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Abstract

Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) 

expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular 

mediator of memory consolidation processes, evident at both behavioral and neurophysiological 

levels. Specific neural circuits are responsible for storing and executing drug-procuring motor 

programs, whereas other neural circuits are responsible for the active suppression of these 

“seeking” systems. These seeking-circuits are established as associations are formed between 

drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. 

drug seeking) can be diminished either through a passive weakening of seeking-circuits or an 

active suppression of those circuits through extinction. Extinction learning occurs when the 

association between cues and drug are violated, for example, by cue exposure without the drug 

present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of 

addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits 

that “incubate” over prolonged withdrawal periods. We begin by discussing the role of BDNF in 

extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in 

infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like 

effects in hippocampal–prefrontal circuits and consider the role of sex differences in extinction 

and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol “break the 

mold” in terms of BDNF function in extinction circuits.
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1. Introduction

It has long been recognized that addiction is a disorder of learning and memory (Berke and 

Hyman, 2000; Di Chiara et al., 1999; Torregrossa et al., 2011; White, 1996). Repetitive drug 

use strengthens the learned associations between the interoceptive (e.g. rewarding) effects of 

a drug and various cues that predict drug availability and/or responses that lead to drug 

reward. The rewarding properties of abused drugs are thought to arise from the release of 

dopamine in the ventral tegmental area (VTA) projections to the nucleus accumbens, 

particularly the shell (Roberts et al., 1977; Wise and Bozarth, 1985). Given that dopamine 

plays an integral role in learning and memory, it can be difficult to distinguish dopamine’s 

effects on the experience of drug reward or the hedonic aspects of drug taking, versus the 

strengthening of the behavior through reinforcement learning, whereby learned associations 

between cues and the drug they predict come to drive drug-seeking behavior. Indeed, once a 

cue becomes predictive of reward, dopamine neurons shift their firing from reward onset to 

cue onset (Hollerman and Schultz, 1999; Schultz et al., 1997). The incentive sensitization 

theory of addiction suggests that over time, the incentive salience, or motivational 

significance, of drug-related cues becomes pathologically amplified (Robinson and 

Berridge, 1993, 2001). This may account, in part, for the “incubation,” or progressive 

amplification, of drug seeking that has been reported with longer periods of protracted 

abstinence (Grimm et al., 2001; Tran-Nguyen et al., 1998).

Brain-derived neurotrophic factor (BDNF) has a well-known role not only in 

neurodevelopment, where it has been shown to support synaptogenesis (Lu and Figurov, 

1997; Lu et al., 2009; Shen and Cowan, 2010), but also in memory formation, where it 

promotes synaptic restructuring (Lu and Figurov, 1997; Lu et al., 2007; Rex et al., 2007; 

Schjetnan and Escobar, 2010; Yamada et al., 2002). Both of these processes likely 

contribute to the storage and retrieval of memories, an area of growing interest in the 

treatment of neuropsychiatric disorders with an etiological basis in learning and memory 

mechanisms. One of the hallmarks of novel learning is the activation of N-methyl-D-

aspartate (NMDA) ionotropic glutamate receptors, which promote Hebbian learning by 

acting as coincidence detectors in the central nervous system (Tsien, 2001). At the cellular 

level, BDNF appears to support memory, at least in part, by enhancing NMDA receptor 

currents in neurons via activation of its tyrosine kinase receptor TrkB and subsequent 

intermediary molecules (e.g. the protein Fyn) (Xu et al., 2006; Yamada and Nabeshima, 

2004). BDNF can be presynaptically released from neurons in an activity-dependent 

manner, and this typically occurs during neuronal bursting (Balkowiec and Katz, 2002), a 

type of high-frequency activity pattern that has been observed during episodes of memory 

consolidation (Burgos-Robles et al., 2007; Cooper, 2002). In the postsynaptic neuron, 

BDNF promotes NMDA receptor-dependent bursting (Levine et al., 1998; Madara and 

Levine, 2008; Rosas-Vidal et al., 2014) and thus, at a systems level, may work to strengthen 

neural circuits responsible for memory storage and retrieval.

