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Abstract

Sjögren’s syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell 

infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients 

with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third 

most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of 

patients being female. Current diagnostic criteria for SjS frequently utilize histological 

examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry 

eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary 

SjS, depending on whether it occurs alone or in association with other systemic rheumatic 

conditions, respectively. Clinical manifestations typically become apparent when the disease is 

relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of 

SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have 

been extremely valuable to identify early disease markers and to investigate underlying biological 

and immunological dysregulations. However, it is important to bear in mind that no single mouse 

model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the 

multifactorial etiology of SjS that includes numerous susceptibility genes and environmental 

factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. 

In this review, we focus on recent mouse models of primary SjS and describe them under three 

categories of spontaneous, genetically engineered, and experimentally induced development of 

SjS-like disease. In addition, we discuss future perspectives of SjS mouse models highlighting 

pros and cons of utilizing mouse models and demands for improved models.

1. SJOGREN’S SYNDROME

Sjögren’s syndrome (SjS), which is also referred to as autoimmune exocrinopathy, is a 

chronic autoimmune condition characterized by leukocytic infiltration into the exocrine 

glands, such as the salivary and lacrimal glands [1, 2]. Due to the progressive damage to the 

exocrine glands, patients with SjS typically present clinically xerostomia (dry mouth) and 

keratoconjunctivitis sicca (dry eyes) [3]. Extraglandular manifestations, such as fatigue, 
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arthritis, or Raynaud’s phenomenon are commonly seen in SjS in addition to symptoms of 

dryness [4]. Other extraglandular manifestations include musculoskeletal, gastrointestinal, 

hepatobiliary, hematologic, vascular, dermatologic, renal and nervous systems dysfunctions 

[5, 6]. Although the primary clinical features of this disease were described by W.B. Hadden 

in 1888, the sicca syndrome as a systemic disease was first appreciated in 1933 by a 

Swedish ophthalmologist Henrik Samuel Conrad Sjögren [7]. In his thesis, Dr. Sjögren 

clarified that keratoconjunctivitis sicca, coined by himself, had no relation to xerophthalmia 

resulting from vitamin A deficiency.

SjS affects approximately 4 million Americans and is the third most common rheumatic 

autoimmune disorder after rheumatoid arthritis (RA) and systemic lupus erythematosus 

(SLE) [8]. SjS predominantly affects premenopausal women with a female to male ratio of 

9:1 [9]. Several epidemiological studies reported no differences in prevalence with relation 

to geographic region and SjS is known to occur 0.4–4% of the general population [8, 10]. 

However, due to lack of universally accepted diagnostic criteria, estimated incidence and 

prevalence varies significantly depending on the criteria used [10].

Diagnostic criteria for SjS are still evolving as more comprehensive clinical data are being 

collected from multiple centers. The modified European and American diagnostic criteria 

consider signs and symptoms of dryness as key elements of diagnosis and have been most 

frequently used in clinical settings [11]. When patients accompany other rheumatic diseases 

such as SLE or RA, patients are classified as secondary SjS while primary SjS exhibits SjS 

alone, according to the criteria [11, 12]. Sjögren’s International Collaborative Clinical 

Alliance (SICCA) group suggested new criteria for the diagnosis of SjS in 2012, which 

mainly focuses on objective tests (signs) including serology, focus score, and staining for 

dry eye [13]. The criteria by SICCA proposed lessor emphasis on subjective feelings 

(symptoms) of dryness and classification of SjS as primary or secondary [13].

Main components of current diagnostic criteria include histological examinations of minor 

salivary glands, serology, and dry eye evaluation. Histology slides of minor salivary glands 

are prepared from a lip biopsy specimen to identify localized immune cell infiltrates, also 

known as lymphocytic foci or presented as a focus score. These foci are primarily composed 

of CD4+ T cells, followed by B cells, CD8+ T cells, natural killer cells, macrophages, and 

dendritic cells [14, 15]. The infiltrations typically occur in the salivary and lacrimal glands 

but they can also extend to other organs, such as the lungs and the thyroid gland. Some 

researchers proposed the term, ‘autoimmune epithelitis’, pointing out the critical roles of 

epithelial cells in SjS pathogenesis [6] as they appear to participate in active immune 

response as antigen presenting cells. In addition, infiltrates are frequently associated with 

acinar cell atrophy, progressive fibrosis and presence of adipocytes in the glands [16]. 

However, the presence or extensiveness of lymphocytic infiltration in the salivary or 

lacrimal glands (sialadenitis or dacryoadenitis, respectively) is not always indicative of 

disease severity or degree of secretory dysfunction [17], which prompted researchers to 

investigate other potential factors such as autoantibodies that may lead to dry mouth even in 

the absence of lymphocytic infiltration in the salivary glands[18, 19]. Autoantibodies 

specific for muscarinic type 3 receptor (M3R) expressed on the acinar cells of the salivary 
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glands will be discussed in the context of secretory dysfunction under M3R immunization 

models (2.4.2).

Another main component in diagnosing SjS involves the presence of autoantibodies. Due to 

overactive immune cells, several autoantibodies have been reported to be present in the sera 

of SjS patients and have been used for SjS diagnosis, including rheumatoid factor (RF), anti-

nuclear antibody (ANA), anti-SSA/Ro and anti-SSB/La autoantibodies. Of note, anti-SSA 

antibodies are positive in approximately 60 to 80% and anti-SSB antibodies in 40 to 60% of 

SjS patients and both are known to be associated with extraglandular manifestations in SjS 

[11, 20–22]. Recently, anti-α-fodrin and anti-M3R autoantibodies have also been suggested 

to play a critical role in the pathogenesis of SjS [23, 24].

As SjS affects not only the salivary glands but also the lacrimal glands, dry eye evaluation 

has become an important component in diagnosing SjS. Dry eye evaluations are performed 

to assess the ocular surface integrity, the volume of tear, and the quality of tear film [25]. 

The ocular surface integrity is usually evaluated by using vital dyes. The Ocular Staining 

Score (OSS) utilizing fluorescein corneal staining was recently proposed for clinical use by 

SICCA. Whereas tear volume is generally assessed by several variations of the Schirmer’s 

test, the quality and stability of the tear film is tested by the tear break-up time. Furthermore, 

additional tests are available, such as tear film osmolarity, tear meniscus, tear evaporation, 

and ocular surface impression cytology, although they are not as frequently used[26].

