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Abstract

Understanding the collective behavior of complex systems from their basic components is a 

difficult yet fundamental problem in science. Existing model reduction techniques are either 

applicable under limited circumstances or produce “black boxes” disconnected from the 

microscopic physics. We propose a new approach by translating the model reduction problem for 

an arbitrary statistical model into a geometric problem of constructing a low-dimensional, 

submanifold approximation to a high-dimensional manifold. When models are overly complex, we 

use the observation that the model manifold is bounded with a hierarchy of widths and propose 

using the boundaries as submanifold approximations. We refer to this approach as the manifold 

boundary approximation method. We apply this method to several models, including a sum of 

exponentials, a dynamical systems model of protein signaling, and a generalized Ising model. By 

focusing on parameters rather than physical degrees of freedom, the approach unifies many other 

model reduction techniques, such as singular limits, equilibrium approximations, and the 

renormalization group, while expanding the domain of tractable models. The method produces a 

series of approximations that decrease the complexity of the model and reveal how microscopic 

parameters are systematically “compressed” into a few macroscopic degrees of freedom, 

effectively building a bridge between the microscopic and the macroscopic descriptions.

Models of complex systems are often built by combining several microscopic elements 

together. This constructionist approach to modeling is a powerful tool, finding widespread 

use in many fields, such as molecular dynamics [1–3], systems biology [4–6], climate [7,8], 

economics [9], and many others [10–12]. Nevertheless, it is not without its pitfalls, most of 

which arise as models grow in scale and complexity. Overly complex models can be 

problematic if they are computationally expensive, numerically unstable [13], or difficult to 

fit to data [14]. These problems, however, are only manifestations of a more fundamental 

issue. Specifically, although reductionism implies that the system behavior ultimately 

derives from the same fundamental laws as its basic components, this does not imply that 

the collective behavior can easily be understood in terms of these laws [15,16]. The 

collective behavior of the system is typically compressed into a few key parameter 

combinations while most other combinations remain irrelevant [17]. The system therefore 

exhibits novel behavior that emerges from the collective interactions of its microscopic 
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components. Extracting the emergent physical laws directly from the microscopic model, 

however, remains a nontrivial problem. A systematic method of simplifying complex 

models in a way that reveals the emergent laws governing the collective behavior would be a 

welcome tool to many fields.

The problem we consider here is to construct a simpler description of a system for a fixed 

set of predictions. A variety of model reduction techniques have been applied with 

consistent success, such as exploiting a separation of scales [18–20], clustering or lumping 

similar components into modules [21–23], or other methods to computationally construct a 

simple model with similar behavior [13,24]. Many methods have been developed by the 

control and chemical kinetics communities focused on dynamical systems [13,18–20,25], 

with recent applications to systems biology [24,26–29].

Existing methods are only partial solutions for two reasons. First, automatic methods often 

produce “black boxes” that do not explain the connection to the underlying physics or 

provide explanatory insights. Second, techniques that do give explanatory insights are only 

applicable to limited situations. These methods typically involve identifying some 

simplifying approximation, such as a mean-field approximation or expansion in a small 

parameter, and fail when such approximations cannot be identified. For example, the 

renormalization group (RG) is a powerful tool for producing a series of effective theories to 

describe a system’s behavior at different observation scales [30,31]; however, it requires that 

the system exhibit an emergent scale invariance or conformal symmetry.

As a concrete example, we consider a model of biological signaling by the epidermal growth 

factor receptor (EGFR) summarized in Fig. 3 [32,33]. This model is formulated as a 

dynamical system, consisting of 15 independent differential equation and 48 parameters 

describing the kinetics of several biochemical reactions, which can be fit by least squares to 

experimental data [32,33]. However, most parameter combinations are irrelevant for 

explaining model behavior, and parameter estimation leads to huge uncertainties in the 

inferred parameter values, a phenomenon known as sloppiness. Sloppiness has been 

observed in models of systems biology [32–34], insect flight [35], interatomic potentials 

[36], particle accelerators [37], and critical phenomena [17]. Ideally, one would like to 

remove the irrelevant parameters so that the parameters in the reduced model can be 

estimated and given a physical interpretation. The aforementioned techniques, however, 

cannot be applied to this nor to many other sloppy models.

