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Abstract

Background—Elevated pediatric asthma morbidity has been observed in rural US communities, 

but the role of the ambient environment in exacerbating rural asthma is poorly understood.

Objectives—To investigate associations between particulate matter less than 2.5 μm in diameter 

(PM2.5) and pediatric asthma exacerbations in an agricultural community of Washington State.

Methods—School-aged children with asthma (n=58) were followed for up to 25 months with 

repeated measures of respiratory health. Asthma symptoms and quick-relief medication use were 

assessed biweekly through phone administered surveys (n=2023 interviews). In addition, subjects 
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used home peak flow meters on a daily basis to measure forced expiratory volume in one second 

(FEV1) (n=7830 measurements). Regional PM2.5 was measured at a single air monitor located 

centrally in the study region. To assess relationships between PM2.5 and these outcomes we used 

linear regression with generalized estimating equations, adjusting for meteorological and temporal 

confounders. Effect modification by atopy was explored as well.

Results—An interquartile increase (IQR) in weekly PM2.5 of 6.7 μg/m3 was associated with an 

increase in reported asthma symptoms. Specific symptoms including wheezing, limitation of 

activities, and nighttime waking displayed the strongest associations. FEV1 as a percent of 

predicted decreased by 0.9% (95%CI: −1.8, 0.0) for an IQR increase in PM2.5 one day prior, and 

by 1.4% (95%CI: −2.7, −0.2) when restricted to children with atopic asthma.

Conclusions—This study provides evidence that PM2.5 in an agricultural setting contributes to 

elevated asthma morbidity. Further work on identifying and mitigating sources of PM2.5 in the 

area is warranted.
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1. INTRODUCTION

Several longitudinal cohort studies have demonstrated that children with asthma experience 

short-term increases in symptoms as well as decrements in lung function following exposure 

to outdoor particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) (Ostro et 

al. 2001; Slaughter et al. 2003; Delfino et al. 2004; Moshammer et al. 2006; Trenga et al. 

2006; Dales et al. 2009; Gent et al. 2009). While this association has been well-described in 

urban settings, it remains largely unexplored in rural, agricultural communities.

Relationships between particulate matter (PM) exposure and respiratory health observed for 

urban children may not be generalizable to rural regions because of important differences in 

PM composition. Rural PM tends to contain a higher proportion of organic dust (Schenker et 

al. 1998), which is derived from plants, animal cells, insects, mold and fungi. In general, 

organic dusts are pro-inflammatory and cause airway inflammation and obstruction 

following inhalation (Schwartz 1999). These urban-rural differences in composition reflect 

varying PM2.5 sources. In cities, motor vehicle exhaust is a major source of PM2.5, and 

wood burning and industrial point emissions contribute to lesser degrees (Maykut et al. 

2003). In contrast, rural PM2.5 often is generated by agricultural activities, residential wood 

burning, and natural processes. Tilling, harvesting and field burning disperse an estimated 

936 thousand tons of PM2.5 into the atmosphere every year, accounting for about 16% of all 

outdoor PM2.5 in the US (Aneja et al. 2009). In addition, large-scale agricultural operations 

emit gases that indirectly increase regional PM2.5 concentrations (NRC 2003). For example, 

large facilities for animal confinement release substantial amounts of ammonia gas, which 

subsequently reacts with nitric oxides and sulfuric acid in the atmosphere to form 

ammonium salt aerosols, a component of PM2.5 (Aneja et al. 2009).

While past research indicated that asthma prevalence may be lower for children living on or 

near farms (Reidler et al. 2001; Gergen et al. 1988), recent investigations suggest that 
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asthma morbidity in the rural US is as high or higher than in urban communities 

(Chrischilles et al. 2004; Pesek et al. 2010; Malik et al. 2012). Rural communities often face 

unique barriers to asthma diagnosis and management, such as limited access to health care, 

poor insurance coverage, poverty, and geographic isolation (Valet et al. 2009; Ownby 2005).

Aggravating Factors of Asthma in a Rural Environment (AFARE) is a community-based 

participatory research project aimed at identifying airborne asthma exacerbators in the 

ambient environment of an agricultural community. Here we describe relationships between 

community-wide temporal changes in PM2.5 and asthma morbidity for AFARE children 

using a longitudinal, repeated measures study design. We also explored whether atopy is 

associated with increased susceptibility to PM2.5 in this rural community.

