortical surface and design our speed function to expand 

until reaching the cortex/skull interface. Since some parts of the cortical surface have little 
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contrast with surrounding structures, leaking of the level set could occur. To minimize the 

possibility of leakage, we have designed an approach in which we only propagate the 

evolving front for a fixed number of iterations (20 in our experiments). We initialize the 

evolving front such that its distance to the external cortical surface is approximately constant 

over its surface so that the required number of iterations is consistent. The procedure we use 

to identify this initialization surface consists of three main steps that are outlined in Fig. 5: 

(1) A threshold, Tbone, that optimally separates the bone from soft-tissue structures is 

computed based on the intensity histogram of the image using the Reddi’s method [14]. 

However, instead of trying to compute a value for Tbone using the histogram of the whole 

image, which generally includes several peaks and valleys, we limit the histogram to contain 

information only from voxels that correspond to bone and sheetlike soft tissue structures, 

creating a histogram with one distinct valley, and thus simplifying the problem. Specifically, 

we use the intensity histogram of voxels with: (a) a sheetness score greater than 0.5, which 

removes information from noisy voxels that do not belong to bright sheetlike structures such 

as bone and sharpens the histogram so that the valleys are more distinct; and (b) intensity 

greater than −100, which removes extraneous valleys that exist at lower intensities. Fig. 6 

shows the intensity histogram of voxels that satisfy conditions (a) and (b) (shown as red 

curve) and voxels that satisfy only (b) (shown as blue curve). (2) A coarse segmentation of 

the skull is performed by thresholding the image using Tbone. This results in a binary image 

that contains the skull, some sheetlike soft-tissue structures, and some metal-related 

artifacts. Then, we enlarge the boundaries of the skull by dilating the skull binary image 

with a spherical structuring element with a diameter of 6 mm. Next, to detect a set of 

initialization voxels that lie inside the cortical surface, we compute cm = 

argmaxc∈{C}(Σi∈cI(i)), where {C} is the set of all 26-connected components of the 

background of the skull binary image. Thus, cm is the background component of the binary 

image that, when used to mask I, results in the maximum sum of image intensities, and 

should correspond to the component that lies within the cortical surface. The contours of cm 

computed for a volume are shown in yellow in Fig. 7. Contours of all other components, 

{C} − cm, are shown in red in Fig. 7. The surface of cm is used to define the initial position 

of the evolving front. While the binary skull segmentation itself approximates the cortical 

surface well as seen in green in the figure, it alone is too noisy to identify and separate the 

cortical surface from other structures. Our technique is to apply an extreme dilation to that 

data. This removes noise and allows identification of a separable surface, the surface of cm, 

which is close to the cortical surface and can be used to initialize the level set segmentation.

Level Set Segmentation—The speed function is set to D = 1 − H, where H is the 

sheetness score image, which ranges in value from 0 to 1. Instead of defining the speed 

function using the intensity or intensity gradient type information, which would be very 

noisy in this application, we use this sheetness score based approach, which consistently 

assigns low speeds to voxels where there are bones. Thus, the speed function will expand the 

evolving surface until the zero level set reaches the cortex-bone interface where it will be 

slowed. Once the speed function is computed, the level set segmentation can be performed. 

An example segmentation result is shown in Fig. 8a, and the 3D surface representation of 

the segmentation result is shown in Fig. 8b.
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D. Cortical Surface Registration

Once the cortical surfaces of the target and reference intra-operative CT are extracted using 

the technique described in the previous section, the next step is registration of the target 

cortical surface to the reference cortical surface. We perform the registration using a feature-

based matching called the spin image method [11].