Memory manipulation tactics are an area of active investigation for the treatment of 

addiction and other disorders involving a hyper reactivity to cues, including posttraumatic 

stress disorder (PTSD) (Lee et al., 2006; Milton, 2012; Monfils et al., 2009; Schiller et al., 

2012; Spiers and Bendor, 2014). There are two main options for treatment of maladaptive 
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memories: (1) erasure of the pathological memory, or (2) creation of a new, inhibitory 

memory that opposes the pathological associations (Kiefer and Dinter, 2011; Merlo et al., 

2014; Nic Dhonnchadha and Kantak, 2011). Memory erasure has been achieved through a 

process termed reconsolidation blockade, which interferes with the “re-storing” of memories 

once they have been retrieved (Milton and Everitt, 2010; Nader et al., 2000; Schwabe et al., 

2014). In contrast, extinction training has been used to suppress pathological responses and 

is known to involve consolidation of a new inhibitory memory trace (Bouton, 1993; Bouton 

et al., 2006; Pavlov, 1927). The inhibitory extinction memory is thought to then compete 

with the original memory trace for control over the expression of conditioned behavior 

(Quirk et al., 2006). This occurs through the recruitment of inhibitory brain structures that 

are situated to inhibit expression centers that drive the prepotent conditioned response 

(Peters et al., 2009; Quirk et al., 2006).

Extinction and incubation have been argued to be opposing mnemonic processes, and BDNF 

plays a role in both, through its actions in distinct neural circuits. Here we compare BDNF 

effects on each of these processes, across different classes of abused drugs, focusing 

primarily on heroin and alcohol (cf. McGinty et al., 2014, for further comparison with 

cocaine). As estrogen has been shown to produce similar effects to BDNF on learning and 

memory, we also consider the impact of sex differences on these processes. We begin with a 

general discussion on the role of BDNF in memory, drawing from a literature on fear 

learning and memory.

2. BDNF and extinction memory

Extinction memory has particular therapeutic potential as it can be used to bring conditioned 

behaviors under cognitive and emotional control (Kantak and Nic Dhonnchadha, 2011; 

Kaplan et al., 2010). Extinction training is analogous to cue exposure therapy, where drug-

related cues are presented in the absence of the outcome they predict (e.g. in the absence of 

the abused drug) (Davis et al., 2006; Myers and Carlezon, 2012). Over time, the conditioned 

responses triggered by the cues are diminished, or extinguished, through this new learning 

that the cues are now meaningless. The inhibitory learning that occurs during cue exposure 

therapy can be enhanced by pretreatment with the NMDA receptor co-agonist, D-

cycloserine (Myers and Carlezon, 2012), and analogous effects have been observed in 

animal models of PTSD and drug addiction that incorporate an extinction learning phase 

(Kelamangalath et al., 2009; Ledgerwood et al., 2005; Thanos et al., 2011; Torregrossa et 

al., 2010). We know from these animal models that extinction of both fear and cocaine 

seeking rely on the prefrontal cortex (PFC), specifically the ventromedial portion (e.g. 

rodent infralimbic PFC) (Peters et al., 2008, 2009; Quirk and Mueller, 2007).

For conditioned fear behavior, BDNF produces therapeutic reductions in cue-induced fear, 

particularly BDNF in the hippocampal–infralimbic pathway (Peters et al., 2010; Rosas-

Vidal et al., 2014). Exogenous BDNF applied to either brain site reduces fear in a manner 

that is reminiscent of extinction-induced reductions in fear (Figs. 1 and 2A). The importance 

of the hippocampal to infralimbic projection is underscored by the observation that BDNF 

applied directly to hippocampus can reduce fear in an infralimbic BDNF-dependent fashion 

(Peters et al., 2010). Furthermore, exogenous application of hippocampal BDNF promotes 
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neuronal bursting in infralimbic neurons, a known correlate of fear extinction memory 

consolidation (Rosas-Vidal et al., 2014). Long-term potentiation (LTP) also develops in the 

hippocampal-prefrontal pathway after extinction learning occurs (Farinelli et al., 2006), and 

disrupting this potentiation disrupts fear extinction memory retrieval (Farinelli et al., 2006; 

Inoue et al., 2013; Judo et al., 2010). Given that BDNF promotes LTP in cortical neurons 

(Abidin et al., 2007; Cabezas and Buno, 2010; Lu et al., 2010, 2007; Messaoudi et al., 

2002), it may simulate fear extinction memory by emulating this neurophysiological 

plasticity.