2. METHODS

2.1 Study setting

The study took place in the Yakima Valley of Washington State, an area covering 

approximately 300 square miles and characterized by a high density of large-scale 

agricultural operations, including tree fruit orchards and dairy farms. The AFARE Study 

was conducted within El Proyecto Bienestar, a community-based participatory research 

partnership between the University of Washington Pacific Northwest Center for Agricultural 

Safety and Health; Yakima Valley Farm Worker Clinics (YVFWC), a network of federally-

qualified health clinics serving migrant and seasonal farmworker families as well as other 

underserved populations in the region; and the Northwest Community Education Center 

which includes Radio KDNA, a Spanish language public radio station that provides support 

and education for the Latino community in the Yakima Valley.

2.2 Study subjects

AFARE subject recruitment began in August 2010 and continued throughout the first year of 

the study toward a goal of at least 50 participants. Subjects were invited to participate in the 

study if they were involved in the YVFWC Asthma Program, were of school age, had no 

other serious illnesses and intended to stay in the region during the two-year duration of the 

study. The Asthma Program is a longstanding clinical service delivered by community 

health workers at the patient’s home, providing education about asthma management, 

including proper medication use and home indoor trigger identification and control (Postma 

et al. 2011). In total, 59 subjects were enrolled in the study, and 10 (17%) dropped out prior 

to the end of AFARE data collection. One subject who dropped out immediately following 

enrollment was excluded from analysis, leaving a sample size of 58 participants. Data from 

the other 9 subjects who left the study were retained because they participated for a 

substantial amount of time and the decisions to end participation were unrelated to health or 

exposure status.

Research activities involving human subjects were approved by the University of 

Washington Institutional Review Board. Informed consent was obtained from all parents as 

well as assent from the child if child was 13 years or older.
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2.3 Baseline health assessment

At enrollment, subjects and caretakers completed a health history survey to determine 

clinical features of asthma status including current medication use. All subjects also 

underwent skin prick testing to identify children with atopic asthma. Subjects were told to 

withhold from antihistamine use for 72 hours prior to testing. Three disposable multiple test 

skin prick applicators were applied to the volar aspect of the subject’s lower arm. (Multi-

Test II, Lincoln Diagnostics, Decatur IL, USA). Antigens included 22 aeroallergens that 

comprised typical indoor inhalant allergens (mouse, cat, dog, dust mite mix, cockroach mix, 

mold mix) and area specific aeroallergens (cow, horse, western juniper, cottonwood, wheat, 

alfalfa, kochia, smut mix, sagebrush, alder, pigweed, western ragweed, johnson grass, 

russian thistle), as well as histamine (positive control), and saline (negative control) (ALK 

Technologies Inc., Princeton NJ, USA). The skin reaction was assessed 20 minutes after 

application, and a positive response was defined as a wheal size equal to or greater than the 

positive control.

2.4 Longitudinal health assessment

Longitudinal asthma morbidity was assessed with two tools: an asthma symptom survey and 

daily home lung function tests.

2.4.1 Biweekly asthma Symptom survey—At approximately two-week intervals, 

phone interviews with either the child or an adult family member were conducted. 

Interviewees were asked to recall the one week period prior to the interview date in their 

responses. The interview included five questions about asthma symptoms (nighttime 

waking, shortness of breath, limitation of activities, wheezing, and morning asthma 

symptoms) with ordinal categorical responses to indicate increasing severity and frequency. 

A sixth question ascertained frequency of short-acting bronchodilator use as average number 

of “puffs” per day.

2.4.2 Daily home lung function tests—At enrollment, each child received a PikoNET 

handheld peak flow meter (PFM) with digital memory (nSpire Health Inc., Longmont CO, 

USA) and was instructed in proper use of the device according to American Thoracic 

Society (ATS) guidelines. Children were asked to use the PFM twice daily on every day of 

the study, refraining from the use of short-acting bronchodilator medication immediately 

prior to PFM use. At approximately six-week intervals, a staff member from YVFWC 

visited participants and uploaded PFM measurements from the participant’s device. During 

a 12-month follow-up visit with the research team at clinics, each subject’s technique and 

ability to produce an error-free measurement was observed, and subjects were retrained in 

PFM use if necessary. Use of the PFM produced a value of FEV1, which was converted into 

the percent of predicted value (FEV1%) based on standard reference equations (Hankinson 

et al. 1999). The highest value of those recorded for a subject in a day was used in analysis.

