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Abstract

In this model study, we explored the host’s contribution of breath volatiles to diagnostic secondary 

electrospray ionisation-mass spectrometry (SESI-MS) breathprints for acute bacterial lung 

infections, their correlation with the host’s immune response, and their use in identifying the lung 

pathogen.

Murine airways were exposed to Pseudomonas aeruginosa and Staphylococcus aureus bacterial 

cell lysates or to PBS (controls), and their breath and bronchoalveolar lavage fluid (BALF) were 

collected at six time points (from 6 to 120 h) after exposure. Five to six mice per treatment group 

and four to six mice per control group were sampled at each time. Breath volatiles were analysed 

using SESI-MS and the BALF total leukocytes, polymorphonuclear neutrophils, lactate 

dehydrogenase activity, and cytokine concentrations were quantified.

Lysate exposure breathprints contain host volatiles that persist for up to 120 h; are pathogen 

specific; are unique from breathprints of controls, active infections and cleared infections; and are 

correlated with the host’s immune response.

Bacterial lung infections induce changes to the host’s breath volatiles that are selective and 

specific predictors of the source of infection. Harnessing the pathogen-specific volatiles in the 

host’s breath may provide useful information for detecting latent bacterial lung infections and 

managing the spread of respiratory diseases.

Introduction

Recent developments in breath analysis have reinvigorated the quest for breath-based 

diagnostics, advancing the promise of noninvasive tests for diseases ranging from lung 

cancer to schizophrenia [1–8]. Breath contains hundreds of volatile organic compounds 

(VOCs) per individual, amounting to thousands in the human breath metabolome [9], 

potentially conveying a wealth of information about the human condition. The goal of our 

work is to use advanced mass spectrometry methods to capture the vast chemical 
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information in breath for the development of rapid breath-based diagnostic tools. We have 

previously employed secondary electrospray ionisation-mass spectrometry (SESI-MS) to 

generate diagnostic fingerprints of acute bacterial lung infections from the VOCs of breath 

[10–14]. SESI-MS does not require any sample preparation; the mixture of breath volatiles 

is introduced directly into the mass spectrometer, where the VOCs are sorted by their mass-

to-charge ratio (m/z) and counted, creating a breathprint that is used to identify the aetiology 

of lung infections without the need for compound identification [12, 14]. We have 

previously demonstrated that SESI-MS breathprints can be used to distinguish between 

seven different bacterial lung pathogens in vivo [12], and although the breathprint changes 

over time throughout the course of infection and clearance, portions of the breathprint are 

stable enough to identify the pathogen at any time from 6 to 120 h after initial pathogen 

exposure [11]. Even after the infections have been cleared (i.e. no viable bacteria recovered 

from the lung), components of the breathprint can be used to identify the pathogen with 

which the host had been previously infected [11]. This observation led us to speculate that 

the distinguishing features of each breathprint do not arise solely from pathogen metabolism 

but are also due to changes to host VOCs, possibly in conjunction with the immunological 

response.

In the murine model study described herein, we delve into the contribution of the host’s 

breath volatiles to acute lung infection breathprints. To isolate host-derived VOCs from the 

total volatile metabolome of an infection, we exposed mice airways to bacterial cell lysates 

of Pseudomonas aeruginosa and Staphylococcus aureus (two clinically important 

opportunistic pathogens) to obtain breathprints without the metabolic contributions from 

living bacterial cells. The lysates activate the host’s immune response, which we 

hypothesised would generate pathogen-specific changes in the breathprint. We found 

correlations between breathprint peaks and cytokine concentrations, neutrophils and 

leukocyte counts in bronchoalveolar lavage fluid (BALF), providing evidence that breath 

contains volatiles that are related to host immunology. In addition, we found that 

breathprints of lysate exposure differ to breathprints of the corresponding active infections 

as well as uninfected controls, and that they are predictive of the bacterial lysate source. 

These results have important implications for the detection of latent bacterial lung 

infections, for monitoring and managing the spread of respiratory diseases, and for assessing 

and monitoring new and existing bacterial vaccines.

