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Abstract

Integrative genomics offers a promising approach to more powerful genetic association studies. 

The hope is that combining outcome and genotype data with other types of genomic information 

can lead to more powerful SNP detection. We present a new association test based on a statistical 

model that explicitly assumes that genetic variations affect the outcome through perturbing gene 

expression levels. It is shown analytically that the proposed approach can have more power to 

detect SNPs that are associated with the outcome through transcriptional regulation, compared to 

tests using the outcome and genotype data alone, and simulations show that our method is 

relatively robust to misspecification. We also provide a strategy for applying our approach to high-

dimensional genomic data. We use this strategy to identify a potentially new association between a 

SNP and a yeast cell’s response to the natural product tomatidine, which standard association 

analysis did not detect.
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1 Introduction

Missing heritability is a major issue in genetic association studies and refers to the fact that 

for many traits, only a small proportion of their variance in the population can be explained 

by the genetic variants identified so far (Manolio et al., 2009; Visscher and Montgomery, 

2009; Bansal et al., 2010). There are many possible causes, but recent experimental work by 
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Bloom et al. (2013) suggests that missing additive heritability may arise partly because there 

is insufficient statistical power to detect SNPs with small but nonzero effects.

Our interest in this problem was motivated by a study of the genetic basis of drug response. 

One major goal of personalized medicine is to target treatments to those patients who will 

see the greatest benefits. To begin to understand the mechanisms of patient-specific drug 

response, Perlstein et al. (2007) collected expression and genotype data on yeast segregants 

before exposing them to a variety of small molecules. Using standard methods they 

identified several genetic variants responsible for segregant-specific responses to some of 

the drugs, but noted that identifying additional functional polymorphisms was a major area 

of future interest. We were interested in incorporating the expression information into 

association testing in order to detect variants associated with yeast cell drug response that 

were missed by standard analyses.

Integrative genomics, this joint analysis of outcome and genotype data with additional types 

of genomic information, offers a promising general approach to more powerful association 

studies (Chen et al., 2008; Emilsson et al., 2008). Most existing integration methods use the 

additional information to filter the SNPs, for example by removing SNPs that are not 

significantly associated with outcome-associated genes. The power gain then comes from 

the reduced multiple testing burden (Ware et al., 2013). While sensible, the statistical 

properties of this approach are unclear because it requires a number of ad-hoc decisions, 

such as the thresholds for deciding which genes are associated with the outcome and with 

SNPs. Furthermore, it is unclear how to control for multiple comparisons or false discovery 

rates when the filtering steps are performed on the same set of samples.

In this paper we propose a new method for integrating expression data into genetic 

association studies. Intuitively, expression data should provide more information about 

SNPs that are associated with the outcome by regulating the transcription of outcome-

associated genes. We indeed show that compared to standard non-integrative methods, our 

approach can have increased power to detect just these SNPs, which we will refer to as 

outcome-associated expression SNPs, or o-eSNPs. Furthermore, we use standard estimating 

equation theory to provide a valid inferential procedure. When a particular set of genes is of 

interest, our method can be applied to detect o-eSNPs that are associated with the outcome 

through genes in that set. For a more unbiased discovery procedure, our method can also be 

applied genome-wide by considering one gene at a time, where to reduce the multiple testing 

burden imposed by the huge number of pairwise tests we can restrict ourselves to testing 

only those SNPs located cis to each gene.

In Section 2 we specify our procedure, discuss its assumptions, describe its estimation and 

inference, and present strategies for analyzing high-dimensional genomic data, where the 

number of genes may exceed the sample size. In Section 3 we explain why our method can 

have more power to detect o-eSNPs. In simulations in Section 4, we explore its performance 

under model misspecification, in Section 5 we apply our method to the yeast drug response 

experiment of Perlstein et al. (2007), and the paper ends with a discussion in Section 6.
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2 Integrative analysis

2.1 Method

For the ith subject, i = 1, …, n, let Yi be the outcome of interest, Gij, j = 1, …, p be the 

expression of the jth transcript, and Xil, l = 1, …, r be additional non-genomic covariates, 

such as clinical or environmental measurements or principal components derived from the 

genotype data, to control for population stratification (Price et al., 2006). Also let Gi = (Gi1, 

…, Gip)T and Xi = (Xi1, …, Xir)T.