2.5 PM2.5 measurements and meteorology

We obtained 24-hour average PM2.5 concentrations based on nephelometer measurements 

made at a central site air monitor in Toppenish, WA, managed by the Yakama tribe and 

included in the WA State Department of Ecology air monitoring network (https://
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fortress.wa.gov/ecy/enviwa/). Two local weather stations most central to the homes of 

participants (AgWeatherNet database for Toppenish and Snipes stations) provided data on 

24-hour average temperature, relative humidity and precipitation.

2.6 Statistical analysis

All analyses were performed using Stata 12.0 (StataCorp LP, Texas Station TX, USA). 

Subject characteristics pertaining to demographics and baseline health status were 

summarized for the cohort overall as well for subgroups defined by atopy status. 

Comparisons of characteristics between atopic and nonatopic children were made using chi-

squared tests of homogeneity for categorical quantities and t-tests with unequal variances for 

continuous values. Spearman correlation coefficients were calculated to assess pairwise 

correlations among meteorology variables and PM2.5.

2.6.1 Epidemiologic analysis—We modeled associations between PM2.5 and each 

outcome using linear regression models based on generalized estimating equations (GEE) 

(Diggle et al. 2002) with autoregressive-1 (AR-1) or exchangeable working correlation 

structures to account for the correlation among the repeated measures for each subject. 

(Exchangeable correlation structures were used for FEV1% models on account 

intermittently missing data, while AR-1 correlation was used in analysis of reported asthma 

symptoms. Results were qualitatively similar when correlation structures were varied in 

sensitivity analysis.) In all models, the exposure of interest was included in models as a 

continuous variable, and we present results as the mean change in outcome for an IQR 

increase in exposure, assuming a linear relationship. Covariates included in models as 

potential confounders were selected a priori based on existing evidence of relationships with 

both respiratory health and exposure. The effects of continuous adjustment variables such as 

temperature, relative humidity, precipitation, elapsed week of study, and seasonality 

(calendar month) were represented by cubic splines with five knots each. Other covariates 

used for adjustment were subject-specific characteristics associated with asthma health, 

including sex, age, atopy, use of inhaled corticosteroids at baseline, and BMI at baseline. In 

sensitivity analysis, an interaction term was added to each model to assess the presence of 

effect modification by atopy.

For models in which outcome was derived from biweekly symptom surveys, exposure was 

calculated as the average PM2.5 over the seven days prior to the interview date, referred to 

as the weekly average PM2.5. Associations between PM2.5 and individual symptoms types 

were estimated by dichotomizing responses to each question as no symptom or medication 

use versus any symptom or medication use. Logistic regression with GEE was used to 

estimate the odds ratio (OR) for report of each symptom with an IQR increase in weekly 

PM2.5.

For models in which daily FEV1% was the outcome of interest, the 24-hour average PM2.5 

measured one day prior to FEV1% measurement was used as the primary exposure of 

interest, and other lags were evaluated in sensitivity analyses (0, 2, 3, and 4 day lags). 

Values of FEV1% that were implausibly high (above 150%) or low (below 30%) were 

excluded from analysis. In addition, PFM measurements that were flagged by the device as 
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potential errors were omitted from analysis even though our overall results were 

qualitatively the same whether we included these ‘flagged’ measurements or not. Subjects 

with 10 valid PFM readings or more were included in analyses of FEV1 in order to exclude 

participants with very poor compliance and/or PFM technique.

2.6.1.1 Epidemiologic analysis: Model diagnostics: Model diagnostics were performed to 

determine whether the central assumptions of GEE were violated. Specifically, plots of 

residuals versus the linear predictor as well as exposure of interest were inspected to 

determine whether there existed a meaningful trend in the deviations of residuals from zero. 

The possibility of influential subjects was explored using the “leave one out” method, by 

which point estimates and corresponding standard errors were estimated after exclusion of 

each subject in turn and compared to results generated from analysis of the complete study 

sample. None of the results of these diagnostic tests indicated cause for concern about model 

assumptions. Finally, analyses were repeated using linear mixed models (LMM), which 

returned similar results to those obtained with GEE in all cases.