Spin Image Generation—The first step in this feature-based registration approach is 

feature extraction. For each vertex on the surface, features are measured in the form of a so-

called “spin image,” which captures the local shape of the 3D surface [11]. The spin image 

is a 2D histogram that describes the organization of neighboring vertices around a vertex in 

the surface. As shown in Fig. 9, given a vertex p on the surface with unit normal vector n̂ 

and a plane P passing through p and perpendicular to n̂, two distances are computed from 

each other vertex x to the given vertex p: (1) the signed distance in the n̂ direction, β(p, x) = 

n ̂ • (x − p) and (2) the distance perpendicular to n̂, α(p, x) = ‖x − (p + β(p, x)n̂)‖. These 

distances are then used in constructing the spin images, one for each vertex. A spin image is 

a 2D histogram with α on the x-axis and β on the y-axis. Each entry on the histogram 

represents the number of vertices in a neighborhood of the vertex for which the spin image 

is computed that belong to the entry.

Several parameter values are chosen for computing the spin image. These parameters are: 

(1) The size of the bins of the histogram. The bin size is determined as a multiple of the 

mesh resolution. The resolution of the surface mesh is the average length of the edges in the 

surface. The bin size affects how the vertex information is distributed in the spin image. (2) 

The height and width of the spin image. In our experiments, we have set the height and 

width of the spin image to be equal. The product of image width and bin size determines the 

support distance, which is the maximum distance a vertex can be from p and still contribute 

to p’s spin image. (3) The support angle is defined as the maximum allowable absolute angle 

difference between n̂ (the normal of p) and the normal of the contributing vertices. This is 

another mechanism for limiting contributing vertices to a local region. For this experiment 

the width and height of the spin image are set to 40, the bin size is set to half of the mesh 

resolution, and the support angle is set to 60°.

Establishing Spin Image Correspondence—To perform spin image registration, a 

correspondence between the vertices of the reference and target surfaces must first be 

established by matching the spin images associated with those vertices. To choose which 

reference volume vertices are included in the registration, at each vertex in the extracted 

reference surface, we compute a curvature measure and normalize it to range from 0 to 1 

(see Fig. 10) [15]. Only vertices on the reference surface with curvature value above 0.25 

are used for the spin image registration. We do this because the regions of the cortical 

surface where the curvature is low are those that are flat, and their associated spin images 

are similar to those of their neighboring vertices. Thus, in the registration process we only 

include vertices in high curvature regions that are more likely to result in distinctive spin 

images. Spin image computation for these vertices is performed once and offline. Similarly, 

we only use 30% of the vertices from the target surface, which are chosen as the vertices 

with the highest curvature scores. Limiting the number of vertices included in the 
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registration, and thus also limiting the number of spin images that need to be matched, 

improves the computation time of the subsequent search for correspondence.

Point correspondence is established by matching the spin image of each reference vertex to 

the spin image of the vertex in the target surface that maximizes a linear correlation-based 

similarity criterion Correspondences are constrained such that if C1 = (r1, t1) and C2 = (r2, 

t2) are two sets of corresponding points between the reference and target surfaces, ‖(α(r1, 

r2), β(r1, r2)) − (α(t1, t2), β(t1, t2))‖ < ε, i.e., the spin image coordinates from r1 to r2 on the 

reference surface are approximately equal to spin image coordinates from t1 to t2 on the 

target surface. This type of constraint is enforced between all sets of corresponding points to 

filter out point correspondences that do not obey rigid distance constraints. For more 

detailed description of the spin image matching process, please see [11]. Once 

correspondence is established, a rigid-body transformation that best aligns the corresponding 

points is computed using the method of least squares fitting [16]. Fig. 11 shows an example 

of three pairs of corresponding points and their associated spin images.

E. Validation

Each testing pre- and intra-operative image pair was registered using both the expert 

initialization-based and the automatic registration method we propose. We quantitatively 

validate our automatic approach by measuring the distance between the “entry” (a point 

along the typical surgical trajectory for PCI near critical ear anatomy) and “target” (cochlear 

implant insertion point) points computed using the automatic and manually initialized 

registration processes. Expert initialization has led to satisfactory results in the clinical trials 

we have been performing [3]. Thus, small errors between entry and target points will 

indicate that the automatic approach is equally effective.

III. Results

Table II shows the error distances between the target and entry points generated using the 

fully-automated vs. the manual initialization-based registration approach. The maximum 

distance between points using the two approaches is 0.1797 mm, and the average distances 

between entry and target points are 0.116 and 0.118 mm, respectively. These results suggest 

that the automatic registration we propose is accurate enough to perform a PCI surgery.