3. The estrogen–BDNF connection

Estrogen effects on neuronal plasticity and cognition are similar to those of BDNF (Aguirre 

and Baudry, 2009; Luine and Frankfurt, 2013; Sato et al., 2007; Scharfman and Maclusky, 

2005; Sherwin, 2002, 2005; Smith and McMahon, 2006). The most abundant estrogen in the 

brain, 17β-estradiol, exerts its effects through receptors (ERα and ERβ) on both the cell 

membrane and the nucleus (Levin, 2002). The gene for BDNF has an estrogen response 

element, which may mediate the ability of estradiol to increase BDNF protein levels in the 

PFC and hippocampus (Harte-Hargrove et al., 2013; Liu et al., 2001; but see Murphy et al., 

1998), although a transsynaptic mechanism has also been suggested (Blurton-Jones et al., 

2003). Estradiol-induced increases in BDNF levels are seen in ovariectomized rats 

(Scharfman et al., 2007) and in freely cycling rats at the start of proestrus and into estrus, 

when estradiol levels are high (Harte-Hargrove et al., 2013; Scharfman et al., 2003). These 

observed increases in hippocampal-prefrontal BDNF may account for estradiol’s ability to 

enhance both spatial (hippocampal) and non-spatial (prefrontal) memories (Luine and 

Frankfurt, 2013).

Importantly, estradiol has also been shown to enhance fear extinction memory in female rats 

when administered during memory consolidation, and this effect can be emulated using an 

ERβ, but not an ERα receptor agonist (Chang et al., 2009; Galvin and Ninan, 2014; Zeidan 

et al., 2011). In female humans, fear extinction memory recall is better when extinction is 

conducted during high-estradiol states (Milad et al., 2009, 2010). In both female rats and 

humans, these effects are associated with enhanced activation and synaptic plasticity in 

ventromedial PFC (Galvin and Ninan, 2014; Zeidan et al., 2011), as well as downstream 

activation of NMDA receptors in this region (Galvin and Ninan, 2014). These studies are 

consistent with observations that low estrogen is associated with extinction failure in 

females with PTSD (Glover et al., 2012). Following trauma, women are more prone than 

men to develop anxiety disorders, including PTSD, and low estrogen, including the blockade 

of estrogen effects by birth control (Graham and Milad, 2012), may in part explain this 

vulnerability (Lebron-Milad et al., 2012). Even in male rats, estradiol synthesis is required 

for successful fear extinction formation (Graham and Milad, 2014), suggesting that these 

effects of estrogen are relevant to both sexes. Though it remains to be shown whether the 

extinction-enhancing effects of estradiol are BDNF-dependent, they are congruent with the 

ability of estradiol to increase BDNF in hippocampal-prefrontal circuits where it promotes 

extinction.
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4. BDNF and cocaine seeking

The PFC is an integral part of the extinction circuit for both fear and cocaine memories, but 

is BDNF and/or TrkB signaling a common mechanism for extinction? A recent study 

suggests this may be the case; Otis et al. (2014) observed an extinction-enhancing effect of 

infralimbic-applied exogenous BDNF on cocaine conditioned place preference (CPP) 

memory (Fig. 2B). However, this BDNF effect only emerged after extinction training, 

whereas infralimbic BDNF is capable of inducing fear extinction independent of training 

(Otis et al., 2014; Peters et al., 2010). In both cases, NMDA receptor activation is a requisite 

downstream target of BDNF (Otis et al., 2014; Peters et al., 2010). Furthermore, BDNF may 

be a downstream mechanism by which AMPAkines facilitate extinction of cocaine seeking 

(Jourdi et al., 2009; LaLumiere et al., 2010). Whether or not the hippocampus is the source 

of infralimbic BDNF for cocaine extinction remains an open question. One study revealed 

increased hippocampal BDNF levels associated with the ability of environmental 

enrichment to reduce cocaine seeking after abstinence (Thiel et al., 2011). Notably, 

however, this effect did not preclude the incubation of cocaine seeking.

One theory of addiction postulates that an increase in the incentive salience of drug-

associated cues increases relapse vulnerability (Robinson and Berridge, 2008). Sign trackers, 

animals that track a reward-predictive cue instead of the reward itself, are thought to be 

more addiction prone compared to their goal-tracking counterparts that track the reward 

location. Sign trackers have reduced levels of prefrontal BDNF, are more prone to the 

incubation of cue-elicited fear, and exhibit increased cue-induced reinstatement of cocaine 

seeking after extinction (Morrow et al., 2014; Saunders and Robinson, 2010; Yager and 

Robinson, 2012). This suggests a protective role of prefrontal BDNF in reducing the 

salience of conditioned cues and their propensity to trigger relapse. In light of recent 

evidence that suggests goal-trackers may be more prone to relapse triggered by contextual 

cues (Saunders et al., 2014), the types of cues that trigger relapse could be a critically 

important factor when considering addiction therapeutics that increase prefrontal BDNF.