Materials and methods

Bacterial strains and lysate preparation

Bacterial cell lysate preparation was adapted from the study by Allard et al. [15]. Briefly, P. 

aeruginosa strain PAO1-UW and S. aureus RN450 were grown aerobically in 100 mL of 

Dulbecco’s Modified Eagle Medium (Mediatech, Manassas, VA, USA) and tryptic soy 

broth, respectively. Cells were harvested by centrifugation, washed and resuspended in 100 

mM phosphate buffer (pH 7). Bacterial cells were lysed by ballistic disintegration and 

heated (65°C; 10 min). Plate counts confirmed that no viable cells remained. Lysates were 

diluted in PBS to a final protein concentration of 1 mg·mL−1 and then stored frozen at 

−80°C until use.
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Murine airway exposure, bronchoalveolar lavage, and breath collection and analysis

6–8-week-old male C57BL/6J mice were purchased from The Jackson Laboratory (Bar 

Harbor, ME, USA). Treatment groups were exposed to 5 μg of protein in P. aeruginosa or S. 

aureus bacterial cell lysate in 40 μL of PBS by oropharyngeal aspiration [15], and their 

breath was collected 6, 12, 24, 48, 72 or 120 h after exposure and analysed by SESI-MS. 

Additional groups of mice were exposed to 40 μL of PBS by oropharyngeal aspiration as a 

negative control for each time point. After breath collection, bronchoalveolar lavage (BAL) 

was performed and the total leukocytes (or white blood cells (WBCs)) were counted and 

characterised as macrophages, eosinophils, polymorphonuclear neutrophils (PMNs) or 

lymphocytes based on characteristic morphology and staining. Lactate dehydrogenase 

(LDH) activity in the cell supernatant was quantified, as previously described [11]. Cytokine 

concentrations in the BALF were analysed using customised Milliplex assays (Millipore, 

Billerica, MA, USA). The cytokine panel is provided in the online supplementary material.

The protocols for animal infection and respiratory physiology measurements conformed to 

the Declaration of Helsinki and were approved by the Institutional Animal Care and Use 

Committee, in accordance with Association for Assessment and Accreditation of Laboratory 

Animal Care (AAALAC) guidelines. All mice were housed in an AAALAC-accredited 

animal facility at the University of Vermont (Burlington, VT, USA). Full protocols for 

animal care, airway exposure, breath collection and SESI-MS breath analysis used in this 

study can be found in previous publications [12, 14], and are summarised in the online 

supplementary material.

Sample size, data analysis and statistics

87 mice were used in this study; five mice per time point for S. aureus lysate (SAL) and P. 

aeruginosa lysate (PAL) and four mice per time point for PBS, with the exception of 24-h 

PAL and PBS, which included six mice each. Full details on sample size estimation are 

provided in the online supplementary material.

The statistical significance of BAL total leukocytes, PMN counts and LDH activity between 

lysate exposure and PBS control groups was determined using two-way ANOVA followed 

by Tukey’s Honestly Significant Difference test. To meet the assumption of normal 

distribution for the ANOVA and t-test, total leukocytes and PMN counts were log-

transformed before the analysis. All values represent the mean±SEM of all replicates within 

each time point.

SESI-MS spectra collection and raw data processing were conducted using Analyst 1.4.2 

software (Applied Biosystems, Foster City, CA, USA). Spectra are the averages of all 

sample replicates in each group, which were blank-subtracted and normalised to the peak of 

greatest intensity. The blank spectrum is humidified room air collected using the same 

procedure as for mouse breath. JMP version 10 (SAS Institute Inc., Cary, NC, USA) was 

used in this study for all statistical analyses. Spearman’s rank correlation coefficients (ρ) 

were calculated to compare the similarity of breathprint profiles from each treatment group 

at each time point. Two-sided non-parametric Mann–Whitney U-tests were carried out to 
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identify breathprint peaks that were significantly different between pairs of test groups using 

a 5% significance level cut-off.