2.6.1.2 Lung function measurements: Missingness mechanisms and multiple 
imputation: FEV1 readings were not available for all subjects on every day of the study due 

to data loss (e.g. technical problems with the laptop and software used to upload PFM data 

during home visits), broken or lost devices, imperfect compliance, and exclusion of flagged 

or implausible measurements. We explored patterns of missingness by comparing subjects’ 

data completeness rates to characteristics associated with asthma morbidity, such as asthma 

symptom reports, average FEV1%, inhaled corticosteroid use at baseline, and atopy status 

using linear regression with robust standard errors. In addition, relationships between the 

odds of missing PFM data on a specific day for each subject and both daily PM2.5 and the 

average of nonmissing FEV1 in the same week were separately assessed using linear 

regression with GEE.

FEV1 analyses were performed both on available data [i.e. complete case (CC) analysis] as 

well as on imputed data in order to address the problem of missing data. To generate 

imputed datasets, multiple imputation was performed using a regression model that included 

all covariates used in adjusted epidemiologic models, as well as dummy variables to indicate 

subject, and ordinal categorical responses to each question on the symptom survey in the 

relevant time period. Fifty datasets with imputed values for each missing daily FEV1% 

measurement were generated (i.e. m=50). Analyses between FEV1% and one day prior 

PM2.5 were conducted on each dataset separately, and the estimated coefficients and 

standard errors derived from each were combined using Rubin’s rules (Rubin 1987).

3. RESULTS

3.1 Characteristics of AFARE cohort

The AFARE cohort consisted of an equal number of girls and boys with an average age of 

10.4 years at the time of enrollment (Table 1). 41% (n=24) of participants were from 

families with annual household incomes below $15,000, and half (n=29) had one or more 

parent employed as a farmworker. In addition to having a diagnosis of asthma, 50% (n=29) 

had a BMI-for-age greater than the 85th percentile at baseline. All but 4 children self-
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identified as Hispanic and only 17% (n=10) were born outside the United States. At 

baseline, subjects and their families were asked about residential proximity to possible 

environmental exposures associated with asthma, and nearly half (n=27) reported living 

within 0.25 mile of a “busy” road or a dusty, unpaved road; 38% (n=22) reported living near 

farms growing crops; and 19% (n=11) of families said they lived near farms raising animals.

Most AFARE participants had experienced a significant asthma exacerbation in the past: 

two-thirds (n=38) reported being hospitalized at some point for asthma, and 79% (n=46) 

reported having at least one unscheduled urgent care or emergency department (ED) visit for 

asthma in the 12 months prior to study enrollment. The majority of subjects were taking at 

least one controller medication at baseline, with 71% taking inhaled corticosteroids, 29% 

taking leukotriene antagonists, and 24% taking both.

Children with atopic asthma were more likely to be taking inhaled corticosteroids or 

leukotriene antagonist at baseline, to have been hospitalized with asthma, to have reported 

an unscheduled clinic or emergency department visit for asthma in the year before 

enrollment, and less likely to live with at least one adult farmworker, but none of these 

differences reached statistical significance.

3.2 Longitudinal asthma morbidity

Subjects participated in AFARE for an average of 92 weeks. After exclusion of one subject 

that completed fewer than 8 interviews, there were 1948 interviews with complete data from 

57 children available for analysis.

Reported symptom occurrence is summarized for all interviews collected in Table 2. 

Overall, the presence of each symptom was reported in fewer than half of the interviews, 

though the frequency of each symptom was higher for atopic children compared to 

nonatopic children. Likewise, at least some bronchodilator usage was reported during about 

half of all interviews for the overall cohort, while atopic children were more likely to report 

use of this rescue medication.

During the study, 7830 lung function measurements were collected from children’s PFM 

devices, and the subject-average FEV1 as percent of predicted (FEV1%) was 75% (s.d. = 

15%). Participants’ FEV1 increased across the study period, with average lung function 

growth estimated to be 0.26 L per year of participation; similarly, FEV1% increased by an 

average of 2.3% per year.

Subjects’ PFM data completeness rates (i.e. percent of days with at least one PFM 

measurement) ranged from 12 to 80% (mean = 35%). True compliance rates, however, are 

likely substantially higher because these estimates were affected by loss of data in the field. 

We detected no statistically significant relationships between subject PFM completeness 

rates and subject-specific rates of symptom reports, average FEV1%, atopy status, or use of 

inhaled corticosteroids at baseline. We also found no evidence that the odds of FEV1 

missingness on a specific day of the study was related to average lung function during the 

same time period (week average FEV1%) or PM2.5 measured on the day before (results not 

shown).