Research endeavor to understand the etiology for SjS has led to significant progress in 

identification of genetic variants at multiple loci implicated in both the altered innate and 

adaptive immune response in SjS [27]. Specific HLA-DR allele subtypes and gene 

polymorphisms in STAT-4, IL-12A, TNIP1, IRF5, BLK and CXCR5 are reported to be 

associated with SjS [28]. A recent publication reported the first genome-wide association 

study in Han Chinease population for primary SjS [29, 30]. In the study, three non-HLA 

susceptibility loci, GTF2I, STAT4 and TNFAIP3, were identified in addition to the HLA 

locus. Interestingly, the locus indicating the strongest susceptibility was not the HLA locus 

but the GTF2I rs117026326 C/T polymorphism, with the T allele as the risk allele for 

primary SjS, which was also associated with anti-Ro/SSA autoantibody in primary SjS [29, 

30]. Of note, most autoimmune susceptibility loci are located outside of protein-coding 

regions, which may alter expression levels of the affected genes [31] and underscores the 

importance of epigenetic gene regulation in SjS predisposition[3]. Among other etiologic 

factors for SjS, environmental factors, especially viral infections, are believed to be 

important. Several studies have shown viral involvement in subsets of SjS patients, which 

includes herpes simplex virus[32], Epstein-Barr virus [33], hepatitis C virus [34], human T-

cell lymphocytic virus type 1 (HTLV-1) [35], and human endogenous retrovirus (HERV-11) 

[36]. Furthermore, because SjS usually occurs in females during peri-or post-menopause, 

hormone imbalance has also been suggested to trigger SjS with an altered androgen-estrogen 

ratio potentially giving rise to an increased risk of SjS development [37, 38].

SjS progresses with or without other rheumatic diseases as mentioned earlier. Although the 

overall mortality in SjS is comparable with that of the general population, the quality of life 

in SjS patients is significantly affected with increased morbidity. Patients mainly rely on 
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palliative methods to relieve symptoms of xerostomia in conjunction with 

immunosuppressive medications. However, no effective therapies are currently available to 

reverse the course of SjS or restore secretory dysfunction [39]. A risk of developing non-

Hodgkin’s B cell lymphoma is 44 times higher in SjS in comparison with healthy 

individuals [4].

2. MOUSE MODELS

Over the past decades, mouse models of SjS have been extensively developed and studied 

and remain as an invaluable tool to understand SjS pathogenesis and test therapeutics [40]. 

In human SjS patients, early diagnosis is a challenge due to the lack of clear clinical 

manifestations in patients. As such, it is nearly impossible to study biological and 

immunological events prior to overt clinical manifestation in SjS patients. In this regard, 

mouse models can provide a valuable tool to understand disease pathogenesis even prior to 

overt disease onset as they allow researchers to investigate at any given time point of interest 

during disease progression [41]. In addition, mice, which possess genetic similarity to 

humans, are amenable to gene cloning and transgenic modifications. This advantage makes 

it possible to perform highly controlled experiments to elucidate causal relationships 

between underlying molecular components and disease pathogenesis [42]. However, there 

are several limitations to using mouse models such as, different living environments, 

evolutionary distance, and some well-recognized discrepancies in innate and adaptive 

immune responses between mice and men [16]. In this regard, it is important to bear in mind 

that a mouse model may not recapitulate all disease characteristics of human SjS and may 

likely represent a subset of patients. More importantly, data obtained from mouse models for 

SjS need to be evaluated and interpreted with caution and within the context of 

understanding of the genetic background of the respective mice.

To facilitate the understanding of mouse models in this review, SjS-prone mouse models are 

categorized as spontaneous, genetically engineered, or experimentally induced animal 

models of SjS. The present article reviews recent mouse models for primary SjS (in the 

absence of lupus-or arthritis-like conditions), especially focusing on the pathophysiology of 

the salivary glands rather than other exocrine glands. Selected secondary SjS models are 

also discussed as founders for primary SjS mouse models. All mouse models discussed in 

this review are summarized in Table 1.

2.1. Spontaneous Animal Models

Genetic predisposition is one of the main characteristics of autoimmune diseases [43, 44]. 

Spontaneous models can provide advantages when it comes to dissecting disease prone- or 

disease resistant- genetic loci and allow identification of temporal profiles of disease onset 

and progression. Many of spontaneous mouse models of primary SjS originated from the 

non-obese diabetic (NOD) mice including the NOD. B10-H2b and C57BL/6.NOD-

Aec1Aec2 strains. Other spontaneous mouse models include NZB/W F1, MRL/lpr, NFS/sld, 

IQI/Jic, and Aly/aly mice. Among these, NFS/sld, IQI/Jic, and Aly/aly mice will be 

described herein as they are considered as primary SjS models.
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2.1.1. NOD (Non-Obese Diabetic) mice—NOD is known to develop not only type I 

diabetes (T1D) but also SjS-like autoimmune exocrinopathy. NOD has been one of the most 

powerful tools in deciphering pathologic mechanisms of SjS [45]. The NOD mouse was 

developed about 25 years ago while selecting for a cataract-prone strain derived from a 

subline of outbred imprinting control region (ICR) mice in Japan[46]. However, NOD mice 

were not cataract-prone. Rather, the NOD strain was established as a model for T1D, also 

known as insulin-dependent diabetes mellitus (IDDM) [47]. The insulin-producing 

pancreatic islets of NOD mice are destroyed by lymphocytic infiltrates that ultimately 

results in insulitis. The spontaneous onset of diabetes in this strain is characterized by many 

symptoms and immunological profiles similar to those of human T1D.

The NOD strain has a unique class II major histocompatibility complex (MHC) haplotype 

named as H-2g7, which is permissive for disease susceptibility [48]. Linkage analyses 

indicated MHC I-Ag7 alone is not sufficient to bring about T1D, although T1D does not 

occur without it. This means that several other genes are associated with the T1D 

autoimmune condition [48, 49]. The majority of islet infiltrating auto-reactive CD4+ and 

fewer CD8+ T cells are typically apparent from 4 weeks of age [50]. However, overt 

manifestation of diabetes as a result of islet destruction usually occurs around 14 weeks of 

age. The spontaneous incidence of diabetes in NOD mice by 210 days is 60–80% for 

females and 20–30% for males [51].

Interestingly, lymphocytic infiltrates in NOD mice were detected in the exocrine glands in 

addition to the pancreas, resulting in sialadenitis and dacryoadenitis[52]. Salivary and 

lacrimal gland infiltration occurs later than in the pancreas at approximately 12–16 weeks of 

age, followed by secretory dysfunction by 16 weeks of age. NOD mice also exhibit several 

signature autoantibodies in common with SjS patients, including ANA, anti-SSA/Ro, anti-

SSB/La, antibodies to 120-kDa a-fodrin, anti-M3R autoantibodies, and islet cell autoantigen 

69 (ICA69) [53, 54]. In addition, critical factors in serum and saliva of NOD mice were 

reported to be IL-10, IFN-γ, IL-7, granulocyte macrophage-colony stimulating factor, IL- 

17, IL-11, IL-5, and IL-18 [55]. Due to these similarities in features to human SjS, NOD 

mice have been widely used for SjS research [52, 56–58], eventually allowing development 

of primary SjS models through the generation of congenic strains of NOD.B10-H2b and 

C57BL/6.NOD-Aec1Aec2, which are discussed later.