Spearman’s rank analyses were used to identify correlations between breathprint peaks and 

cytokine concentrations, total WBCs, PMNs and/or LDH activity at 6, 12, 24 and 48 h after 

exposure to PAL, SAL or PBS. The correlations reported in table 1 correspond to the 

average Spearman’s rank coefficients of all four time points. Partial least squares-

discriminant analysis (PLS-DA) was conducted for group classification using spectral 

intensity data from all of the breathprints in each treatment group or using cytokine 

concentrations in BALF. Breathprints from active infections of P. aeruginosa and S. aureus 

that were used for the PLS-DA in this study were collected contemporaneously with the 

lysate breathprints, and have been previously published [11]. Details of the Spearman’s rank 

correlation and PLS-DA analyses are provided in the online supplementary material. To 

validate the utility of SESI-MS breathprints in classifying unknown breath samples, two 

rounds of 10-times PLS-DA cross-validation tests were performed. In the first round, 90% 

of the samples were used as a training set (randomly selected) and the remaining 10% of 

samples were used as a testing set. In the second round, 70% of the samples were used as a 

training set (randomly selected) and the remaining 30% of samples were used as a testing 

set. The correct classification rates for the training sets were 100% in both rounds. The 

correct classification rates for the testing sets were calculated as the number of correctly 

classified samples divided by the number of samples that were included in the testing sets 

over all 10 rounds of cross-validation.

Results

Host VOCs and their correlation with the immune system response

To capture the host-derived component of lung infection breathprints, we exposed mice 

airways to PAL and SAL, and analysed their breath volatiles using SESI-MS (m/z = 20–200 

Da) at six time points from 6 to 120 h after exposure (fig. 1). The Spearman’s rank 

correlation coefficients (ρ), comparing the similarity of the five or six replicates within each 

time point and treatment group, were strongly correlated (all ρ≥0.85, SEM ≤0.06). Based on 

Mann–Whitney U-tests performed on a peak-by-peak basis at each time point, the 

breathprints of mice exposed to PAL or SAL differ from mice in the control group treated 

with PBS (table S1, PAL versus PBS and SAL versus PBS). We observed that 41 

breathprint peaks increase with exposure to PAL or SAL (versus controls), and 24 peaks 

decrease, confirming that the host’s breath volatiles change in response to airway exposures 

to bacterial lysates.

The SESI-MS breathprints change over time after bacterial lysate exposure (fig. 1 and table 

S1) and we found that the immune system responds in kind. In comparison with control PBS 

exposures, the BALF of mice treated with PAL had greater numbers of WBCs 6–72 h after 

exposure (fig. 2a), and the same trend was observed for PMNs (fig. 2b). SAL airway 

exposure resulted in absolute WBC and PMN cell counts that were higher than in the PBS 

controls for time points up to 48 h (fig. 2a and b). In addition, we observed an increase in 

LDH activity (fig. 2c) and statistically significant increases in the concentrations of 10 

cytokines in BALF up to 72 h after lysate exposure (table S2). While the PAL provokes a 
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stronger immune and inflammatory response than the SAL in mouse airways, both lysates 

induced measurable immune responses that begin to abate after 48–72 h, with lung damage 

peaking during that same time period.

Airway exposure to bacterial lysates induces time-dependent changes in the host’s immune 

response as well as the host’s breath volatiles. We therefore postulated that these two 

phenomena are linked. We used the non-parametric Spearman’s rank correlation method to 

evaluate the relationship between the measurements of immunological response and the 

SESI-MS breathprints. The immune markers were only robustly different in the lysate-

exposed groups versus PBS controls at 6–48 h (i.e. at least half of the immune markers 

measured at each time point were statistically different from the control) (fig. 2 and table 

S2); therefore, we restricted the correlation analysis to data collected at the first four time 

points. In table 1, we report the average Spearman’s rank correlation coefficients for the 

strongest positive and negative correlations (average >0.7 or < −0.7). All of the 

immunological markers trended together and had positive correlations with breathprint 

peaks (m/z) 56, 70, 97, 115 and 121, meaning that as the immune determinants increased, 

these breathprint peaks increased in magnitude. In contrast, negative correlations were 

observed with breathprint peaks (m/z) 41, 43, 44, 63 and 94, where peak magnitudes 

increased as the concentrations of host immune markers decreased (or vice versa). 

Corroborating these data, we found that peaks (m/z) 56, 70, 97 and 115 were also 

statistically significant indicators of PAL and/or SAL exposure (table S1, PAL versus PBS 

and SAL versus PBS), and peaks (m/z) 41, 43 and 44 decreased compared with the controls 

at early time points and increased at later times, in opposition to the response of WBCs and 

PMNs (fig. 2, and tables S1 and S2).