Prefrontal-applied BDNF has been shown to reduce cocaine seeking, at least in part, by 

normalizing accumbens glutamate homeostasis (Berglind et al., 2007, 2009). Interestingly, 

however, this effect is attributed to BDNF actions in prelimbic, not infralimbic, PFC. These 

dorsal and ventral subregions of medial PFC are known for their opposing influences on 

behavior, and this dichotomy of function is preserved for both fear and cocaine-seeking 

behaviors (Peters et al., 2009). The timing of the prelimbic BDNF infusion (immediately 

after the last cocaine self-administration session) may be of crucial importance for these 

observed effects on cocaine seeking, and cocaine may need to be “on board” at the time of 

treatment (Berglind et al., 2009; McGinty et al., 2009). Such a profile suggests that 

prelimbic BDNF may disrupt reconsolidation of the cocaine memory and consequent action 

control (Gourley et al., 2012), which is conceptually quite different from the extinction-

enhancing effects of infralimbic BDNF (Milton, 2012; Torregrossa and Taylor, 2012). From 

a treatment perspective, however, both of these mechanisms are viable therapeutic pursuits.

The incubation of cocaine seeking that occurs after prolonged withdrawal has been linked to 

mesolimbic BDNF (Graham et al., 2007; Grimm et al., 2003; Li et al., 2013; Lu et al.,2004a, 
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2004b). Local infusion of BDNF into the VTA immediately after the last cocaine self-

administration session produces a persistent increase in cocaine seeking (Lu et al., 2004a), 

opposite the decreases reported for PFC BDNF discussed above (Berglind et al., 2007, 

2009; McGinty et al., 2009; Otis et al., 2014). Similarly, BDNF in the nucleus accumbens 

appears to promote cocaine seeking and delay extinction, whereas accumbens BDNF 

knockdown reduces cocaine seeking (Bahi et al., 2008; Graham et al., 2007). These effects 

may be primarily localized to the nucleus accumbens shell, as BDNF in the accumbens core 

has been shown to both reduce cocaine seeking (Li et al., 2013) and enhance cocaine cue-

mediated behaviors (Horger et al., 1999). Thus, in contrast with the therapeutic effects of 

BDNF in the PFC, the effects of BDNF in the VTA-accumbens pathway tend to enhance 

cocaine seeking. This underscores the importance of neural circuitry considerations when 

considering BDNF-based addiction therapies.

5. BDNF and opiate seeking

The neurobiological and anatomical substrates of opiate seeking appear to be distinct from 

those identified for cocaine seeking (see Badiani et al., 2011 for review). For example, in 

contrast to cocaine seeking, heroin seeking appears to incubate independently of accumbens 

BDNF (Theberge et al., 2012). The role of BDNF in the VTA-accumbens pathway is an area 

of growing interest and dispute for opiate reward and memory. A recent study from Koo and 

colleagues (2012) indicates that VTA BDNF opposes the rewarding effects of morphine by 

reducing activity in presumed accumbens-projecting dopamine neurons (Koo et al., 2012). 

However, these data stand in stark opposition with earlier work from Vargas-Perez et al. 

(2009), who found that VTA BDNF neither opposes nor facilitates morphine reward, but 

rather switches the mechanism for opiate reward from a dopamine-independent to a 

dopamine-dependent one. This occurs through BDNF’s reversal of GABA currents in VTA 

neurons from inhibitory to excitatory, and this effect is thought to underlie the negative 

aversive state associated with opiate withdrawal (Vargas-Perez et al., 2014).

The reasons for these discrepancies are unclear, but they point to a need for further 

investigation of the role of BDNF within the VTA-accumbens pathway. Koo et al. (2014) 

have also observed a negative relationship between accumbens BDNF and morphine CPP 

memory, but in a cell-type specific manner. That is, selective ablation of the TrkB BDNF 

receptor on dopamine D1 receptor-containing medium spiny neurons resulted in reduced 

GABA-A receptor currents in these neurons, ultimately promoting morphine reward (Koo et 

al., 2014). Given that morphine exposure led to a similar cell-type specific downregulation 

of TrkB in D1-neurons, the authors hypothesized that this neuroadaptation contributes to 

morphine addiction. Notably, however, direct infusion of BDNF into the accumbens did not 

alter morphine CPP (Koo et al., 2012). Thus, while the precise role of BDNF in the 

mesoaccumbens system must still be resolved, it is clear that it differs from that reported for 

cocaine.