2.1.2. NOD.B10-H2b mice—This NOD-derived NOD.B10-H2b mouse model is utilized 

as a model for primary SjS[59]. To examine the contribution of MHC and non-MHC alleles, 

Carnaud et al. [60] utilized two lines of congenic mice: NOD.B10-H2b, in which the NOD 

MHC I-Ag7 locus is replaced by the T1D non-susceptibility MHC I-Ab locus from 

C57BL/10 mice and B10.NOD-H2g7 to prove that each set of MHC-and non-MHC-encoded 

determinants can independently contribute to the manifestation of the T1D [61]. More 

importantly, the NOD.B10-H2b mice, failed to exhibit insulitis and the development of T1D, 

but manifested SjS-like disease [59, 62]. Therefore, NOD.B10-H2b clearly indicates that 

exocrine dysfunction occurs independent of the diabetogenic-MHC locus and influence of 

T1D.
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Similar to human SjS patients, the NOD.B10-H2b mouse exhibits B cell hyper-reactivity, 

increased B cell survival, and high production of autoantibodies [59]. The role of 

complement in SjS pathogenesis was also evaluated by treating NOD.B10-H H2b mice with 

cobra venom factor (CVF), which interferes with C3 factor and led to decreased lymphocyte 

infiltration and level of ANA [63]. NOD.B10-H2b model was also used to test how sex 

hormones influence SjS development, where removal of ovaries from NOD.B10-H2b mice 

accelerated the development of disease while sex hormone replacement prevented the 

symptoms [64]. Interestingly, a conditional knockout mouse for tissue-specific disruption of 

the cyclooxgenase (Cox-2) gene developed by backcrossing NOD.B10-H2b mice and 

Cox-2flox/flox mice which bear a floxed Cox-2 gene on a mixed 129/B6 background failed 

to manifest xerostomia [65, 66]. Further analyses delineated candidate autoimmune 

exocrinopathy (Aec) 2 alleles on chromosome 1 are needed for SS xerostomia [54, 66]. In 

addition, the beneficial effects of epigallocatechin-3-gallate(EGCG), polyphenols extracted 

from green tea leaves, on SjS was reported both in NOD mice and NOD.B10-H2b mice [67, 

68].

2.1.3. C57BL/6.NOD-Aec1Aec2 mice—For T1D development in NOD mice, there are 

multiple susceptibility loci, termed Idd (Insulin dependent diabetes) loci that influence T1D 

development aside from the diabetogenic MHC locus mentioned previously. More than 20 

Idd loci have been identified, but only two of them appear to be essential for the 

development of SjS sialadenitis in mice [69]. The pathophysiologic abnormalities of SjS are 

under the additive and hierarchic control of these two loci encompassing Idd3 of 

chromosome 3 and Idd5 of chromosome 1[54]. C57BL/6 mice congenic for Idd3 or Idd5 

regions of NOD mice recapitulated the SjS disease phenotype without developing diabetes 

[54, 70]. The NOD-derived Idd5 interval congenic in C57BL/6 mice resulted in elevated 

expression of SjS-related biochemical markers, but not loss of secretory function, and 

resembled the asymptomatic initiation phase of SjS. The NOD-derived Idd3 interval 

congenic in the C57BL/6 background appeared normal. However, when both Idd loci are 

present in the C57BL/6 strain, the resulting double congenic mice, named C57BL/6.NOD-

Aec1Aec2, exhibited a robust SjS-like phenotype but did not develop T1D. Aec1 refers to the 

region corresponding to Idd3 on chromosome 3 and Aec2 refers to the region corresponding 

to Idd5 on chromosome 1[54].

C57BL/6.NOD-Aec1Ace2 mice tend to show more rapid disease progression than the NOD 

mouse in terms of both SjS-like pathophysiology onset and secretory dysfunction[54]. 

C57BL/6.NOD-Aec1Aec2 also exhibits altered glandular homeostasis prior to onset of overt 

SjS symptoms and abnormal immunological responses over time [71]. The progress of SjS-

like disease in this model can be divided into 3 phases. In phase 1 (0–8 weeks of age), 

several genetically predetermined physiological abnormalities in organogenesis occur prior 

to the initiation of disease manifestations [58]. Phase 2 (8–16 weeks of age) is characterized 

by leukocyte infiltration into the exocrine glands with a concomitant increase of 

proinflammatory cytokines. In phase 3 (16 weeks of age and older), this mouse strain 

showed pronounced secretory dysfunctions of the salivary and lacrimal glands, the hallmark 

of SjS [69]. The advantage of this model over NOD and NOD-derivatives is that it can be 

comparatively analyzed with common control C57BL/6 strain, which allows for the 
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distinction of disease-specific alterations rather than strain-specific changes in the double 

congenic mice [72]. In addition, C57BL/6.NOD-Aec1Aec2 circumvents the issues related to 

overt T1D development and the problems of multiple immune dysregulation associated with 

the NOD strain [16].

A number of studies using the C57BL/6.NOD-Aec1Aec2 have elucidated many key features 

of SjS pathogenesis. Inflammatory caspases (caspase-11 and caspase-1) and signal 

transducers and activators of transcription-1 (STAT-1) were upregulated in the 

submandibular salivary glands along with increased apoptotic epithelial cells, implying 

activation of innate immune regulation is preceded by altered glandular homeostatsis [73]. 

Furthermore, recent bioinformatics-based transcriptional profiling suggested extensive 

susceptibility gene expression changes prior to onset of the overt SjS [74]. In recent years, 

the role of microRNA in epigenetic gene regulation of autoimmune disorders has been 

actively investigated [75]. Our lab also demonstrated that the expression of microRNA 

miR-146a, a microRNA involved in regulating innate and adaptive immune cell 

development and function, was elevated in the peripheral blood mononuclear cells (PBMCs) 

and in salivary gland tissues from C57BL/6.NOD-Aec1Aec2 in comparison to that from the 

disease-free C57BL/6 control mice and also showed increased expression in SjS patient 

PBMCs in comparison to healthy controls [76]. Taken together, these studies suggest altered 

gene and protein expression and regulation are important to the the initiation and 

progression of SjS.