We focus on testing the association between the outcome and a set of SNPs Sik, k ∈ , 

where Sik is the number of minor alleles at the kth SNP and we assume that | |< n. Letting | 

| = 1 corresponds to testing one SNP at a time, which is standard practice in genome-wide 

association studies. We also allow | | > 1 in order to test sets of SNP, such as those located 

near the same transcript or belonging to the same pathway. Letting Si = (Sik, k ∈ )T, we 

posit that in general the relationship between Yi, Gi, Xi, and Si can be modeled as

(1)

(2)

where g is a link function and εi is a random error term.

The outcome model (1) describes the effect of Gi and Xi on Yi, where αG, αX and αS are the 

regression coefficients of the main effects of transcript expressions, covariates and SNPs, 

and AGX and ASX represent the effects of interactions. The transcript model (2) describes the 

regulation of Gi by Si and Xi, where βS and βX are the regression coefficients of the main 

effects of the SNPs and covariates and BSX and BXX represent interaction effects. Since Gi 

may depend on both Si and Xi, including the  term in (1) requires including the 

 term in (2). For example, if Gi = γint +ΓSSi + ΓXXi + εi, then AGX ≠ 0 implies 

that BXX ≠ 0. The proposed models are quite general by specifying gene-and SNP-

environment interactions, but additional terms, such as gene-gene interactions, could also be 

added, or the interaction terms could be dropped to reduce the number of parameters.

We propose the following procedure to test the association between Si and Yi:

1. Estimate α̂G and ÂGX by fitting (1) under the assumptions that αS = 0 and ASX = 0.

2. Use these estimates in (2) to estimate β̂
S and B̂

SX.

3. Use a Wald test based on these estimates to test β̂
S = 0 and BSX = 0.

Under the null hypothesis of no association, αS, ASX, βS, and BSX are all zero, so our 

procedure gives a valid test for association between Si and Yi. We are interested in the 

particular alternative that Si is associated with Yi through regulation of the expression of Gi 

(Si are o-eSNPs). In this case, βS is nonzero and BSX may be as well. If we had 
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measurements on gene methylation, we could also similarly include these measurements in 

models (1) and (2) to identify SNPs that affect Yi through methylation.

Our framework is similar to a mediation analysis model (Baron and Kenny, 1986; Hayes, 

2009; VanderWeele and Vansteelandt, 2010), with two major differences. First, in contrast 

to mediation analysis, we are not interested in assigning causal interpretations to any of our 

parameters, and instead are concerned solely with increasing the power of association 

testing. Second, to our knowledge our approach is novel in its use of unknown parameters in 

the outcome of the transcript model (2) to reduce p transcript expression levels to a scalar 

summary. Most mediation models only consider a single mediator, and those that allow 

more than one require estimating the indirect effect of Sik on each transcript separately 

(Preacher and Hayes, 2008; VanderWeele and Vansteelandt, 2014). Models used in the 

analysis of expression quantitative trait loci (Brem et al., 2002; Morley et al., 2004; Cai et 

al., 2013) also study the effect of genotype on every measured transcript. Our approach is 

instead only concerned with a particular scalar function of the transcripts. It requires 

estimating fewer parameters, and does not require modeling the individual transcript-SNP 

associations.

2.2 Assumptions

The good performance of our procedure requires two assumptions. First, there can be no 

unmeasured covariates that confound either the effect of the SNPs on the outcome, or the 

effect of the transcripts on the outcome. This is in contrast to standard analysis, which only 

requires adjusting for confounders of the SNP-outcome association. We study violations of 

this assumption in Example 4 of Section 4, where we find that at least in our simulation 

settings, the type I error is still maintained and in some cases our integrative analysis still 

has improved power compared to standard analysis.

Second, our method works best when there is no direct effect of the SNPs on the outcome, 

such that the SNPs act only through regulating gene expression. Indeed, Kenny and Judd 

(2014) recently noted that in the absence of a direct effect, testing the indirect effect in a 

mediation analysis can be dramatically more powerful than testing the total effect. They 

considered a single mediator in a simulation study and gave a heuristic explanation of the 

phenomenon. In Section 3 we show analytically, for multiple mediators, that our test can be 

more powerful than standard analysis. Furthermore, even when a direct effect exists (αS ≠ 

0), we show in Example 2 of Section 4 and Web Appendix A that our test can sometimes 

still have increased power.