Similarly, data are lacking regarding the functional impact of cortical BDNF on opiate 

memories. However, some evidence supports a potential link between cortical BDNF and 

the inhibition of opiate behaviors. For example, suppression of the receptor for activated C 

kinase 1 (RACK1) using a short hairpin strategy blocks morphine CPP memory formation, 
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while simultaneously increasing BDNF transcription in PFC and hippocampus (Wan et al., 

2011). However, it is difficult to directly relate fluctuations in mRNA to functional 

alterations in BDNF protein, as these measures often do not always correlate (see Table 1). 

Memantine, a drug with mixed pharmacology, including antagonism of NMDA receptors, 

also attenuates morphine reward-memory in a CPP paradigm and prevents morphine-

induced reductions in BDNF protein within the PFC and nucleus accumbens (Chen et al., 

2011). While these studies suggest an association between reduced morphine reward and 

increased prefrontal (and hippocampal or accumbal) BDNF, another study implicates 

prefrontal BDNF in extinction of morphine conditioned place aversion (Wang et al., 2012). 

Extinction of this aversive memory was also dependent on NMDA receptor and activation of 

an ERK-CREB pathway, consistent with mechanisms of extinction for fear and cocaine. 

This raises the intriguing possibility that the aversive and rewarding components of opiate 

memories may have distinct neural mechanisms of extinction.

In humans, the Val66Met polymorphism in the BDNF gene has been linked to incidence and 

age of onset of heroin abuse (Cheng et al., 2005; Hou et al., 2010), as well as willingness to 

invest more time and money in obtaining heroin (Greenwald et al., 2012). Given that this 

polymorphism has been associated with deficits in hippocampal release of BDNF and 

impaired extinction (Soliman et al., 2010; Yu et al., 2009), one might expect heroin use to be 

perpetuated by such extinction deficits, provided hippocampal BDNF is a shared mechanism 

for extinction memory between fear and opiates. Opiate exposure disrupts hippocampal 

long-term potentiation (LTP) (Salmanzadeh et al., 2003), a proposed neurophysiological 

correlate of memory, and re-exposure to opiates during withdrawal can restore this 

hippocampal LTP (Pu et al., 2002), but notably, extinction does not (Portugal et al., 2014). 

At least one study has suggested the hippocampus is involved in extinction of morphine CPP 

(Billa et al., 2008), but while molecular changes in hippocampus were observed after 

extinction, no functional manipulation of hippocampus was performed to test its role in 

extinction behavior.

We performed an experiment to test the ability of exogenous, hippocampal-applied BDNF to 

alter heroin extinction and reinstatement in a self-administration model of relapse. BDNF 

(0.75 μg/side) was infused into hippocampus the day after the last heroin self-administration 

session. Extinction training commenced the day after this infusion. This design is analogous 

to the study by Peters et al. (2010), where hippocampal infusions of BDNF the day after fear 

conditioning reduced fear on the first extinction session the next day. Interestingly, there 

were no significant effects of hippocampal-applied BDNF on extinction or reinstatement of 

heroin seeking (Fig. 1B). BDNF can induce LTP when applied exogenously to the 

hippocampus of naïve animals (Messaoudi et al., 2002), and this may account for its 

therapeutic, extinction-like effects on fear, particularly given that synaptic potentiation in 

hippocampus has been associated with extinction memory (Saito et al., 2012). These 

negative findings in the heroin model suggest that BDNF may not induce LTP in the opiate-

exposed hippocampus, that hippocampal LTP may not mediate extinction of heroin seeking, 

or that conditions are not optimal to detect an effect in our model.

Although hippocampal-applied BDNF did not alter extinction or reinstatement of heroin 

seeking in our hands, it is notable that animals extinguished their heroin-seeking behavior 
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rapidly, over just five 1-hour sessions. Thus, they do not appear to be extinction-impaired 

per se. As recently reviewed by Peters et al. (2013), the infralimbic PFC may play a 

fundamentally different role in cocaine- versus heroin-seeking behavior. Whereas the 

infralimbic PFC promotes extinction of cocaine seeking (LaLumiere et al., 2010; Peters et 

al., 2008), it appears to promote relapse for heroin (Bossert et al., 2011, 2012). While this 

may be due to the existence of separate neural ensembles for extinction and relapse within 

the structure that complicate interpretations of whole-structure manipulations, the lack of 

involvement of infra-limbic PFC in extinction of heroin seeking, coupled with the lack of 

hippocampal BDNF involvement, supports the notion that extinction of heroin seeking may 

rely on fundamentally different neural mechanisms than those for fear and cocaine.