Cytokine expression in C57BL/6.NOD-Aec1Aec2 mice has also been investigated during 

recent years and many cytokines have been implicated in the pathogenesis of SjS. For 

instance, CD4+ T cells expressing the signature cytokine IL-17 (TH17 cells) were shown to 

be involved during SjS pathogenesis [77–79]. It was also demonstrated that IL-27, known as 

a natural inhibitor of TH17 cell activity, could suppress the development of SjS in C57BL/

6.NOD-Aec1Aec2 mice [80]. Interestingly, both the administration of exogenous IL-7 [81] 

and induction of IL-7 by innate immune stimulation [82] resulted in accelerated SjS onset in 

C57BL/6.NOD-Aec1Aec2 mice [83]. Involvement of various cytokines in SjS pathogenesis 

certainly illustrates the complexity of SjS disease pathogenesis.

2.1.4. Other NOD derivatives—A number of NOD derivatives have also been 

introduced to examine roles of a particular gene/protein of interest in SjS pathogenesis. 

NOD.IFN-γ−/− and NOD.IFN-γ R−/− mice showed no loss of secretory function, suggesting 

the essential role of IFN- γ in triggering epithelial cell injury [84]. In addition, NOD Igμ−/− 

was utilized to study pathogenicity of B cells or autoantibodies in developing secretory 

dysfunction in SjS [85]. Functional roles of TH1 and TH2 cytokines in SjS pathogenesis 

were assessed by utilizing NOD.IL4−/− [86]. Despite manifesting the physiological 

aberrations and marked leukocytic infiltration of the salivary glands characteristic of 

autoimmune xerostomia in NOD mice, the NOD.IL-4−/− mice do not develop xerostomia, 

indicating the importance of TH2-mediated effector function for the loss of secretion.
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2.2. Other Spontaneous Models for SjS

A number of spontaneous mouse models for SjS have been introduced in addition to the 

NOD-derived models described above. Among these, NFS/sld mice, IQI/Jic mice and 

Aly/aly mice are described herein in detail.

2.2.1. NFS/sld mice—NFS/sld mutant mice bear an autosomal recessive gene with 

sublingual gland differentiation (sld) arrest, which influences acinar cell differentiation into 

mucous-secreting cells in the glands [87]. In the NFS/sld model, the salivary gland 

development defect is caused by the aberrant enzymatic proteolysis of α-fodrin, an 

intracellular actin-binding cytoskeleton protein, by caspases [88]. NFS/sld mice exhibit 

autoreactivity towards α-fodrin and develop spontaneous primary SjS-like disease if 

thymectomized 3 days after birth. Interestingly, inflammatory lymphocytic lesions are 

limited to exocrine glands and no inflammation is observed without thymectomy [89]. These 

lesions contain primarily CD4+ T cells with a lesser number of CD8+ T cells and B220+ B 

cells. The autoreactive CD4+ T cells show an increased inflammatory cytokine expression 

profile of IFN-γ, IL-2, IL-10 and IL-12p40 mRNA in the salivary glands [88]. However, 

loss of secretory function occurs later than NOD at around 18 months of age. Thus loss of 

secretion may be, in part, likely due to Fas-mediated apoptosis through age-related 

breakdown of tolerance [90]. In addition to infiltration in the exocrine glands, autoantibodies 

to salivary ductal epithelial cells were found in NFS/sld mice. The 120-kDa organ-specific 

autoantigen recognized by the autoantibody was demonstrated to bear sequence identity to 

human α-fodrin. Likewise, neonatal immunization of recombinant α-fodrin fusion protein 

inhibited the development of sialadenitis [91]. However, when human sera were tested with 

ELISA, anti-α-fodrin autoantibodies seemed to be less specific and sensitive than anti-

SSA/Ro and anti-SSB/La autoantibodies [92].

There have been a number of studies using the NFS/sld mouse model to elucidate the 

pathogenesis of SjS. Prior to overt exocrinopathy, it was reported that a unique CD4+ T cell 

subset expressing CD28low is dramatically increased in spleen cells, but that the CD4+ T 

cells of the mice displaying exocrinopathy were virtually all CD28high[34]. Interestingly, 

transfer of CD4+CD28low T cells into 4 week old NFS/sld mice prevented the development 

of autoimmune lesions and autoantibody production. These results suggest that a 

CD4+CD28low T cell subset that is continuously activated by an organ-specific autoantigen 

may play a regulatory role in the development of organ-specific SjS-like exocrinopathy in 

this animal model [93]. Moreover, intraperitoneal administration of anti-CD86 antibodies 

into NFS/sld mice resulted in dramatic inhibition of autoimmune lesion development, which 

supports the crucial roles of CD86 co-stimulatory molecule in the initiation of TH1-mediated 

autoimmunity in the exocrine glands [94]. In addition, age-related SjS extraglandular 

autoimmune lesions [95], especially those related to arthritis were also investigated in the 

NFS/sld mouse model. The result suggest that the disturbance of activation-induced cell 

death [96] through bystander T cell activation may play a crucial role in the development of 

arthritis in SjS [97].

The role of environmental factors in the development of SjS has also been tested with 

NFS/sld mice. Neonatal exposure to a non-apoptotic dosage of 2,3,7,8-tetrachlorodibenzo-p-

Park et al. Page 8

Curr Pharm Des. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dioxin (TCDD), which is a herbicide regarded as an environmental trigger for SjS, resulted 

in development of autoimmune lesions in the salivary glands and other organs of 

unthymectomized NFS/sld mice [98]. In contrast, the oral administration of a mucosal 

protective agent, rebamipide, (2-[4-chlorobenzoylamino]-3-[2(1H)quinolinon-4-yl]propionic 

acid; OPC-12759) suppressed the activation of CD4+ T cells and TH1 cytokines, associated 

with impaired NF-κB activation, and inhibited the production of autoantibodies [99]. 

Additionally, topical application of cyclosporine, a potent immunosuppressant, for dry eye 

showed some promise as a therapeutic agent when tested with NFS/sld mice [100, 101]. In 

another study, cepharanthin, a biscoclaurine alkaloid from Stephania cepharantha, was 

reported to inhibit the activation of neutrophils, preventing acinar cell destruction in the 

NFS/sld mouse model [102].

2.2.2. IQI/Jic mice—IQI/Jic strain was developed from the ICR strain, the same stock that 

gave rise to the NOD mouse. IQI/Jic mice spontaneously develop focal lymphocytic 

inflammation after 6 months of age in the lacrimal and salivary glands and characterized by 

an increased number of B cells in the thymus of aged females [103]. In addition, 

lymphocytic infiltration can occur in multiple exocrine and non-exocrine organs, such as 

pancreas, kidneys, and lungs [104]. As such, this strain has been used for the study of other 

diseases, such as dermatitis [105], colitis [106] and adrenal cell hyperplasia [107]. Of note, 

ANA were detected but neither anti-SSA/Ro nor anti-SSB/La autoantibodies were detected 

from their sera [103]. Sialadenitis occurs in more than 80% of female mice at all ages 

examined. The lesions became more prominent with age. In contrast, male mice had more 

stable and smaller salivary lesions irrespective of age, though the number of lesions 

increased with age. Similar to human SjS patients, CD4+ cells are predominant in small foci, 

whereas B220+ B cells are a major component of larger lesions. The ductal epithelium 

showed aberrant expression of class II MHC[103]. Enhanced expression of kallikrein-13 

(Klk-13) was suggested to be a candidate autoantigen in SjS pathogenesis because T cell 

responses are increased to organs expressing Klk-13 in IQI/Jic mice [108]. Klk with other 

proteases were demonstrated in the salivary proteome associated with SjS patients [109].