2.3 Estimation and inference

Let θ = (αint, αG, αX, AGX) and τ = (βint, βS, βX, BSX, BXX) be vectors of the unknown 

parameters, let θ̂ and τ̂ denote their estimates, and let μi(θ) and ηi(τ) be the mean functions 

of (1) and (2), respectively. When the dimensions of Gi and Xi are small enough, we can 

simultaneously fit models (1) and (2) by solving the estimating equation
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Step 1 of our procedure obtains θ̂ and Step 2 obtains τ̂, and it is easy to see that Un(θ̂, τ̂) = 0. 

Standard generalized estimating equation theory (Diggle et al., 2013) then gives that

where ∂Un/∂(θ, τ) → J(θ, τ) and , and we use this 

distribution to implement the Wald test in Step 3 of our procedure. The Jacobian J can be 

estimated by evaluating ∂Un=∂(θ, τ) at θ̂ and τ̂ and V(θ, τ) can be estimated by the sample 

covariance matrix of the ui(θ̂, τ̂).

It is worth considering the special case of case-control sampling, which is common in 

genome-wide association studies of binary outcomes Yi. In this setting, fitting a logistic 

regression in the outcome model will still give valid estimates and inference (Prentice and 

Pyke, 1979), but we must modify the estimating equations for the transcript model. We 

adopt the weighting method of Monsees et al. (2009): if P is the prevalence of the outcome, 

n1 is the number of cases, n0 is the number of controls, and n = n1 + n0, we solve

where here g−1(x) = 1=(1 + e−x) is the canonical link function for logistic regression. One 

disadvantage of this approach is that we must have a priori knowledge of the prevalence P, 

but good estimates are available for many well-studied diseases. Another disadvantage is 

that this probability weighting method can give parameter estimates with relative large 

variances (Monsees et al., 2009). We may be able to improve our results by using secondary 

phenotype analysis methods proposed by Lin and Zeng (2009) and He et al. (2012).

2.4 Strategies for high dimensional data

In most genomic applications the number of transcripts exceeds the sample size, so the 

estimating equations do not have a unique solution. This high-dimensional transcript issue is 

unique to our method and is a not a problem for non-integrative analyses. If the mechanism 

underlying the outcome is known to proceed via a certain pathway, or a certain pathway is 

of particular interest, one approach is to perform integrative analysis using only the 

transcripts in the pathway. We refer to this as the pathway approach.

On the other hand, we may want a more unbiased o-eSNP detection procedure. An 

alternative approach to reducing dimensionality is to fit our integrative model one transcript 
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at a time. This type of marginal analysis is popular in gene expression profiling experiments. 

We refer to this as the pairwise approach, because it quantifies the association between the 

outcome and each transcript-SNP or transcript-SNP set pair. Because of the complicated 

dependencies between these tests, we adjust for multiple comparisons using the Bonferroni 

correction. However, this may be too conservative, especially when we conduct all possible 

pairwise tests. One way to reduce the number of tests is to consider only pairs that are in cis. 

This is sensible because cis-SNPs are likely to function by regulating transcription and so 

are exactly the type of SNPs our method is designed to detect.

In general, the two assumptions discussed in Section 2.2 that are required by our integrative 

method may not hold when using these high-dimensional approaches. First, it is likely that 

some confounders of the transcript-outcome association have not been accounted for, 

because there are probably many genes that affect both the outcome and the genes in the 

model, but which themselves have not been included in the model. In addition, it is likely 

that there are direct effects between the SNP or SNP set and the outcome, for example 

through the confounding genes. However, in simulations and in Web Appendix A we show 

that our method can still perform well. In particular, we study the performance of the 

pairwise approach in simulations in Example 6 of Section 4.