Loftus et al. Page 7

Environ Res. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3 Community PM2.5

The distance between subjects’ homes to the central monitor ranged from 0.7 to 29 miles, 

with a median distance of 7.5 miles. Daily PM2.5 concentrations had a median (IQR) of 5.7 

(7.9) μg/m3 over the entire two-year study period. In general, PM2.5 was elevated during 

winter months due to occurrences of stagnation events in the valley, although high PM2.5 

concentrations were observed in autumn of 2011 and 2012 as a result of forest fires in the 

region (Figure 1). Log-transformed PM2.5 concentrations were found to be moderately and 

inversely correlated with windspeed (r=−0.63) and weakly correlated with relative humidity 

(r=0.34) and wind direction (r=−0.36).

3.4 Associations between asthma symptoms and PM2.5

Among individual asthma symptoms assessed, the strongest association was observed with 

wheezing (Table 3). Specifically, with each IQR increase in PM2.5, a 31% increase in odds 

of wheezing was observed (95% CI: 18%, 45%). Statistically significant associations were 

also evident for limitations of activities and nighttime waking (OR=1.21 and 1.13, 

respectively, for an IQR increase in PM2.5). No effect modification by atopy was observed 

for any of the symptom outcomes or short acting bronchodilator use (data not shown).

3.5 Associations between lung function (FEV1%) and PM2.5

In the analysis of available FEV1% data [complete case (CC) analysis] and the analyses of 

50 datasets in which missing FEV1% was imputed [multiple imputation (MI) analysis], we 

observed decrements in lung function associated with higher PM2.5 concentrations one day 

prior to FEV1% measurement (Table 4). The point estimates from CC and MI analyses were 

similar though results derived from the MI dataset were more precise. For CC analysis, an 

IQR increase in 24-hour average PM2.5 on the day prior was associated with a change in 

FEV1% of −0.9% (95%CI: −1.8%, 0.0%), while MI results indicated a corresponding 

change in FEV1% of −1.2% (95%CI: −2.0%, −0.3%). Exploratory analysis of varying lag 

days yielded results that were lower in magnitude and with wider 95% confidence intervals 

in each case (Figure 2). The decrement in FEV1% estimated for increasing PM2.5 was 

significantly stronger for atopic subjects in the complete case analysis (p-value for 

interaction = 0.014) but not when the multiply imputed dataset was analyzed (p-value for 

interaction = 0.55) (Table 4)

4. DISCUSSION

Our results indicate that children with asthma in the agricultural Yakima Valley region 

experience short-term increases in asthma morbidity associated with increases in regional 

PM2.5. Adverse effects upon subjective reports of asthma symptoms (limitation of 

activities, more wheezing, more nighttime waking) as well as objective measures of lung 

function (FEV1) were observed. Our observations bear some similarities to the adverse 

effects of ambient PM2.5 on pediatric asthma observed in urban settings, despite likely 

differences in sources and composition.

Compared to monitoring sites in an urban center of WA State (i.e. Seattle), PM2.5 

concentrations in the Yakima Valley were similar. A monitoring site in downtown Seattle 
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recorded levels nearly identical to the Toppenish site (median (IQR) = 5.8 (3.2) μg/m3) 

during the same sampling period, while a monitor in the industrial region south of Seattle 

measured slightly higher PM2.5 concentrations (median (IQR) = 7.8 (4.0) μg/m3). Higher 

PM2.5 days (i.e. above 20 μg/m3) occurred more frequently in Toppenish than in Seattle. 

Forest fires in late 2012 were severe enough to cause several days of PM2.5 levels that far 

exceeded the EPA 24-hour National Ambient Air Quality Standards (NAAQS) for PM2.5.

This study contributes new findings to asthma research by describing relationships between 

respiratory health and PM2.5 exposure in a non-urban setting. Previous pediatric panel 

studies conducted in urban settings have yielded similar findings. For example, Ostro et al. 