Although lymphocytic infiltrations is first observed in the submandibular glands of females 

and in lacrimal glands of males of IQI/Jic at around 8 weeks of age, clusters of MHC class II

+, CD11c+, CD86+ dendritic cells were shown to be already localized in these tissues at age 

4 weeks, suggesting that dendritic cells and epithelial cells may participate in the activation 

of CD4+ T cells[110]. Interestingly, IQI/Jic mice thymectomized on day 3 after birth were 

reported to show very severe lesions in the lacrimal glands at the age of 16 weeks compared 

to control mice, suggesting that T regulatory (T reg) cells may preserve their 

immunoregulatory function in young IQI/Jic mice [111]. However, salivary gland lesions of 

thymectomized mice were not significantly altered compared to non-thymectomized mice, 

implying that either salivary-specific Tregs escaped elimination in thymectomized mice or 

spontaneous lesions in IQI/Jic mice developed independently of the Treg-mediated immune 

tolerance[111]. Recently, IQI/Jic mice were shown to have an altered distribution of the 

water channel protein aquaporin-5 in submandibular acinar cells. This altered distribution of 

aquaporin-5 appears to be concomitant with the inflammatory infiltration and acinar 
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destruction in these mice [112], which implies potential roles of water channel proteins in 

secretory dysfunction in SjS.

2.2.3. Aly/aly mice—The aly/aly mouse carries the homozygous autosomal recessive 

alymphoplasia (aly) gene mutation and is marked by a systemic absence of lymph nodes and 

Peyer’s patches and disorganized spleen and thymus structures[113]. The aly mutation is 

mapped to the gene coding for NF-κB-inducing kinase [114]. Therefore, it can accept 

allogenic skin grafts readily with impaired responses to T cell-dependent antigens. The 

aly/aly mouse develops progressive inflammation of the lacrimal and salivary glands 

spontaneously from 14 weeks of age, which worsens with age. In addition, aly/aly mice also 

develop inflammatory lesions in the kidneys, lungs and exocrine tissues of the pancreas. For 

this reason, aly/aly mice have been used more frequently for studies of other conditions 

including pancreatitis, dermatitis and osteoporosis [115–117]. Histologically, mononuclear 

infiltrates, primarily consisting of CD4+ cells, invade into periductal regions and frequently 

extend into acinar lobules. The inflammatory lymphocytes in aly/aly mice are also reported 

to include NKT cells [118]. In salivary glands, TCR Vβ1 and Vβ5 are predominantly 

expressed by 15 weeks of age. Lacrimal glands showed more severe damage than salivary 

glands and tissue damage in salivary glands is minor or sometimes absent [113]. Of note, 

antibodies against nuclear elements or salivary gland proteins were not detected.

2.3. Genetically Engineered Disease Models: Transgenic and Knockout mice

Genetic modifications of animal models have been utilized to elucidate pathophysiology of 

the SjS-like disease, focusing specifically on manipulation of gene(s) of interest. Silencing 

or overexpressing a single gene can lead to a profile reminiscent of SjS through alteration of 

pathways downstream of the selected gene. Researchers have gained understanding of SjS 

pathogenesis by evaluating those pathways that are frequently associated with controlling 

immune responses, developmental processes and/or glandular homeostasis. Several 

transgenic mouse models that exhibit SjS disease phenotype have been introduced. 

Examples include but are not limited to: HTLV-1 tax transgenic (Tg) mice, IL-6 Tg mice, 

IL-10 Tg mice, IL-12 Tg mice, IL-14α Tg mice, and B-cell activating factor (BAFF) Tg 

mice. Other strains including transforming growth factor beta 1 (TGF-β1) KO mice and 

thrombospondin-1 (TSP-1)-deficient mice have also been utilized in the field. Since all these 

models could be classified as secondary SjS models, they will not be discussed further in 

this review. However, other widely used knockout (KO) mouse models, such as inhibitor of 

differentiation 3 (Id3) −/− KO mice, phosphoinositide 3-kinase (PI3K) KO mice, and 

aromatase-deficient (Ar KO) mice, along with one Tg mouse strain, retinoblastoma 

associated protein 48 (RbAp48) Tg mice, will be described herein as they are more similar 

to primary SjS models.

2.3.1. Id3 KO mice—Id3 is a transcriptional regulator that inhibits DNA binding of basic-

helix-loop-helix protein transcription factors and functions as a regulator of proliferation and 

differentiation of both immune and non-immune cells [119]. Id3 is also implicated in 

mediating T cell receptor (TCR) signaling during T cell selection and affecting T cell 

lineage differentiation. The characteristic immune features of Id3 germline knockout 

(C57BL/6-Id3−/−) mice include alterations in humoral immune reactions, marginal zone B 
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cell development, B-cell precursor survival, and both MHC-I restricted and MHC-II 

restricted positive and negative selection [16, 120]. In addition, these mice also develop an 

autoimmune disease similar to human SjS [119]. Lacrimal and salivary glands present with 

focal lymphocyte infiltration in periductal and perivascular areas by 2 months of age, which 

increases in severity with age. CD4+ T cell- dominant focal inflammation develops 

exclusively in the salivary and lacrimal glands between 6 and 12 months of age, and anti-Ro 

and anti-La antibodies can be detected around 1 year of age. Interestingly, secretory 

dysfunction in these mice occurs as early as from 6 to 18 weeks of age and seems to be 

independent of target tissue infiltration and/or autoantibody detection. This raises an 

important question of unidentified critical factors that may lead to secretory dysfunction 

other than autoreactive lymphocytes and autoantibodies. Id3 KO mice are known to develop 

tumors in various organs possibly due to lack of immune surveillance by T cells [121].