There are several challenges to systematically simplifying complex models. First, it is often 

parameter combinations rather than individual parameters to which the model is insensitive. 

Typically, a model is sensitive to all parameters individually and the insensitivity only arises 

because of their compensatory nature. The relevant parameter combination can be a 

nonlinear combination of individual parameters. Consequently, the relevant combination 

often depends strongly on the parameter values, which are in turn very sensitive to noisy 

data. Even if irrelevant combinations could be identified, systematically removing the 

combination from the model is not straightforward—simply fixing a parameter combination 

does not really make the model conceptually simpler.
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To overcome these challenges, we use an information theoretical approach, applicable to 

diverse classes of models. Consider an arbitrary probabilistic model P(ξ|θ) for observing a 

vector of random variables ξ given a parameter vector θ. The range of physically allowed 

parameter values describe a family of related models. We seek a reduced model with fewer 

parameters that can approximate the full family described by the original. We anticipate 

such a reduction to exist for models with more parameters than “effective degrees of 

freedom” in their observations, a condition to be made more precise shortly. Qualitatively, 

we understand such models have more complexity in their description than in their 

predictions, which leads to large uncertainties in inferred parameter values.

The insensitivity of model predictions to changes in parameters is measured locally by an 

eigenvalue decomposition of the Fisher information matrix (FIM), gμν = −〈(∂2 log 

P)/(∂θμ∂θν)〉, where 〈·〉 means the expectation value. Sloppy models have eigenvalues 

exponentially distributed over many orders of magnitude, quantifying an extreme 

insensitivity to coordinated changes in the microscopic parameters and indicating a novel 

collective behavior that is largely independent of the underlying, microscopic physics [17].

We now employ a parameter-independent, geometric interpretation [14,38–40]. The FIM 

acts as a Riemannian metric on the space of probability distributions, so that the family 

described above is equivalent to a manifold of potential models. When a model has many 

more parameters than effective degrees of freedom in its emergent behavior, the manifold is 

bounded with a hierarchy of widths, qualitatively described as a hyper-ribbon [14,40]. 

Indeed, the widths of this hyper-ribbon are a measure of the number of effective degrees of 

freedom in the model. If the narrowest widths are sufficiently small, then it can be 

accurately approximated by a low-dimensional, reduced model, analogous to approximating 

a long, narrow ribbon by either a two-dimensional surface or a one-dimensional curve.

In this Letter we use the boundaries of the model manifold itself as approximations, which 

we refer to as the manifold boundary approximation method (MBAM). Given a statistical 

model P(ξ|θ) and set of parameters θ, we first calculate the FIM and identify the 

eigendirection with smallest eigenvalue, i.e., the least relevant parameter combination. 

Second, we numerically construct a geodesic from the initial parameters in this irrelevant 

direction until a boundary is identified as described in Refs. [14,40] and in the Supplemental 

Material [41]. Third, having found the boundary numerically, we identify it with a limiting 

approximation in the mathematical form of the model. Evaluating this limit removes one 

parameter combination from the model. Fourth, the simplified model is calibrated by fitting 

its behavior to that of the original model. This process is repeated until the model is 

sufficiently simple.

Consider an illustrative example: a model given by the sum of exponentials, 

, with parameters θ = (Aμ, λμ) ≥ 0 and predictions at time 

points tm, which are fit to data by least squares. This functional form appears in many 

contexts, such as radioactive decay, chemical kinetics, and statistical mechanics partition 

functions. Following the methods in Refs. [14,40], geodesics are calculated as paths through 

the parameter space as illustrated in Fig. 1. These paths are nonlinear and amenable only to 
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numerical approximation. However, as the geodesic paths approach the boundary of the 

model manifold, they straighten out to reveal a well-defined, physically relevant limiting 

case.