6. BDNF and alcohol seeking

A growing, though mixed, literature has implicated alterations in BDNF in risk for both the 

development of alcohol use disorders and in propensity to relapse. Serum BDNF levels 

appear to be decreased in alcohol dependent individuals (Zanardini et al., 2011), but these 

serum levels may rebound during abstinence (Huang et al., 2010), reaching levels that are in 

some cases higher than those of control populations (D’Sa et al., 2012). It is unclear, 

however, how these peripheral findings relate to changes within the central nervous system 

in humans. In addition to changes in peripheral BDNF levels, considerable evidence points 

toward a relationship between genetic differences in the BDNF system and alcohol use 

disorders. Though findings are inconsistent (Nedic et al., 2012), data suggest that the 

Val66Met BDNF polymorphism may predict the development of alcohol use disorders. 

Beyond general alterations in BDNF signaling in the alcoholic population, the Val66Met 

polymorphism has been specifically associated with increased propensity to relapse after 

shorter abstinent periods (Wojnar et al., 2009). Interestingly, the BDNF Val66Met 

polymorphism has also been associated with executive function in individuals at risk for 

alcohol use disorders. In non-alcoholic adults with alcoholic parents, the polymorphism was 

predictive of cognitive performance on a number of measures (Benzerouk et al., 2013) 

suggesting that differences in BDNF signaling may promote alcohol use disorders, and 

potentially relapse, through a more general effect on executive function.

Animal models have added substantially to this literature, with a number of studies showing 

that alcohol exposure differentially impacts BDNF expression in limbic corticostriatal 

circuits that mediate reward-seeking and -taking behaviors (Jeanblanc et al., 2009, 2012; 

Logrip et al., 2009). While some animal models suggest correlations between serum levels 

and brain BDNF levels (Klein et al., 2010), changes in BDNF after alcohol exposure do not 

appear to be uniform across the brain, suggesting difficulty in relating peripheral changes to 

changes within specific brain regions. In particular, chronic ethanol exposure increases 

BDNF mRNA in the striatum in a RACK1-dependent manner (Leggio et al., 2014; 

McGough et al., 2004). In contrast, decreases in BDNF mRNA in the hippocampus, 

hypothalamus and cortex have been reported (Logrip et al., 2009; MacLennan et al., 1995; 

Tapia-Arancibia et al., 2001). Subchronic ethanol exposure increases TrkB mRNA 

expression in the basal forebrain and cortex (Miki et al., 2013), and increases in BDNF 

mRNA have been observed in the hippocampus and hypothalamus after acute withdrawal 

(Tapia-Arancibia et al., 2001). Thus, the precise timing and extent of ethanol exposure is 
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likely to be critical in interpreting ethanol effects on BDNF expression. These changes in 

mRNA expression are likely downstream to ethanol-induced changes in chromatin 

remodeling, suggesting epigenetic regulation of BDNF expression as a result of ethanol 

exposure (Stragier et al., 2014).

Together, the clinical and preclinical data implicate innate and alcohol-induced alterations in 

BDNF in alcohol use disorders. A number of studies have shown that manipulating BDNF 

or its signaling partners can alter ethanol consumption. For example, BDNF heterozygotes 

exhibit reduced ethanol consumption (McGough et al., 2004), similar to that observed with 

TrkB antagonism, which also opposes ethanol-induced changes in the dopamine system 

(Leggio et al., 2014). Interestingly, BDNF infusions directly into the VTA do not alter 

expression of ethanol CPP, but do convert the underlying mechanism for this CPP from a 

dopamine-dependent to a dopamine-independent one (Ting-A-Kee et al., 2013). As with 

opiates, this simulates the endogenous switch that occurs during withdrawal, despite the fact 

these dopamine contingencies are opposite for ethanol and opiates (Ting-A-Kee et al., 2013; 

Vargas-Perez et al., 2009, 2014; but see Koo et al., 2012). By contrast, loss of BDNF in the 

dorsolateral striatum impairs both ethanol CPP memory and free consumption (Bahi and 

Dreyer, 2013), as well as intake in a self-administration model (Jeanblanc et al., 2009). The 

mechanism by which BDNF signaling reduces ethanol consumption, preference and self-

administration is unclear. Consistent with other drugs of abuse, uncontrolled drug seeking 

characterizes alcohol use disorders. Chronic ethanol exposure has been shown to result in 

impairments in behavioral flexibility (Kroener et al., 2012; Trantham-Davidson et al., 2014), 

and at least adolescent ethanol exposure impairs extinction learning (Gass et al., 2014). 