Adoptive transfer of lymphocyte delineated the main pathogenic role of autoreactive T cells 

in the development of SjS-like disease. The ablation of T cells brought about by neonatal 

thymectomy in Id3 KO resulted in normal secretory function [122]. The T cell lineage-

specific Id3 conditional knockout mouse (Id3f/f; LekCre) exhibited similar phenotypic 

features to the C57BL/6-Id3−/− mouse model with the exception of anti-SSA/Ro and anti-

SSB/La autoantibodies, suggesting that an acquired mutation in developing T cells may 

induce a SjS-like condition [123]. However, a clinical study reported that primary SjS 

patients, mainly Caucasians, showed normal Id3 gene expression in salivary glandular 

epithelial cells, labial salivary glands and peripheral T cells[124]. In addition, no single 

nucleotide polymorphisms (SNPs) in Id3 gene were detected from human primary SjS 

patients [124]. These results highlight potential differences between animal models and 

human patients. Meanwhile, depletion of B cells with CD20 antibody ameliorated SjS-like 

disease and restored secretory function of saliva with reduction of IgG3 in Id3 germline KO 

mice [125]. Their results indicating essential roles of pathological B cells in secretory 

dysfunction are somewhat counterintuitive as far as the timeline of disease development is 

concerned, as mentioned earlier. Nonetheless, B cells in the Id3−/− KO mouse model seem 

to cooperate with T cells [126] and different subsets of immune cells may play specific roles 

in different stages of SjS-like disease progress. For instance, autoreactive T cells may 

initiate the disease at an early stage while autoreactive B cells exacerbate the symptoms at 

later stage.

2.3.2. PI3K KO mice—Phosphoinositide 3-kinases (PI3Ks), belong to a family of enzyme 

lipid kinases involved in diverse cell functions. They produce 3-phosporylated 

phosphoinositides, functioning as second messengers downstream of multiple receptor 

types, such as TCR and CD28, which mediate T cell proliferation and survival [127, 128]. 

They are known to regulate various aspects of lymphocyte functions[129]. Of note, the 

PI3K-ERK (extracellular signal-regulated kinases) signaling pathway is known to be 

involved in saliva production [130]. In B cells, PI3K class IA is known to be the dominant 

subgroup while both PI3K class IA and IB are associated with T cell development and 

immune functions [131]. The diverse and complicated functions of these kinases also 

include regulation of chemokine responsiveness and antigen-driven lymphocyte trafficking. 
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In this regard, multiple PI3K pathways are suggested to contribute to the onset of 

autoimmune diseases in this mouse model.

PI3K class IA is composed of stable heterodimers consisting of a 110-kDa catalytic subunit 

and a regulatory subunit and is known to be implicated in onset and development of 

autoimmune diseases [131]. In order to make null mutant mice with T cells that lack PI3K 

class IA, Lck-Cre conditional transgenic mice were generated by crossing a strain with a 

floxed allele of Pik3r1 with another strain with a null allele Pik3r2 [132]. The resultant 

strain, which was named r1ΔT/r2n, was reported to manifest an inflammatory condition 

reminiscent of SjS. The r1ΔT/r2n strain exhibits lymphocytic infiltration mainly into 

lacrimal glands with extensive destruction and atrophy of acini. The infiltrations consist 

primarily of CD4+ T cells with a lesser proportion of CD8+ T cells and B220+ B cells. 

Antinuclear antibodies are present along with high titers of anti-SSA/Ro autoantibodies, 

whereas anti-SSB/La antibodies were found only in aged mice over 1 year old. The 

lymphocytic infiltrations also occurred in lungs, liver and intestines but not in the kidney, 

thus excluding lupus or arthritis-like conditions, which supports this strain as a primary SjS 

model. Another hallmark of the r1ΔT/r2n strain is aberrant Th cell differentiation. Under 

Th2 polarizing conditions in vitro, r1ΔT/r2n cells exhibited a consistent increase in IFN- γ 

secreting cells with a decreasing percentage of IL-4 secreting cells, which is a featured 

cytokine production pattern of cells having Th2 differentiation defect. Surprisingly, there 

was a simultaneous increase in the IL-10 secreting r1ΔT/r2n effecter cells, although the 

IL-10 is a classical Th2-derived cytokine [132].

2.3.3. Ar KO mice—In general, the prevalence of autoimmune diseases tend to be higher 

in women than in men, which suggests a certain role of the sex hormone, estrogen [133]. 

Interestingly, contrasting effects of estrogen replacement on autoimmune diseases have been 

reported; where it promoted autoimmunity in SLE but showed protective effects in RA 

[126]. For SjS-like disease in mice, estrogen has shown protective effects in normal mice 

(C57BL/6) and ovariectomy of the mice resulted in a SjS-like condition [134]. 

Administration of estrogen lessened T cell mediated-sialadenitis and prevented salivary 

gland cell death in estrogen-deficient mice [135]. However, no evidence of SjS has been 

described in estrogen receptor (ER) deficient mice to date [136, 137].

The aromatase(Ar) gene is known to control activation of estrogen production and 

aromatase knockout (ArKO) mice develop a lymphoproliferative condition at 12 months of 

age, resembling the histopathologic manifestations of SjS [138]. Massive inflammatory 

infiltrates, which consist mainly of B220+ cells along with destruction of acinar cells, can be 

seen in the salivary glands of these mice. The presence of anti-α-fodrin autoantibodies in the 

sera of ArKO mice and proteolytic fragment of α-fodrin are similar to the tissue destruction 

of primary SjS patients. However, ANA is not detected in this model. In parallel with 

sialadenitis, mild splenomegaly, and hypercellularity of mature B cells in the bone marrow 

have also been reported. B cell-dominated inflammation of the kidneys in ArKO mice that 

resulted in renal dysfunction and mild proteinuria was also observed.

Furthermore, estrogen deficiency-mediated hyposalivation studies in rats have elucidated a 

possible mechanism and suggested promising therapeutic interventions with the 
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administration of estrogen, soy isoflavone and N-myc downstream-regulated gene 2 

(NDRG2) [139, 140]. Surprisingly, a recent study using young ArKO mice demonstrated 

contradictory results, reporting that estrogen deficiency did not lead to a SjS-like 

inflammation in the lacrimal tissue or to an aqueous-deficient dry eye although estrogen 

deficiency influenced the expression of sex- and genotype-specific lacrimal gland genes 

[141]. This study indicates that estrogen deficiency alone may not be sufficient to induce 

lacrimal pathophysiology especially at a young age. It may also reflect the differences in the 

salivary and lacrimal gland pathophysiology with respect to the roles of estrogen, similarly 

to the NOD female mice where infiltration in the salivary gland was completely abolished in 

the absence of IFN-γ while infiltration was still present in the lacrimal glands [84].