We identify the limiting case by monitoring the eigenvalues and eigenvectors of the FIM 

matrix along the geodesic path. Initially, the least sensitive combination involves nearly all 

of the individual parameters. As the boundary is approached, however, the smallest 

eigenvalue separates from the others and approaches zero. When it is well separated from 

the other eigenvalues, the components of that eigendirection have rotated to reveal the limit 

corresponding to the manifold boundary (θ2 → 0 in Fig. 1). Physically, this limit is 

interpreted to mean the time scale of one exponential is slower than that of the experiment. 

Analytically evaluating this limit results in a new model with one less parameter and a 

slightly different functional form. Using this model as a starting point, the process is 

repeated until all of the irrelevant parameters have been removed, one at a time, as 

conceptually illustrated in Fig. 2.

Iterating this process for the exponential example reveals that all boundaries of the model 

manifold correspond to physically simple limits. They include λμ → 0, so that Ae−λt → A as 

we have seen. Additionally, λμ → ∞, so that Ae−λt → 0 for t > 0, as well as Aμ, λμ → Aν, λν, 

so that two terms merge together. Repeated evaluation of these limits yields a reduced model 

of the form , where N′ < N and we have denoted the 

reduced parameters with a tilde. The number of terms in the reduced model will depend on 

the time points tm and the desired fidelity to the original model’s predictions.

Although the boundary is identified using a linear combination of parameters, evaluating the 

limit in the model can identify nonlinear combinations in the reduced model. For example, 

two parmeters may become infinite in such a way that only their ratio is retained in the final 

model. The combination depends on the functional form of the model so that the reduction is 

customized to the specific system (see examples in the Supplemental Material [41]). It 

appears to be a general feature that these limiting approximations have simple physical 

intepretations, such as well-separated time scales in the exponential model.

Because inferred parameters often have large uncertainties, knowing true parameters as a 

starting point for geodesics is often unrealistic. Large uncertainties imply that many different 

parameter values lead to the same model behavior, i.e., occupy a small region on the model 

manifold. This “compression” of large regions of parameter space into indistinguishable 

predictions is analogous to universal behavior in other systems, such as near critical points 

or phase transitions [17]. Model reduction reflects this property by compressing the 

parameter space along the geodesic into a few, relevant parameter combinations. Inspecting 

Fig. 1, all of the parameter values that lie along a geodesic path map to the same point on the 

boundary. Similarly, points on other nearby geodesic paths map to the same boundary but 

with slightly different parameter values. Thus, by construction, the large parameter 

uncertainties are compressed along the geodesic into the relevant parameters of the reduced 

model. Repeating the model reduction process with different initial parameter values but 

with similar model predictions therefore leads to the same reduced model. We explicitly 
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check this argument with the models considered here for several initial parameter values 

with statistically equivalent behaviors. We find the final reduced model is indeed robust to 

the starting point.

We now return to the complicated EGFR model. This model already employs the most 

“obvious” approximations, using Michaelis-Menten reactions and ignoring spatial variations 

in concentrations and flucutations in particle number. That is, the model already employs 

quasi-steady state approximations, mean-field approximations, and a type of thermodynamic 

limit. It also excludes many other details that a biological expert would consider irrelevant (a 

comprehensive model of the same system involves 322 chemical species and 211 reactions 

[43]). In spite of these approximations, most of the parameters in the model remain 

irrelevant when fit to data, as illustrated by the FIM eigenvalues in Fig. 3, but it is not 

immediately clear what else can be removed.