Host versus pathogen contributions to infection breathprints

We hypothesised that a portion of the time-independent SESI-MS breathprint peaks of 

active infections [11] arise from the host in response to the presence of the pathogen, while 

others are attributable to bacterial metabolites, making it possible to distinguish active 

infections from lysate exposure. Using PLS-DA, we aggregated all of the time points in each 

test group to identify breathprint peaks that were predictive of bacterial infection or lysate 

exposure and that endured for up to 120 h. The PLS-DA canonical plot of the P. aeruginosa 

treatment groups showed clear separations between the groups using the first two PLS 

factors (fig. 3a, p<0.0001). In addition, all of the replicates for any treatment group, 

regardless of the time point, could be clustered. Similar results were obtained with PLS-DA 

of the S. aureus treatment groups (fig. 3b).

The variable importance plot (VIP) showed 81 breathprint peaks strongly contributing to the 

separation of the P. aeruginosa-PAL-PBS treatment groups and 87 peaks for S. aureus-

SAL-PBS (figs S1 and S2; VIP >0.8 [16]). To identify which of these peaks were 

significantly different between active infections, lysate exposure and controls, we performed 

Mann–Whitney U-tests on a peak-by-peak basis at each time point and compared these data 

to the VIP and the Spearman’s rank correlations (table S1). We found six peaks that strongly 

indicated the host had been exposed to live pathogens or their lysates (m/z 56, 59, 69, 75, 

101 and 115), which were significantly increased in the treatment groups versus controls and 
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had VIP >1.5 [17]. There were an additional 19 peaks that separated the controls from the 

infection and exposure groups, either by their presence only in the uninfected/unexposed 

controls, or their exclusive presence in the treatment groups. In addition, four of these 25 

peaks were positively correlated with the host’s immune response (m/z 56, 70, 97 and 115) 

(table 1). Approximately two-thirds of the remaining peaks were selectively present or 

absent in one or two treatment groups, and these data can be used in aggregate in SESI-MS 

breathprinting to discriminate infection from exposure, and host versus pathogen 

contributions to breath volatiles.

Host breath VOCs are specific to the source of lysate exposure

We hypothesised that some of the host’s breath volatiles were changing in a pathogen-

specific way and were contributing to the diagnostic power of the breathprint. In the Mann–

Whitney data comparing P. aeruginosa versus PAL and S. aureus versus SAL (table S1), 

there were only two peaks that were shared exclusively by the lysate-exposed groups (m/z = 

71 and 112), while there were many peaks that differed between SAL and PAL. To confirm 

that these differences were robust and predictive of the lysate source, we performed Mann–

Whitney U-tests between the PAL and SAL breathprints and found 72 peaks that were 

significantly different between the two treatment groups at some time up to 120 h after 

lysate exposure (table S1; PAL versus SAL). The stable host breath volatiles that 

differentiated the exposure sources were identified by PLS-DA, which clearly separated the 

PAL, SAL and PBS groups (fig. 4; p<0.0001). The VIP indicated that there were 76 peaks 

from the lysate exposure breathprints driving the time-independent separation of the 

treatment groups (fig. S3), which included nine of the 10 breathprint peaks that were 

strongly correlated with host immune and inflammation markers (table 1).

As a final verification that breathprints were a robust indicator of the source of bacterial 

lysate exposure, we used PLS-DA 10-times cross-validation to predict the classification of 

unknown samples (acquired at any of the six time points) as PAL-, SAL- or PBS-exposed 

breath (table 2). We used two testing set sizes, 10% and 30% of the total data, in order to 

compensate for the biases of holdout accuracy estimations using large or small testing sets 

[18]. When using 90% of the samples (randomly selected) as the training set and the 

remaining 10% as the testing set, we observed a 99% correct classification rate for the 

testing set, with just one false-negative classification of SAL as PBS. When using 70% of 

the data for training and 30% for testing, we still observed correct classification for 94% of 

the test samples (table 2). We also evaluated cytokines in the BALF for specificity and 

selectivity in predicting the lysate treatment groups in the study. Clustering all time points 

up to 120 h for each treatment group (PAL, SAL or PBS) and using all 10 cytokines for 

PLS-DA observation variables, the separation between groups using the first two PLS 

factors was not clear (fig. S4). The poorest separation was between SAL and PBS, which 

resulted in a misclassification rate between these groups that exceeded 35% (table S3).