Notably, chronic ethanol exposure can also impair extinction of fear, suggesting that ethanol 

exposure itself can produce changes in extinction neural circuits (Holmes et al., 2012), 

though a role for ethanol-induced changes in BDNF has not to our knowledge been 

implicated in these effects.

Like other reinforcers, extinction of ethanol seeking appears to involve the infralimbic PFC. 

Ethanol extinction can be facilitated by modulation of mGluR5 signaling that is infralimbic-

dependent (Gass et al., 2014). In addition, individual differences in resistance to ethanol 

extinction are associated with innate differences in the expression of PSA-NCAM, a 

proplasticity molecule, in the infralimbic PFC (Barker et al., 2012). Loss of PSA-NCAM 

selectively within the infra-limbic, but not prelimbic PFC results in the inability to 

extinguish ethanol seeking. Given this role for infralimbic PFC in the extinction of ethanol 

seeking, we investigated whether infralimbic BDNF infusions would facilitate extinction. 

Surprisingly, we saw no facilitation of extinction learning (Fig. 2C) after infusion of BDNF 

(0.4 μg/μl, 0.2 μl/side) into the infralimbic PFC. Importantly, while animals in this study 

self-administered ethanol, these animals were not ethanol dependent. Because ethanol 

dependence itself alters extinction learning (Gass et al., 2014; Holmes et al., 2012), it 

remains possible that BDNF administration within the infralimbic PFC may rescue 

dependence-induced impairments in extinction learning.

These data suggest that BDNF administration within the infralimbic PFC is not sufficient to 

mimic extinction memory, in contrast with fear extinction (Peters et al., 2010). Interestingly, 

the role of infralimbic PFC in ethanol extinction is less clearly established relative to 
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cocaine. Inactivation of the infralimbic PFC does not prevent expression of extinction of 

ethanol seeking as it does for cocaine and fear (Peters et al., 2009; Willcocks and McNally, 

2013). Though infralimbic PFC plasticity appears to be involved in ethanol extinction 

(Barker et al., 2012; Gass et al., 2014) and extinction of fear in ethanol-dependent animals 

(Holmes et al., 2012), inactivation after the acquisition of extinction does not impact 

subsequent expression of that extinction. This may in part be because ethanol engages 

different subcortical structures than cocaine that may mediate extinction despite the loss of 

infralimbic activity. Because alcohol is a caloric reinforcer – as opposed to other drugs of 

abuse – it is important to consider that there may be a greater involvement of satiety 

circuitry. As with cocaine, inactivation of the nucleus accumbens shell has been shown to 

reinstate extinguished ethanol seeking (Millan et al., 2010; Peters et al., 2008). How 

interactions between the shell and infralimbic PFC are involved in the extinction of ethanol 

seeking is as yet unknown. Interestingly, these authors expanded upon this finding by 

demonstrating that nucleus accumbens shell mediates ethanol extinction by inhibiting 

hypothalamic neurons that are largely involved in signaling satiety. Indeed, the context-

induced reinstatement of ethanol seeking is associated with activation of the nucleus 

accumbens shell to lateral hypothalamus pathway, and inactivation of the lateral 

hypothalamus prevent reinstatement (Marchant et al., 2009). Together with findings 

implicating infralimbic projections to the dorsomedial hypothalamus in the expression of 

ethanol extinction (Marchant et al., 2010), these data suggest a larger network through 

which infralimbic PFC may interact with hypothalamic targets to drive the extinction and 

reinstatement of ethanol seeking. This interaction suggests that the profile of ethanol 

extinction may share overlapping features with food or other caloric reinforcers, rather than 

other drugs of abuse, due to the engagement of hypothalamic satiety circuits.