Applying the MBAM further simplifies the model from 48 to 12 parameters and from 15 to 

6 independent differential equations as summarized in Fig. 3. These approximations are 

more diverse than those in the exponential model, reflecting the increased complexity and 

lack of symmetry of this system, but are nevertheless all amenable to analytic evaluation and 

physical interpretation. They include limits in which reactions equilibrate, turn off, saturate, 

or never saturate, as well as several singular limits. They also include more subtle limits in 

which reaction rates become small while their downstream effects become large in a 

balanced way. The FIM eigenvalues reveal that the simplifications have removed the 

irrelevant parameters while retaining the predictive flexibility of the original model. Indeed, 

the lack of small eigenvalues indicates that all of the parameters can be connected to some 

aspect of the system’s emergent behavior, as we discuss below.

As a final example, we consider a Boltzmann distribution of a one-dimensional (for 

simplicity) chain of Ising spins. This model typically is written as a Hamiltonian (H = 

−J∑μsμsμ+1 − h∑μsμ) with two parameters (J and h). These parameters are the relevant 

combinations under a RG coarsening and therefore describe the emergent physics. However, 

they are a poor model of the microscopic correlations among the spins sμ. We therefore 

generalize this model as H = −∑μJμsμsμ+1 to reflect a more flexible microscopic formulation.

The manifold boundaries of this model are given by Jμ → ±∞ (see Supplemental Material 

[41]). These limits are again both physically intuitive and simple to evaluate, corresponding 

to the scenario of either perfectively correlated or anticorrelated nearest neighbor spins 

(ferromagnetic or antiferromagnetic order, respectively). These limits remove a spin degree 

of freedom from the model and couple next-nearest neighbors with an effective interaction. 

Removing all of the odd spins corresponds to predictions on long length scales and can be 

accurately described by the effective Hamiltonian of the form . 

This model corresponds to a hypercorner of the original manifold in which half of the 

coupling constants become infinite, and is equivalent to a single iteration of a block-spin 

renormalization procedure. This basic result generalizes to arbitrary dimension (allowing us 

to recover the typical criticality described by RG in higher dimensions). Similar results also 

hold for alternate microscopic versions of the model. For example, a microscopic 
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Hamiltonian given by H = −∑μαJαsμsμ+α yields simplifying limits that remove the high-

frequency spin configurations as in the momentum-space RG. Unlike RG, however, the 

MBAM is not limited to systems with self-similar behavior.

The connection to the renormalization group provides a motivation for interpreting reduced 

models generally. RG makes systematic the removal of short distance degrees of freedom 

within the context of field theories and solidifies the concept of effective field theories. 

Similarly, the MBAM is a technique for constructing effective models in more general 

contexts. Returning to the EGFR model, we see that the simplified model treats C3G as 

directly influencing Erk concentration. This interaction is not direct in the reductionist sense, 

but is mediated by a chain of reactions (C3G → Rap1 → BRaf → Mek → Erk) described by 

eight parameters. However, the simplified model has a single “renormalized” parameter 

describing the effective interaction. We can trace the macroscopic parameter ϕ back to its 

microscopic origin through the limiting approximations

(1)

Notice that ϕ condenses the many microscopic parameters into a single relevant, nonlinear 

combination. Each microscopic parameter can be important to the system’s emergent 

behavior, but only through its effect on ϕ. The simplified model, therefore, contains real 

biological insights and Eq. (1) serves as the basis for understanding and predicting the 

functional effects of microscopic perturbations, such as mutations or drug therapies, on the 

system’s macroscopic behavior.

The MBAM method is different from other reduction techniques in its aim to remove 

parameters rather than physical degrees of freedom. These are not unrelated since 

parameters generally codify the relationship among physical degrees of freedom. There are 

three advantages to this abstraction. First, it allows simplification of relationships among 

physical degrees of freedom even if they cannot themselves be removed, e.g., removing 

edges from the network in Fig. 3. Second, it allows the use of information geometry as a 

unified language for exploring model families regardless of the actual physics. Finally, 

approximations among physical degrees of freedom can usually be interpreted as a limiting 

case of a parameter, so there is no loss in generality. Consequently, most simplifying 

approximations that are specific to a particular model class are naturally subsumed as special 

cases, as we have already seen for the renormalization group. Similarly, we can recover in 

other instances mean-field approximations, steady-state approximations, continuum limits, 

thermodynamic limits, etc. The MBAM is therefore not only an alternative method of model 

reduction, but a unifying and generalizing principle of which many existing methods are 

special cases.