2.3.4. RbAp48 Tg mice—Retinoblastoma associated protein 48 (RbAp48) is a 

multifunctional protein which binds to transcription factors and kinases to regulate cell 

apoptosis as well as cell growth. Estrogen deficiency brought about by ovariectomy in the 

C57BL/6 mice resulted in increased number of apoptotic epithelial cells in the salivary 

glands with prominent expression of RbAp48 [134]. In contrast, this phenomenon does not 

occur in ER−/−, p53−/−, and E2F-1−/− mice even when they are ovariectomized [142]. Based 

on these findings, the roles of RbAp48 were investigated in salivary gland apoptosis using 

RbAp48 Tg mice. This strain exhibits inflammatory infiltrates primarily composed of T cells 

in salivary and lacrimal glands from 20 weeks of age. Salivary secretory function was 

impaired at 30 weeks of age and increased levels of serum anti-SSA/Ro and anti-SSB/La 

antibodies were detected [143]. Interestingly, apoptosis induced by transgenic expression of 

RbAp48 gene was tissue-specific, which was limited to the salivary glands. Taken together, 

these results suggest that estrogen deficiency initiates p53-mediated apoptosis in the glands 

through RbAp48 overexpression, which may play a critical role in the gender-biased risk of 

this autoimmune disease [144].

2.4. Experimentally Induced Disease Models: Immunization Models

The etiology and pathophysiology of SjS are still under active investigation by many 

laboratories. A perfect mouse model that represents all aspects of disease pathogenesis may 

not exist. Disease onset and progression of SjS-like conditions, either in spontaneous disease 

models or in genetically modified models described above, tend to be closely associated 

with specific genetic backgrounds of the models. In addition to these genetic components, 

environmental or extrinsic stimuli are also known to be essential for disease development 

[145]. In these immunization models, mice are injected with specific autoantigen 

components emulsified in an adjuvant in order to break immunological tolerance to a 

specific organ or tissue expressing the autoantigen, which results in an autoimmune disease 

phenotype similar to human SjS. These disease models induced by immunization can be 

advantageous from the therapeutic point of view because the precise onset of disease is 

known. However, only a few disease-relevant antigens in SjS are currently available 

compared to other autoimmune conditions [146, 147]. As disease models under this 

category, known autoantigens in primary SjS-like disease include Ro, M3R, and carbonic 

anhydrise II (CAII), which will be discussed further in the following section. Another 

extrinsic factor, murine cytomegalovirus (MCMV), which can be considered as an 
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environmental trigger, will not be discussed here since the virus induced disease resembling 

secondary SjS [148].

2.4.1. Ro immunization—Various autoantibodies are detected in human SjS, which 

include anti-SSA/Ro(52 kDa), anti-SSA/Ro(60kDa), anti-SSB/La, anti-α-fodrin, anti-M3R, 

anti-muscarinic type I receptor (M1R) autoantibodies, and rheumatoid factor [149]. Among 

those, Ro and M3R autoantigens have been demonstrated to have strong associations with 

secretory dysfunction [150–152].

Repeated intraperitoneal injections of short peptides from 60-kDa Ro antigen to BALB/c 

mice induced epitope spreading and recapitulated several manifestations of SjS in the mice 

[152]. For instance, they exhibited hyposalivation in the functional analysis and lymphocyte 

infiltration in the salivary glands. The infiltrates comprised mainly of CD4+ (45%) and 

CD8+ (18%) T cells and CD19+(35%) B cells. Furthermore, production of anti-SSA/Ro and 

anti-SSB/La antibodies was detected by 38 weeks of age. Subsequent studies showed that 

oral feeding of Ro60 or Ro60 peptides abolished the SjS-like disease susceptibility of 

BALB/c mice, presumably through immune tolerance induction [153]. However, it has not 

been revealed yet how Ro can be presented to the immune system [154] and the contribution 

of Ro autoantibodies to the pathogenesis of the disease remains controversial [155]. In 

addition, the fact that SjS-like disease induction requires repeated injections over 5 months 

is thought to be a disadvantage of this model.

A recent study using several strains with Ro60 immunization demonstrated that there were 

differences according to the strain [156]. SJL/J mice showed no immune response to the 

Ro60 peptide, while C57BL/6 mice produced antibodies but no epitope spreading was 

observed. PL/J mice exhibited epitope spreading to other structures of Ro60 as well as to La. 

However, SJL/J, C57BL/6 and PL/J strains all showed neither lymphocytic infiltration nor 

salivary dysfunction. In contrast, DBA-2 and BALB/c mice had infiltration but only 

BALB/c presented decreased salivary function. The immunological processes leading to a 

SjS-like disease after Ro immunization were interrupted in a stepwise fashion in these 

different mouse strains. [156]. In the case of Ro52−/− mice, the loss of Ro52 in this strain 

was reported to result in enhanced production of proinflammatory cytokines, indicating that 

Ro52 is a negative regulator [157].

2.4.2. M3R peptide immunization—There is considerable evidence that anti-M3R 

autoantibodies in SjS patients bind to M3R on acinar cells of the salivary glands, resulting in 

loss of secretory function [151]. In the M3R−/− mice, reduced induction of stimulated saliva 

flow was observed in approximately 20% of normal mice whereas there was no alterations 

in stimulated saliva flow in M1R−/− mice [150]. However, double knockout M1R−/− M3R−/− 

mice showed almost complete loss of secretory function [150]. Therefore, based on these 

findings, the predominant role of M3R in salivary secretion was suggested. Immunization of 

C57BL/6-M3R−/− mice with a six-valent mixture of M3R free-form peptides was 

performed, followed by passive transfer of the splenocytes into C57BL/6-Rag−/− 

immunodeficient mice. The resultant mice developed marked mononuclear cell infiltration 

in the salivary glands along with secretory hypofunction. Histological examination further 

showed that the majority of inflammatory infiltrates were CD4+ T cells with a few B cells 
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and several IFN-γ- and IL-17-producing cells. Similarly, the transfer of CD3+ T cells alone 

from M3R−/− immunized with M3R peptides into Rag1−/− mice resulted in infiltration and 

destruction of epithelial cells in the salivary glands, suggesting a pathogenic role of M3R-

reactive CD3+ T cells in the development of SjS-like disease [151].

Recently, a study reported the effect of the second extracellular loop of M3R (208-227) 

peptide immunization of young female NOD/LtJ mice on autoimmune response [158]. 

Following immunization of the M3R peptide in NOD/LtJ mice, Th-1, Th-2, and Th-17 

cytokines were downregulated and lymphocytic infiltration was reduced in the salivary 

glands and the lacrimal glands. The study suggested that immunotherapy using the M3R 

peptide may represent a potential therapeutic alternative although it may be more 

complicated in human patients where anti-M3R antibodies appear to recognize multiple 

epitopes of M3R [13] or other isoforms of muscarinic receptors [23].