3 More powerful o-eSNP detection

We show analytically that our procedure can have more power than standard analysis for 

detecting o-eSNPs. For simplicity we consider a single SNP, no other covariates, and scalar 

continuous Yi under the ordinary linear model, though similar calculations can be performed 

for generalized linear models. We also assume that Yi, Gi, and Si have been centered to mean 

zero, so that the intercept terms disappear. Finally, we let αS = 0 and ASX = 0, so model (1) 

becomes  and model (2) becomes , where 

and  are independent of Gi, Si, and each other. We compare our integrative 

analysis to the usual approach of directly regressing Yi on Si according to 

. If our integrative model is true, , and the null 

hypothesis of no association between Si and Yi is equivalent to βS = 0 in the integrative 

model and  in the usual linear model.

Let β̂
S be the estimate of βS from our integrative analysis, and let  be the estimate of 

obtained from linear regression. Since both estimates are asymptotically unbiased and 

normal, to show that the integrative method has greater power we must show that 

. It is easy to see that . Next let G = (G1, …, 

Gn)T and S = (S1, …, Sn)T. Then
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where α̂
S is the estimate of αS from fitting the outcome model, ΣSG = E(STG), and ΣGG = 

E(GTG). Since the two normal distributions in the last line are independent,

where ΣGS = E(GTS), so  when . For 

example, when the genes are independent this condition reduces to .

In other words, we gain the most power if the Gi are weakly correlated with Si. This is 

sensible, because otherwise the expression data would add little additional information. In 

the extreme case where they are perfectly correlated, our integrative analysis would be no 

different from a standard analysis. On the other hand, while the integrative approach has 

more relative power for weak correlations, its absolute power can be low if the correlations 

are too low, as in the extreme case where cor (Si, Gij) = 0 we also have βS = 0. In the ideal 

setting, the correlations are weak but βS is still large, which is only possible when Gi is 

highly associated with Yi so that αG is large.

So far we have assumed that the SNP functions entirely through regulating gene expression. 

In Web Appendix A we show that our procedure can sometimes also have greater power 

than standard analysis for detecting SNPs that also function through non-regulatory 

mechanisms. One reviewer raised the question of whether accounting for these direct effects 

might improve the power of our integrative approach. We also analytically and numerically 

compare two such methods. One turns out to have the same power as standard analysis. The 

other can be more powerful than our procedure for o-eSNPs with large direct effects but is 

always worse for detecting those without direct effects.

4 Model misspecification and simulations

4.1 Types of misspecification

Our integrative approach requires us to model the relationship between expression and 

genotype and expression and the outcome. This is contrast to standard analysis methods, 

which only require specifying the outcome-genotype relationship. Here we study different 

model specifications in six simulated examples.

Briefly, we constructed Example 1 so that both the integrative and the standard models were 

correctly specified. We constructed Examples 2 through 4 so that only the standard analysis 

model remained valid. Specifically, Example 2 allowed a direct effect of a SNP on the 

outcome not mediated through transcriptional regulation, Example 3 allowed for 

measurement error in the gene expression measurements, and Example 4 omitted some 

important genes from the integrative analysis and included unimportant ones. Examples 2 

and 4 illustrate the consequences of violating the assumptions required by our method, 

discussed in Section 2.2. In Example 5 we misspecified both the integrative and standard 
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models by allowing interaction terms, and in Example 6 we considered high-dimensional 

SNPs and genes. Details are given below.

4.2 Analysis methods

For all data generating mechanisms, when the number of genes p was small we implement 

our integrative procedure using the linear univariate integrative model

for each of the q SNPs. When p > n we used this model in the pairwise fashion discussed in 

Section 2.4. We compared to the standard marginal generalized linear model

specifically the linear model for continuous Yi and the logistic model for binary Yi.

As a comparison, we also considered what we refer to as the overlap method: we first 

identified genes associated with the outcome, and then for each SNP we identified genes 

associated with that SNP. In both cases we set the significance threshold using false 

discovery rate control (Benjamini and Hochberg, 1995) at the 5% level. We assessed the 

significance of each SNP by calculating the p-value for the overlap between the two gene 

sets using Fisher’s exact test. To calculate the gene-SNP associations under case-control 

sampling we used the weighting scheme described in Section 2.3. Similar overlap 

procedures have been proposed in other integrative genomics applications (He et al., 2013).