Discussion

In this model study, we probed the host’s contribution of volatile metabolites to the 

diagnostic SESI-MS breathprints for acute bacterial lung infections. We accomplished this 

Bean et al. Page 6

Eur Respir J. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by collecting the breathprints of mice that were airway-exposed to P. aeruginosa and S. 

aureus cell lysates, simulating an exposure to bacterial pathogens without an active infection 

and without bacterial metabolite contributions to breath volatiles. SESI-MS breathprints 

changed over time from 6–120 h after lysate exposure (fig. 1), and were correlated to the 

host immune response (table 1). In addition, the breathprints arising from exposures to 

bacterial lysates differed from breathprints of the concomitant active infections (fig. 3), and 

were specific to the lysate source (fig. 4). Notably, all three statistical methods used to 

evaluate the breathprint data corroborated the reproducibility and discriminating power of 

SESI-MS breathprints; nearly all of the peaks that were statistically different between 

treatment groups (indicated by coloured blocks in the Mann–Whitney U-test columns of 

table S1) also contributed significantly to the PLS-DA separations (VIP >0.8), and all 10 of 

the immune-correlated peaks had significant VIP and Mann–Whitney scores. Through PLS-

DA 10-times cross-validation tests, we demonstrated that the host breath volatiles were 

selective and specific predictors of the source of lysate exposure (table 2). There have been 

efforts to use cytokines as biomarkers of lung disease and injury [19–22]. In this study, the 

cytokine concentrations in BALF were not nuanced enough to distinguish between 

exposures to P. aeruginosa and S. aureus cell lysates up to 120 h (fig. S4, table S3). 

However, breathprints were unique, reproducible and stable enough to be used for 

diagnosing P. aeruginosa and S. aureus lung infections [11], distinguishing active infections 

versus lysate exposure (fig. 3), and identifying the source of pathogen exposure (fig. 4) for 

up to 5 days after the initial event.

We postulated that the breathprints of cell lysate exposure and cleared infections (e.g. 72 

and 120 h P. aeruginosa and S. aureus breathprints from mice that no longer harboured 

viable bacteria in the lung) may be undistinguishable, as the breathprints of cleared 

infections may arise from the host’s immune response to dead bacterial cells or cellular 

debris. Interestingly, there was a robust separation of cleared infections and lysate exposure 

(fig. 3), demonstrating that infection breathprints contain additional information, even after 

clearance. The distinction may arise from differences in the host immune response to live 

pathogens versus bacterial lysates, similar to a phenomenon that has been observed in 

human blood immune markers for hepatitis B and its corresponding vaccine [23]. If it is 

indeed possible to harness differentiating breath volatiles related to the host’s response to 

infection versus antigen exposure, breath testing could improve triage management for 

contagious respiratory diseases [24] and the identification of vaccinated persons in 

populations with high burdens of endemic disease (e.g. bacille Calmette–Guérin vaccination 

versus tuberculosis infection) [25, 26]. In addition, identifying immune-related breath 

volatiles may make it possible to differentiate between bacterial colonisation versus active 

infection, a key concern for ventilated patients in hospitals worldwide [27].

By using Gram-positive and Gram-negative bacterial lysates in this study, we have arguably 

induced immune responses that are more different than we might have achieved for two 

bacterial species that were more closely related. We also acknowledge that human 

immunology is different and more varied than the murine model used in this study, and that 

developing a diagnostic for bacterial lung infections in humans will require careful 

accounting of these variations. We would expect, for example, that comorbidities that 
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suppress the immune system (e.g. HIV or diabetes) would be likely to decrease the 

sensitivity of breath-based diagnostics if the tests incorporated immune-dependent data [28]. 