2.4.3. CAII immunization—CAII is a zinc containing metalloenzyme that catalyzes the 

rapid interconversion of carbon dioxide and water to bicarbonate and protons. Although 

autoantibodies to this enzyme are a key feature of autoimmune pancreatitis [159], a subset of 

patients with other autoimmune diseases including SjS are known to produce these 

antibodies as well [160, 161]. Immunization with CAII in PL/J(H-2u) mice was reported to 

induce autoimmune sialadenitis with lymphocytic foci and disintegration of surrounding 

acinar cells within the salivary glands [162]. However, the proliferation of PBMCs to CAII 

was not detected, thus the exact role of CAII as a target antigen in the pathogenesis of SjS is 

still not clear [163].

3. CONCLUDING REMARKS

Animal models, especially mouse models, are indispensable tools for studying autoimmune 

diseases. Practicality, short life span, high fertility, genetic malleability, and considerable 

ethnic liberties are the main reasons for the popularity and success of using mouse models 

[16]. The mouse models of SjS have provided a plethora of information and a myriad of 

insight with regard to the pathogenesis of this complex autoimmune condition, which is not 

plausible to acquire from human study at this time. Despite these achievements and 

advantages, continuing efforts have been made to develop improved models since no single 

mouse model has replicated each and every aspect of human SjS to date. Even if a mouse 

model accomplishes the complete profile of a disease phenotype, it may not satisfy the 

definition of an ideal model unless the disease phenotype is observed within a relatively 

reasonable time span of aging or it excludes strain-specific alterations. Therefore, at the 

present time, researchers may need to assemble pieces of information derived from multiple 

models to arrive at an understanding of the various aspects of disease pathogenesis of human 

SjS. Due to the complexity and heterogeneity of human SjS disease, more mouse models 

need to be developed to provide a complete profile of disease pathogenesis and further 

development of therapeutic interventions.

Synteny between humans and mice is known to be significant. Only less than 1% of mouse 

genes are known to lack any homology in the human genes currently detectable [164, 165]. 

This genetic resemblance may be one reason to support the validity of utilizing mouse 
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models. Despite the close similarity in overall genetic make-up between human and mice, 

there are, however, many profound differences between the human and rodent immune 

systems [164]. Furthermore, the immune system of mice usually entails genetic irregularities 

resulting from inbreeding, evolutionary divergence, and lifestyle differences in comparison 

with humans [166]. Even if we assume enough similarity of immune systems between 

species, there also exist a number of limitations intrinsic to utilizing the mouse models. The 

most important limitation is that widely used inbred strains which have a genetic 

homogeneity can mimic one single patient at best and cannot replicate the heterogeneous 

profile of human SjS patients [167]. This may explain unsuccessful clinical trials that 

seemed to be promising in inbred mice experiments [27]. In addition, the initiation of the 

disease is highly artificial especially in the induced models and the administration of 

treatment is usually performed too early unlike what would occur in the clinical situations. 

Due to these limitations, appropriate control of animals for disease onset and progression, 

and cautious interpretation of the results are compulsory [16]. In-depth characterization of 

each mouse model to be used for a specific experiment is desirable prior to data 

interpretation. For instance, in transgenic mice, the random integration with a possibility of a 

potential modification of the host gene expression is a well-known example of 

misinterpretation, which should be controlled by producing and comparing several 

independent transgenic lines [168].

Furthermore, age and strain of mice are basic factors to be considered. Researchers should 

bear in mind that there always exist morphological and functional differences between the 

exocrine glands, between humans and mice, and between individuals. Moreover, there is a 

possibility that anesthesia used in mouse experiments may affect the results, especially the 

measurement of saliva secretion. Additional confounding factors reside in the studies of SjS 

pathogenesis [27]. The fact that we do not have complete knowledge of the human immune 

system and of SjS pathogenesis and etiology limits the development of essential mouse 

models to investigate although current research progress in the field is quite promising.

Nevertheless, the mouse models are invaluable for SjS research. Mouse models that mimic 

the entire aspects of human SjS during different phases of disease progression or that 

provide a clue for etiology would be a useful tool for research. Additional desired 

characteristics for future model developments would include spontaneous development 

[169], disease manifestation timelines similar to human SjS, and cellular elements 

reminiscent of human SjS. In addition, the ideal animal model should show a wide spectrum 

of autoantigens similar to the human disease rather than be designed with bias a priori to a 

specific target autoantigen [167]. Early onset of SjS manifestation is another requirement for 

practical reasons for researchers. Recently, creation of humanized mice was suggested and 

showed some promising results in multiple sclerosis [170]. They were manipulated to mimic 

human disease by transferring genes or cells from human patients into rodents.

The ultimate goal of utilizing animal models is the translation of knowledge and scientific 

information into clinical diagnosis and treatment. Attempts to develop therapeutic regimens 

are encouraged in translational research in SjS. One of the exemplary attempts was the 

recent development of anti-BAFF therapy that was used in an open labelled clinical trial for 

SjS patients [2, 171]. BAFF is a B-cell activating factor that belongs to a TNF superfamily. 
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Initially, the BAFF transgenic mouse was developed and investigated in 1999 for its 

phenotype of autoimmune-related conditions such as nephritis in SLE [24]. As the BAFF 

transgenic mouse ages, it develops a SjS-like condition, showing infiltration in the salivary 

glands and loss of secretory function, which provided insight into the role of BAFF in 

prolonged B cell activity in SjS-like autoimmune exocrinopathy[172]. Anti-BAFF therapy 

with a human monoclonal antibody against BAFF was applied in SjS as a result. Although 

significant improvement of secretory function was not observed in the reported clinical trial, 

patient reported disease index and physician evaluated disease activity were significantly 

improved following anti-BAFF therapy [38]. This is a great example of rapid clinical 

translation of information derived from mouse models in SjS research. Some examples of 

therapeutic interventions in primary SjS mouse models are listed in Table 2.

In conclusion, human SjS is a heterogeneous autoimmune disease whose etiology is 

multifactorial. Coexistence of other autoimmune diseases such as SLE or RA poses 

additional obstacles to the study of SjS pathogenesis. Patients are frequently diagnosed only 

at later stages of disease, thus the earlier events prior to clinical manifestations are 

particularly unknown. Mouse models have been essential tools for SjS research for that 

reason and there has been substantial advancement by utilizing various mouse models 

despite some continuing controversies among the mouse models investigated. In this review, 

we focused on recent updates on SjS mouse models, especially for primary SjS. Each model 

has its distinct advantages and disadvantages in understanding disease pathogenesis. 

Screening of disease phenotype on a regular basis and cautious interpretation of data with 

prior understanding of the origin of the mouse models are the task endowed to researchers. 

No ideal model exists and the development of novel strains is always necessary to meet the 

needs. Advancement in immunology, better understanding of autoimmunity, and rapid 

progress of molecular biology techniques will certainly aid deciphering the enigma of SjS 

pathogenesis in the future.
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