4.3 Simulation settings

For each setting we generated continuous Yi according to Yi = mi(θ) + εi for some mean 

function mi(θ), where εi ~ N (0, 4). We generated binary Yi according to logit P(Y1 = 1 | Gi, 

Si, Xi) = −αint + mi(θ), where αint was such that marginal prevalence was around 31%. In 

Examples 1–5 we generated n = 200 samples for the continuous outcome and n1 = 100 cases 

and n0 = 100 controls for the binary outcome, and we doubled these in Example 6. We 

studied the power and type I error of the the integrative, standard, and overlap analysis 

methods mentioned above, averaged over 250 simulations.

Example 1—We independently generated 100 SNPs under Hardy-Weinberg equilibrium 

using additive coding (0, 1, or 2), with minor allele frequencies of 10%, and r = 2 clinical 

covariates from standard normals. We then generated p = 10 transcripts according to 

, where ΓS and ΓX were 100 × p and r × p coefficient matrices, 

respectively, and εi ~ N (0, 4Σ). We set Σ equal to the sample correlation matrix of 10 

observations drawn from a p-dimensional standard normal with independent components. 

We independently set each entry of ΓS and ΓX to zero with probability 0.5 and generated the 
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nonzero entries uniformly from [−1, 0.05] ∪ [0.05, 1]. We let  and 

αint = −3. We independently generated the components of αG uniformly between [−0.7, 

−0.05] ∪ [0.05, 0.7], and the components of αX from a standard normal. Finally we 

generated a single additional SNP, for a total of q = 101, to be unassociated with Yi, by 

adding a row to ΓS that was drawn from a standard normal and then made orthogonal to αG.

Example 2—We followed Example 1 but let  and αint = 

−5.8. We let each entry of αS have magnitude 0.75 and the same sign as the corresponding 

entry of βS =ΓSαG, so that the total effect of each SNP was always stronger than its indirect 

effect through the transcripts.

Example 3—We followed Example 1 but assumed that instead of observing Gi we only 

observed Gi + εi, where the measurement error εi was a p-dimensional mean-zero normal 

with a covariance matrix whose jkth entry equaled 2 · 0.5|j−k|.

Example 4—We followed Example 1 but simulated 15 instead of 10 genes. We added 

rows to ΓS and ΓX to make them q × 15 and r × 15 coefficient matrices, respectively. We set 

the covariance matrix of the error term εi equal to 4 times the sample correlation matrix of 

10 observations drawn from a 15-dimensional standard normal with independent 

components. We then replaced the upper 10 × 10 block of this covariance matrix by the Σ 

used in Example 1. We simulated the Yi using the first 10 genes, as in Example 1, but in our 

analysis we used only the first 5 and the last 5 genes. In other words, we misspecified Gi 

with five false negatives and five false positives. Because the Gi were all correlated, this 

example simulates the presence of unmeasured confounders of the transcript-outcome 

association.

Example 5—We followed in Example 1 but let 

 and αint = −4.3. To 

generate AGS and ASX we randomly set each entry to zero with 10% probability, and then 

sampled the nonzero entries uniformly from [−0.5, −0.05]∪[0.05, 0.5]. To generate AGX we 

set entries to zero with 30% probability.

Example 6—We generated q = 10, 000 SNPs and two cis-genes for each SNP by 

multiplying the number of minor alleles by coefficients generated from standard normals, 

for a total of p = 20, 000 genes. To each gene we added normally distributed error terms 

such that the covariance between the jth and kth genes was 16 · 0.5|j−k|. We generated Xi as in 

Example 1 and let  and αint = 16. We randomly set each of the 

components of αG to be zero with 99.9% probability, and we drew the nonzero entries 

uniformly from [−5, −1] ∪ [1, 5]. This resulted in 14 SNPs associated with Yi. We 

independently generated the components of αX from a standard normal. We applied our 

pairwise integrative analysis to each SNP and its cis genes. We used a Bonferroni 

adjustment to correct for multiple testing in both the integrative and standard analyses. We 

did not implement the overlap method because it requires regressing each of the 20,000 

genes on each of the 10,000 SNPS, and would have been computationally cumbersome.
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4.4 Results

Table 1 reports the type I errors of testing the SNP that was unassociated with Yi. The 

integrative and standard analyses both maintained the type I error at the nominal 0.05 level, 

for all of the model misspecifications. The overlap method was extremely conservative.