(2001) found that African American children with asthma in Los Angeles reported a 10% 

increase in odds of various asthma symptoms with an IQR increase in PM2.5, even though 

exposures were considerably higher than those measured in our study region, with a mean 

PM2.5 concentration of 41 μg/m3. Dales et al. (2009) followed a cohort of children in a 

Canadian city characterized by high volume truck traffic, where children were exposed to 

PM2.5 concentrations similar to those measured in Toppenish (median (IQR) = 6.5 (6.0) 

μg/m3), and observed that bedtime FEV1% declined about 0.5% with each IQR increase in 

PM2.5 in the previous 24 hours. A small cohort (n=9) of children with asthma in Spokane, 

WA, a moderate sized city in Eastern Washington where some PM2.5 sources would be 

similar to those in the AFARE study region, were more likely to report asthma symptoms on 

days of higher PM2.5 with a one day lag (Mar et al. 2004). The effects measured were 

smaller than those observed in our study, however, with OR for symptoms generally around 

1.1 for a 10 μg/m3 increase in PM2.5.

Our analyses returned mixed findings related to effect modification by atopy. Asthmatic 

individuals who are sensitized to one or more common aeroallergen may be more 

susceptible to air pollution, especially pollutants with oxidant potential (Tunnicliffe et al. 

1994; Strand et al. 1998; Jenkins et al. 1999). Some investigators have hypothesized that 

airway inflammation following PM exposure leads to heightened permeability of airway 

epithelia, which in turn may enhance the allergenic potential of aeroallergens for sensitized 

individuals (D’Amato et al. 2005). A handful of previous panel studies provide direct 

evidence that atopic children with asthma do experience higher susceptibility to PM2.5. 

Delfino et al. (2004) measured personal PM2.5 as well as PM2.5 measured at a central site 

monitor and found that the observed decrements in FEV1% were stronger for atopic boys. A 

study of children with asthma in Fresno, CA, where PM pollution is influenced by motor 

vehicle traffic as well as regional agricultural activities, revealed that atopic children 

constituted a vulnerable subgroup in links between asthma symptoms and exposure to coarse 

PM (Mann et al. 2010). In contrast, other researchers hypothesize that inhalation of organic 

dust will stimulate airway inflammation according to nonallergic mechanisms (Schwartz 

1999), implying that children with asthma will be susceptible regardless of atopy status.

There are a number of important limitations to our study. Our exposure assessment was 

dependent upon measurements made at a single central monitoring site, and the same daily 

PM2.5 concentration was assigned to each child on every day of the study. This approach 

captures temporal variations in regional PM2.5 but ignores any spatial variability in PM2.5 

across the study area or the existence of “personal dust clouds” found in the local 
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environment of a child, which may significantly contribute to the true PM2.5 exposure 

experienced by each child (Delfino et al. 2004). In using central site measurements of PM2.5 

to represent exposure, we assumed that day-to-day changes in regional PM2.5 would 

correlate well with corresponding changes in individual-level exposures for AFARE 

children. If the exposure error caused by spatial variability in outdoor PM2.5 was 

nondifferential in the AFARE study region, this error may have the effect of biasing 

observed associations towards null.

Our approach to exposure assessment is further limited by the method of measuring PM2.5 

concentrations. Nephelometer measurements provide mass concentration alone, affording no 

insight into concentrations of the specific chemical and biological PM constituents shown to 

be associated with respiratory effects, such as elemental carbon, wood smoke, fungal 

species, pollen proteins, or endotoxins. Furthermore, we cannot rule out the possibility that 

our observed associations between asthma morbidity and PM2.5 concentration arose due to 

confounding with other outdoor pollutants that frequently co-exist with PM2.5. Use of a 

multi-pollutant model would mitigate the influence of co-pollutant confounding, and our 

future analyses of pollutants measured at AFARE subject homes may permit such an 

analysis.

Data completeness rates for one of our outcomes, home lung function tests, were variable 

and relatively low. This is a common limitation in collecting subject-initiated measures such 

as home peak flow (Redline et al. 1996). It is important to note that factors other than 

subjects’ lack of participation compromised completeness of FEV1 measurements, including 

loss of data during the process of uploading measurements from the PFM device or long 

wait times before replacement of broken devices, and these mechanisms are likely 

completely random with respect to health and exposure. We explored patterns of 

missingness and subjects’ data completeness rates and found no evidence that missingness 

and noncompliance are related to health or exposure in this study.