IV. Conclusions

PCI surgery requires the registration of the pre- and intra-operative images to map the pre-

operatively computed drilling trajectory into the intra-operative space. The field of view and 

the orientation of the patient’s head in the intra-operative CTs are inconsistent. These 

differences between the pre- and intra-operative CTs are too extreme to be recovered by 

standard, gradient descent-based registration methods. In this work, we presented a 

completely automatic method of pre- to intra-operative CT registration for PCI. This 

approach relies on a feature-based registration method that, to the best of our knowledge, 

has not been used by the medical imaging community. We found this technique to be 

efficient and accurate.
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To quantitatively measure performance, we compared the target and entry points of an 

automatically registered trajectory to a trajectory mapped using the manually-initialized 

approach, which has been used in ongoing clinical validation studies [3], and we have found 

a maximum error distance of 0.16 mm. However, since both approaches use the same 

intensity-based registration approach as the final optimization step and converge to similar 

results, it is likely that both approaches produce equally accurate results. We are currently 

evaluating the automatic procedure prospectively to confirm this.

We recently presented another method for automating the manual initialization process that 

also relies on surface registration [10]. In that method, surface registration is performed by 

matching features on the skull surface. The drawbacks of that method are that the skull 

surface extraction requires manual intervention and the time required to perform surface 

extraction is ~20 min. The advantage of the proposed approach is that it eliminates all 

manual intervention, and it only requires 0.75 min, which is fast enough to be integrated into 

the PCI workflow since the manual initialization-based approach we currently use typically 

requires more than 2 min.

One limitation of the proposed registration approach is that it is not invariant to scale. Future 

work will focus on addressing this problem.
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Fig. 1. 
Drill attached to the Microtable, which is mounted on the patient head.
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Fig. 2. 
Intra-operative (blue and white) overlaid on pre-operative (black and white) CT image 

shown in axial (a), coronal (b) and sagittal (c) view.
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Fig. 3. 
Registration flow chart.
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Fig. 4. 
Images used in the level set initialization process. (a) Sagittal view of intra-operative CT, (b) 

H, the sheetness filter output, and (c) voxels used to estimate Tbone.
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Fig. 5. 
Level set initialization process
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Fig. 6. 
Shown in blue is the intensity histogram of voxels that have an intensity value greater than 

−100. Shown in red is the intensity histogram of voxels that have both an intensity value 

greater −100 and sheetness score greater than 0.5.
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Fig. 7. 
Shown in green are the contours of the binary skull segmentation. Shown in yellow and red 

are the contours of cm and of {C}−cm.
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Fig. 8. 
Result of level set segmentation. Shown in (a) in white are the contours of the cortical 

surface level set segmentation result. In (b) is a 3D triangle mesh representation of the 

resulting cortical surface.
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Fig. 9. 
The distances α and β that are used for constructing the spin image at a vertex p.

Reda et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Reference intra-operative cortical surface. The color at each vertex encodes the curvature 

value.
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Fig. 11. 
Cortical surface of reference and target intra-operative CT images. Three correspondences 

and their associated spin images are shown.
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TABLE I

Capture ranges of pre- and intra-operative Image pairs

Translation Rotation

1 26 mm 16°

2 14 mm 11°

3 20 mm 17°

4 13 mm 10°

5 18 mm 17°

6 12 mm 14°

7 19 mm 19°

8 36 mm 15°

9 27 mm 16°

10 23 mm 18°

11 20 mm 18°

12 8 mm 9°
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TABLE II

Distance in millimeter from the “entry” and “target” points of the drilling trajectory that is mapped with expert 

initialized registration to the proposed automatic registration.

Entry
Point

Target
Point

1 0.030 0.029

2 0.169 0.180

3 0.102 0.094

4 0.157 0.161

5 0.124 0.123

6 0.127 0.129

7 0.091 0.093

8 0.108 0.123

9 0.153 0.148

10 0.096 0.095

11 0.117 0.117

Average 0.1159 0.1175
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