Figures 1 and 2 illustrate the average power curves for identifying the other 100 SNPs that 

we simulated to be associated with Yi. In each example, the overlap procedure had almost no 

power to detect any of the SNPs. This was because the gene-SNP associations were usually 

too weak to detect, and when they were detected, the overlap between the outcome-

associated and the SNP-associated genes was not significant because there were only 10 

genes. The overlap method is thus more suitable for high-dimensional expression data, but 

was too computationally prohibitive to implement in Example 6. In the ideal setting of 

Example 1, integration indeed was more powerful than standard analysis.

Our method was not always preferable in Example 2, which included direct effects that our 

integrative model could not detect. When the magnitude of the direct effect exceeded the 

magnitude of the indirect effect, standard analysis had more power. However, when the βS 

were large enough, our integrative procedure was still more effective. We discuss the 

consequences of direct effects in greater detail in Web Appendix A.

The effect of the measurement error in Example 3 was to reduce the power gain of 

integration over standard analysis. For example, with binary outcomes the power of 

integration to detect a SNP with βS ≈ 1.5 decreased from 70% to 60%. However, this was 

still higher than the 40% power of the standard logistic regression of Yi on Si. There were no 

additional negative consequences of measurement error, most likely because we assumed a 

measurement error model that was linear in the true covariates Gi. In this case the error 

could be absorbed by the intercepts and the random error terms of the integrative outcome 

and transcript models, with reduced power as the only downside. Nonlinear measurement 

error could have more complicated effects, similar to those studied in Example 5.

It is more difficult to characterize the consequences of the misspecified gene set in Example 

4. The effect of including genes not associated with the outcome is simply to increase the 

variance of the final estimate and to reduce power, but the effect of not including important 

genes obviously differs for different SNPs. For example, we lose power to detect SNPs 

associated with the outcome through the genes left out of the gene set. This is why in our 

pairwise approach we advocate testing multiple gene-SNP pairs for each SNP.

Both the integrative and standard analysis models were misspecified in Example 5 due to the 

omission of interaction terms. In fact the importance of each SNP is more difficult to 

quantify in this setting, since both the main effects and interaction terms need to be taken 

into account. For simplicity, in the X-axes of the power curves for Example 5 we ordered 

the SNPs by their average effect sizes as estimated using the standard analysis methods. 

Though standard analysis was more effective for a few SNPs, the preponderance of SNPs 

were still more easily detected by our integration.
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For the pairwise analysis of the high-dimensional data in Example 6, Table 2 gives the true 

positive rates, defined as the proportion of the outcome-associated SNPs that were detected, 

the false discovery rates, defined as the proportion of the detected SNPs that were not 

associated with the outcome, and the total number of SNPs detected. We defined the false 

discovery rate to be zero when no SNPs were detected. Even with the Bonferroni adjustment 

over twice as many tests, pairwise integrative analysis had much higher power to detect 

outcome-associated SNPs, with much lower false discovery rates, than standard analysis.

5 Data analysis

We used our integrative analysis method to explore the genetic basis of drug resistance in 

yeast cells. Perlstein et al. (2007) measured expression levels of 6228 genes from 104 yeast 

genotyped segregants at baseline. They then treated the segregants with 94 different small 

molecules at different concentrations and for different amounts of time and recorded the 

segregant final yields. We focused on the natural product tomatidine, which has been found 

to have anticarcinogenic potential, as well as a variety of other health benefits (Friedman, 

2013). Our goal was to detect o-eSNPs associated with response to tomatidine. We focused 

on the shortest time point (68 hours in 3.4M tomatidine), when we felt the effect of baseline 

gene expression on final yield would be the strongest.

We first imputed missing expression values using the averages of the values of the 10 

nearest neighbors, using the BioConductor package impute, and then averaged observations 

with the same gene symbol. Next, following Lee et al. (2006) we identified 584 blocks of 

highly correlated markers, and within each block we selected a representative marker SNP 

with the lowest proportion of missing data.