There are three conditions that a statistical model must satisfy for this method to be 

applicable. First, it must be a parametric model with a FIM. Second, we require that the 

model be sloppy. Models that are not sloppy will not have a thin manifold and cannot be 

easily approximated. This essentially restricts the information content of the model 

predictions; i.e., models must have fewer effective degrees of freedom in the predictions 
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than the parameters. Third, it is necessary that the model manifold be bounded with a 

hierarchy of boundaries. For example, the manifold for fitting time series on 0 < t < 1 to 

polynomials y(t) = ∑μθμtμ subject to the constraint  is an ellipsoid with a hierarchy 

of widths but without a hierarchy of edges; i.e., there are no corners.

Although we cannot give sufficient conditions for this hierarchical structure, there is 

considerable evidence that it is shared by many models. Complex models are often 

constructed by combining many simple physical principles. These physical principles 

typically have limiting cases: chemical reactions saturate, equilibrate, or turn off; magnetic 

moments correlate or anticorrelate; time scales separate; etc. Combining these principles 

into a complex model then leads naturally to the desired hierarchical structure. The general 

use of limiting approximations, which we now understand to be special cases of manifold 

boundaries, is strong evidence for the universality of this hierarchical structure. More 

broadly, physics is made up of a hierarchy of theories, many of which are understood as 

limiting cases of more microscopic theories, e.g., thermodynamics as a limit of statistical 

mechanics or Newtonian mechanics as a limit of quantum mechanics. The relationship 

between these microscopic or macroscopic theories is the same as that between the 

microscopic or macroscopic models we have considered here.

In this Letter we have used information geometry to understand how model behavior is 

compressed into a few effective degrees of freedom. We have seen that manifold boundaries 

correspond to limiting approximations that can be identified and evaluated to systematically 

remove irrelevant parameter combinations from complex models. This approach makes 

minimal assumptions and unifies many other existing model reduction techniques. It goes 

beyond available methods, however, and allows the simplification of more general models. 

As the tension between microscopic complexity and emergent simplicity is a central theme 

in most all of science, and complex systems research specifically, this approach will be 

useful for extracting effective models of emergent behavior in many fields and for 

understanding how microscopic details are compressed into macroscopic parameters.
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FIG. 1. 
Identifying the boundary limit. For the exponential model in the text with eight parameters, 

initially, the least sensitive parameter combination involves many parameters and is difficult 

to remove (inset, top left). By following a geodesic to the manifold boundary (solid line), the 

combination rotates to reveal a limiting behavior; here, only one parameter (an exponential 

rate) becomes zero (inset, bottom left). As the boundary is approached, one eigenvalue of 

the FIM approaches zero (inset, right). Once the smallest eigenvalue becomes well separated 

from the other eigenvalues, the limiting behavior becomes apparent. This limit is largely 

independent of the starting point; nearby parameter values all map to the same simplified 

model (dashed lines).
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FIG. 2. 
Approximating the manifold by its boundary. A high-dimensional, bounded manifold may 

be approximated by a low-dimensional manifold. Parameter degrees of freedom are 

systematically removed, one at a time, by approximating the full manifold by its boundary. 

After several approximations, the reduced model is represented by a hypercorner of the 

original manifold that preserves most of the original model’s behavior.
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FIG. 3. 
Original and reduced EGFR models. The interactions of the EGFR signaling pathway 

[32,33] are summarized in the leftmost network. Solid circles are chemical species for which 

the experimental data were available to fit. Manifold boundaries reduce the model to a form 

(right) capable of fitting the same data and making the same predictions as in Refs. [32,33]. 

The FIM eigenvalues (center) indicate that the simplified model has removed the irrelevant 

parameters identified as eigenvalues less than 1 (dotted line) while retaining the original 

model’s predictive power.
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