Despite these limitations, our study has a number of strengths. AFARE data collection 

included thousands of repeated measures of two distinct asthma health metrics collected 

over longer periods of time than many other pediatric panel studies. Panel studies are 

demanding of resources but are especially well suited for the study of time-varying 

exposures that result in short-term, reversible health effects. Because each subject is 

observed repeatedly during periods of relatively high and low exposure, within-subject 

associations between exposure and health can be analyzed, and the influence of between-

subject confounding is thereby mitigated. We chose to control for temporal and 

meteorological variables aggressively in analysis in order to minimize the possibility that 

associations between PM2.5 and asthma morbidity are confounded by other covariates, a 

common concern in air pollution epidemiology (Lumley and Sheppard 2003). We selected 

regression with GEE as our primary statistical method to account for correlation of 

measurements within subjects, and we compared the results to those obtained using linear 

mixed models. Finally, we recognized the fact that missing lung function tests data could 

introduce bias to GEE results if the missingness mechanism was not completely at random 

(Diggle et al. 2002), and we used multiple imputation to impute informed guesses for 
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missing values. Our multiple imputation model was strengthened by inclusion of asthma 

symptom responses within the relevant time periods.

5. CONCLUSIONS

Our results contribute evidence that PM2.5 pollution in this agricultural setting impacts the 

health of children with asthma, a significant finding in light of increasing PM2.5 levels in 

this region, which have been approaching nonattainment of EPA NAAQS in recent years. 

Further work on identifying and mitigating the dominant sources of PM2.5 in this area as 

well as similar agricultural settings is warranted, especially given the vulnerability of rural 

communities to adverse effects of pediatric asthma.
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Abbreviations and definitions

AFARE Aggravating Factors of Asthma in a Rural Environment

CC complete case

ED emergency department

FEV1 forced expiratory volume in 1 second

FEV1% forced expiratory volume in 1 second as a percentage of predicted value

GEE generalized estimating equations

IQR interquartile range

LMM linear mixed models

MI multiple imputation

NAAQS National Ambient Air Quality Standards

PFM peak flow meter

PM particulate matter

PM2.5 particulate matter of 2.5 μm or less

YVFWC Yakima Valley Farm Workers Clinic
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Highlights

• Little is known about environmental triggers of asthma in rural, agricultural 

settings

• Children with asthma in an agricultural area had lower FEV1 after elevated 

PM2.5

• Children also reported asthma symptoms more frequently after elevated weekly 

PM2.5

• Results warrant increased attention to rural air pollution and pediatric asthma
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Figure 1. 
24-hour-average PM2.5 concentrations measured at the Toppenish-Yakama air monitor in 

the WA State Department of Ecology air monitoring network.

Abbreviations: PM2.5, particulate matter of 2.5 μm or greater in aerodynamic diameter; 

WA, Washington.
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Figure 2. 
Associations between FEV1% and PM2.5 measured on multiple lag days for complete case 

(CC) dataa.

Abbreviations: PM2.5, particulate matter of 2.5 μm or greater in aerodynamic diameter; 

IQR, interquartile range.
aCoefficient is the estimated change in FEV1% associated with an IQR increase in daily 

PM2.5 (7.9 μg/m3) after controlling for temperature, relative humidity, precipitation, 

seasonality and elapsed time in study (all as splines) as well as age, BMI, inhaled 

corticosteroid use at baseline, and sex. Ranges represent 95% confidence intervals around 

each point estimate. Results were derived from GEE model with exchangeable correlation 

matrix.
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Table 1

Demographics and baseline health description of AFARE cohorta.

All subjects (n=58)
Atopy status (Skin Prick Test Result)b

Positive (n=42) Negative (n=16)

Demographics

 Female 29 (50%) 17 (41%) 12 (75%)

 Age at baseline (years) 10.4 +/− 2.7 10.4 +/− 2.7 10.3 +/− 2.8

 Household income <$15k/year 24 (41%) 18 (43%) 6 (38%)

 Born outside US 10 (17%) 8 (19%) 2 (13%)

 Hispanic/Latino ethnicity 54 (93%) 38 (91%) 16 (100%)

 Parent(s) employed as farmworker 29 (50%) 19 (45%) 10 (63%)

 Residence within ¼ mile of:

  Farms growing crops 22 (38%) 14 (33%) 8 (50%)

  Farms raising animals 11 (19%) 9 (21%) 2 (13%)

  Unpaved dusty roads 27 (47%) 18 (43%) 9 (56%)

  High traffic roadway 24 (41%) 19 (45%) 5 (31%)

Asthma and general health

 Daily controller medication use at baseline:

  Inhaled corticosteroids (IC) 41 (71%) 32 (76%) 9 (56%)

  Leukotriene antagonist (LTRA) 17 (29%) 15 (36%) 2 (13%)

  Both IC and LTRA 14 (24%) 13 (31%) 1 (6%)

 Ever hospitalized with asthma 38 (66%) 29 (69%) 9 (56%)

 Unscheduled visit for asthma to urgent care or ED in 12 months prior to 
enrollment

46 (79%) 34 (81%) 12 (75%)

 Atopic asthmab 42 (71%) 42 (100%) 0 (0%)

 At least one adult smoker in household 8 (14%) 5 (12%) 3 (19%)

Abbreviations: US, United States; ED, Emergency department.

a
Categorical variables summarized as N (%) and continuous measures as mean +/− standard deviation

b
Indicated by positive skin prick test to at least one of 22 common inhalant allergens.
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Table 2

Summary of longitudinal health data collectiona

All subjects (n=58) Atopy statusb

Allergic (n=42) Nonallergic (n=16)

Percent of interviews in which each symptom reported:

 Woken by asthma 45.4% 51.5% 27.8%

 Limited in daily activities 19.6% 21.5% 14.1%

 Shortness of breath 34.8% 38.2% 24.9%

 Symptoms in morning 38.7% 42.7% 27.0%

 Wheezing 24.5% 28.9% 21.7%

Percent of interviews in which puffs of bronchodilator reported 50.7% 55.3% 37.4%

Subject average FEV1, % predicted 75 +/− 15% 75 +/− 16% 76 +/− 11%

Abbreviations; FEV1%, forced expiratory volume in 1 second as a percent of predicted value.

a
Continuous values presented as mean +/− standard deviation and categorical results as percent of responses.

b
Indicated by positive skin prick test to at least one of 22 common inhalant allergens.
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Table 3

Odds of specific asthma symptoms associated with an IQR increase in weekly PM2.5

Symptom or medication use OR (95%CI)a p-value

Limitation of activities 1.21 (1.00, 1.46) 0.05

Wheezing 1.31 (1.18, 1.45) <0.001

Nighttime waking 1.13 (1.01, 1.26) 0.03

Shortness of breath 1.10 (0.96, 1.26) 0.17

Symptoms worse in morning 1.00 (0.91, 1.11) 0.97

Use of short-acting “relief” medication 1.09 (0.99, 1.20) 0.09

Abbreviations: IQR, interquartile increase; PM2.5, particulate matter of 2.5 μm or greater in aerodynamic diameter.

a
OR is the odds ratio for report of any symptom/medication use in week prior associated with an IQR increase in weekly PM2.5 (6.9 μg/m3) after 

controlling for temperature, relative humidity, precipitation, seasonality and elapsed time in study (all as splines) as well as age, BMI, inhaled 
corticosteroid use at baseline, and sex. Results were derived from GEE model with AR1 correlation matrix.
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Table 4

Association between FEV1% and IQR increase in 24-hour-average PM2.5 measured one day prior

Complete case analysis Multiple imputation

Subjects Coefficient (95%CI)a p-value Coefficient (95%CI)a p-value

All subjects (n=50)b −0.9 (−1.8, 0.0) 0.06 −1.2 (−2.0, −0.3) 0.01

Atopy subgroupsc

 Atopic subjects (n= 36) −1.4 (−2.7, −0.2) 0.03 −1.2 (−2.1, −0.3) 0.01

 Nonatopic subjects (n= 14) 0.5 (−0.7, 1.7) 0.43 −1.0 (−2.1, 0.1) 0.10

Abbreviations: IQR, interquartile increase; PM2.5, particulate matter of 2.5 μm or greater in aerodynamic diameter.

a
Coefficient is the estimated change in FEV1% associated with an IQR increase in daily PM2.5 (7.9 μg/m3) after controlling for temperature, 

relative humidity, precipitation, seasonality and elapsed time in study (all as splines) as well as age, BMI, inhaled corticosteroid use at baseline, and 
sex. Results were derived from GEE model with exchangeable correlation matrix.

b
Eight subjects with fewer than 10 valid FEV1% readings on file were excluded from analysis.

c
Atopy was defined as at least one positive result in skin prick testing performed at baseline. p-value for interaction = 0.014 by complete case 

analysis and 0.55 using multiple imputation dataset.
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