Using final yield as the outcome, we applied our integrative analysis, using the pairwise 

approach, to all SNPs and their cis-genes. As discussed in Section 2.4, this approach is 

unlikely to satisfy the assumptions stated in Section 2.2, but simulations and Web Appendix 

A show that our approach can still perform well. Following Brem et al. (2002), we defined a 

SNP and a gene to be in cis if they are located within 10kb of each other, which resulted in 

6,628 total pairs that included all 584 marker SNPs. There was a single pair that remained 

significant after Bonferroni correction for 6,628 tests (p-value cutoff of 7.5 · 10−6). This pair 

had a p-value of 3.3 · 10−6, was located on chromosome 8, consisted of the gene YHR005C 

(GPA1) and the SNP NHR001C, and suggests that NHR001C may affect the response to 

tomatidine by regulating the expression of GPA1, a G protein involved in the yeast mating 

pathway. In contrast, simply regressing final yield on NHR001C gave a p-value of 4.1 · 

10−3, which would not pass a Bonferroni correction for 584 tests (p-value cutoff of 8.6 · 

10−5). This potential o-eSNP would not have been discovered with standard analysis.

6 Discussion

We have proposed a new statistical framework for integrating outcome, gene expression and 

genotype data, and we showed analytically and in simulations that under certain conditions, 

integration can provide more powerful detection of outcome-associated expression SNPs (o-

eSNPs). Using our approach, we discovered in yeast a potentially new association between 

response to tomatidine and the SNP NHR001C.
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Our method requires that all confounders of both the SNP-outcome and the transcript-

outcome associations be included in the regression models. It also works best if the 

associations between the SNPs and the outcome are entirely mediated through regulation of 

gene expression. Violations of the first assumption may result in low power or inflated type 

I error, while violations of the second can result in low power. However, simulation 

Examples 2 and 4, and our analytic work and further simulations in Web Appendix A, 

suggest that our approach can still be effective.

In Section 2.3 we describing fitting our approach using estimating equations composed of 

the sum of independent and identically distributed terms. However, some widely used 

models cannot be fit using such estimating equations. Chief among them is the Cox model 

for survival outcomes, whose estimating equation is a continuous-time martingale. 

Integrative analysis can still be performed using Cox regression as the outcome model, but 

more work is needed to rigorously derive the asymptotic distribution of the resulting 

estimates.

Our pairwise approach described in Section 2.4 may miss SNPs with trans-regulatory 

relationships. Ideally we would be able to fit our integrative model using all genes, and even 

all genotyped SNPs, and indeed modifications of existing high-dimensional regression 

techniques such as the lasso may allow us to achieve simultaneous estimation and variable 

selection. However, in the practical application of our approach it is vital to be able to 

quantify the uncertainty of our parameter estimates. Methods for assigning p-values to 

sparse regression estimates is currently an active area of research (Zhang and Zhang, 2011; 

Javanmard and Montanari, 2013; van de Geer et al., 2013) and we believe that in the future 

it may be possible to apply some of these developments to our integration method.

One limitation of our approach is the difficulty of correctly specifying the relationships 

between the different data types. Though our simulations suggest that we can still gain 

power under misspecified models, we can also consider semiparametric models of the form

where α1, α2, and β1 are unspecified functions. For example, we can use kernel-based 

methods (Wu et al., 2011) to estimate nonlinear functions of SNP sets and genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average power curves for linear outcomes. Integration: proposed method; Standard: 

standard univariate regression analysis; Overlap: overlap method.
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Figure 2. 
Average power curves for binary outcomes. Integration: proposed method; Standard: 

standard univariate regression analysis; Overlap: overlap method.
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Table 2

SNP detection in high-dimensions (Example 6), after Bonferroni correction to give a family-wise error rate of 

0.05. We simulated a total of 14 o-eSNPs. Integration: proposed method, 20,000 tests; Standard: standard 

univariate regression analysis, 10,000 tests. Performance metrics (SD): TP = true positive rate, FD = false 

discovery rate; Median size is reported (interquartile range).

Outcome Method TP FD Size

Continuous Integration 34.86(7.77) 1.14(4.69) 5(2)

Standard 1.2(2.97) 5.2(22.25) 0(0)

Binary Integration 12.4(6.72) 0.13(2.11) 2(1)

Standard 0.14(1) 0(0) 0(0)
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