Conversely, comorbidities related to hyperactive immune systems (e.g. autoimmune 

diseases or allergies) might generate false-positive diagnoses. However, breathprint markers 

associated with a dysfunctional immune response may provide clinicians and researchers 

with useful information; for example, they may facilitate the early detection and monitoring 

of acute respiratory distress syndrome [29] or allergic asthma [30], they may identify 

persons with latent infections who are at risk of reactivation due to immunosuppression [26], 

or they may detect lethal co-infection combinations such as H1N1 influenza virus and 

Streptococcus pneumoniae [31]. Indeed, while there is a large body of work that has begun 

to elucidate how the human immune system responds to bacterial, viral, fungal and 

environmental insults, we have very limited information about how these different immune 

triggers may translate to breath [2–5]. As far as we are aware, this is the first study to 

distinguish between host and metabolising pathogen contributions to the breathprint. We 

propose that the host information in the breathprint adds value to bacterial infection 

diagnostics by identifying the pathogen within the context of disease, and also has the 

potential to advance other important aspects of clinical care and disease management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Secondary electrospray ionisation-mass spectrometry breathprints of mice 6–120 h after 

Pseudomonas aeruginosa lysate (PAL) or Staphylococcus aureus lysate (SAL) airway 

exposure. Each relative intensity spectrum is the average breathprint from at least five 

biological replicates. m/z: mass-to-change ratio.
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FIGURE 2. 
Host immune factors in bronchoalveolar lavage fluid (BALF), 6–120 h after airway 

exposure to Pseudomonas aeruginosa lysate (PAL), Staphylococcus aureus lysate (SAL) or 

to PBS control. a) White blood cells (WBCs). b) Total polymorphonuclear neutrophils 

(PMNs). The numbers of PMNs in BALF after PBS treatment are not visible on this scale. 

c) Lactate dehydrogenase (LDH) activity. Data represent the mean±SEM of at least five 

mice per treatment group, and at least four mice per control. Statistical significance was 

determined using two-way ANOVA by comparison with the appropriate PBS-treated mice 

at each time post-exposure (6, 12, 24, 48, 72 and 120 h). *: p<0.05; #: p<0.001; ¶: p<0.0001.
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FIGURE 3. 
Discriminant analyses using prediction formulae from partial least squares (PLS) regressions 

for the separation of breathprints from mice with active infections, lysate exposure or 

untreated controls. a) Pseudomonas aeruginosa lung infection, P. aeruginosa lysate (PAL) 

exposure or the untreated PBS controls. The PLS algorithm used nine factors, with a 

minimum prediction sum of squares (PRESS) residual statistic of 0.45. b) Staphylococcus 

aureus lung infection, S. aureus lysate (SAL) exposure or the untreated PBS controls. The 

PLS algorithm used 13 factors, with a minimum PRESS residual statistic of 0.33. The first 

two PLS factors explain the largest percentage of the variation (P. aeruginosa 28.7%; S. 

aureus 27.0%) and provide a statistically significant separation of all three groups in each 

case (p<0.0001). All replicates for all six time points (6, 12, 24, 48, 72 and 120 h) for each 

group were included, resulting in 88 biological replicates for P. aeruginosa-PAL-PBS (a) 

and 86 for S. aureus-SAL-PBS (b).

Bean et al. Page 13

Eur Respir J. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
Discriminant analysis using prediction formulae from partial least squares (PLS) regression 

for the separation of breathprints from mice treated with Pseudomonas aeruginosa lysate 

(PAL) or Staphylococcus aureus lysate (SAL) versus the untreated PBS control. The PLS 

algorithm used 10 factors, with a minimum prediction sum of squares (PRESS) statistic of 

0.39. The first two PLS factors explain the largest percentage of variation (22.6%), and 

provide statistically significant separation of all three groups (p<0.0001). All replicates for 

the six time points (6, 12, 24, 48, 72 and 120 h) were included for each group, resulting in 

87 biological replicates in the analysis.
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TABLE 2

Summary of the correct classification rate for the partial least squares-discriminant analysis (PLS-DA) 10-

times cross-validation tests of breathprints arising from bacterial cell lysate exposures

Predicted treatment Actual treatment

PBS PAL SAL

Round 1#

 PBS 100% 0 3%

 PAL 0 100% 0

 SAL 0 0 97%

Round 2¶

 PBS 100% 0 17%

 PAL 0 100% 0

 SAL 0 0 83%

#
PLS-DA using 90% training data and 10% testing data.

¶
PLS-DA using 70% training data and 30% testing data.
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