7. Sex differences, BDNF, and drug seeking

Importantly, the data described above were collected primarily in male animals. Notable sex 

differences exist in a number of components of addictive behavior, in both animal models 

and in human populations (Becker and Hu, 2008; Carroll and Anker, 2010; Lynch et al., 

2002; Yu et al., 2007). Female rats tend to show greater resistance to cocaine extinction 

(Fuchs et al., 2005; Hilderbrand and Lasek, 2013; Kippin et al., 2005; Kosten and Zhang, 

2008), as well as heightened reinstatement, cue reactivity (Bobzean et al., 2010; Feltenstein 

et al., 2011; Lynch and Carroll, 2000), and incubation of cocaine seeking (Kerstetter et al., 

2008). In female rats, 17β-estradiol is required for extinction of cocaine CPP, and chronic 

treatment with 17β-estradiol can facilitate extinction (Larson and Carroll, 2007). It is 

possible that these effects are mediated through estrogen interactions with BDNF signaling, 

as with fear (Lebron-Milad and Milad, 2012; Milad et al., 2009, 2010), though direct 

evidence for this is lacking with regards to cocaine.

There are significant sex differences in ethanol seeking behaviors that appear to be both sex 

chromosome and gonadal hormone related. Female mice have been shown repeatedly to 

self-administer higher volumes of ethanol than male animals (Barker et al., 2010), though 

chromosomal male mice developed ethanol-seeking habits more rapidly. While to our 

knowledge, sex differences in extinction of ethanol seeking have not been reported, as 

described above, sex drives differential roles for BDNF in learning and memory. 

Barker et al. Page 10

Brain Res. Author manuscript; available in PMC 2016 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Importantly, sex also appears to mediate the expression of hippocampal BDNF during acute 

alcohol withdrawal, with females showing extensive increases in BDNF, and males showing 

a more restricted increase (Alele and Devaud, 2013). Interestingly, these changes were 

independent of current gonadal status. Since early withdrawal is a known stressor, it is 

difficult to determine whether these effects were due to ethanol withdrawal, stress, or a 

combination thereof.

While female rats have been shown to acquire heroin self-administration more rapidly than 

males (Lynch and Carroll, 1999) and appear to be more motivated to seek heroin (Carroll et 

al., 2002), to our knowledge no data exist showing sex differences in the extinction of heroin 

seeking. Given that craving for opioids is significantly higher in women (Back et al., 2011), 

and susceptibility to cue-induced craving and relapse may be greater in women than men 

with comorbid cocaine and heroin addiction (Kennedy et al., 2013), it will be important to 

consider sex differences in the ability to extinguish conditioned responses to drug-associated 

cues.

8. Conclusions

The available literature implicates a cyclical interaction between BDNF and drug seeking 

behavior for all drugs of abuse. Indeed, chronic drug exposure appears to impact BDNF 

levels in both human and rodents (see Table 1), and innate differences in BDNF have been 

associated with the development of addiction for multiple substances of abuse, including 

cocaine, heroin and ethanol. BDNF signaling appears to be involved in multiple facets of 

addiction, including reward and motivation, but critically its expression and function is 

known to mediate many of the learning and memory processes that are dysregulated in 

addiction. The loss of the ability to acquire and express extinction may be involved in the 

initial development of addiction as well as the chronic relapse that defines the disorder.

The particular brain sites and neural pathways where BDNF is expressed and released are 

critically important for determining whether BDNF actions will be pro-relapse or pro-

extinction (Fig. 3). The incubation effect, wherein relapse is amplified after longer periods 

of abstinence, involves the VTA-accumbens pathway (Bahi et al., 2008; Graham et al., 

2007; Grimm et al., 2003; Li et al., 2013; Lu et al., 2004a), at least for cocaine and perhaps 

also opiates, though there are conflicting reports (Koo et al., 2012; Vargas-Perez et al., 2009, 

2014). Some evidence supports the importance of accumbens subregions in BDNF’s effects, 

with the shell being pro-relapse, but the core being capable of both pro-relapse and pro-

extinction functions (Horger et al., 1999; Li et al., 2013). Perhaps this relates to differential 

sources of BDNF input to the accumbens core. It is possible that accumbal-BDNF derived 

from the PFC produces therapeutic reductions in drug seeking (McGinty et al., 2009), 

whereas accumbal-BDNF derived from the VTA may promote drug seeking. The 

hippocampal-prefrontal pathway, by contrast, promotes fear extinction (Peters et al., 2010; 

Rosas-Vidal et al., 2014), but data is notably lacking from drug addiction models. At 

present, negative data suggest that infralimbic PFC may not be required for the extinction of 

alcohol and heroin seeking (Peters et al., 2013; Willcocks and McNally, 2013; Fig. 2C), and 

that hippocampal BDNF does not enhance extinction of heroin seeking (Fig. 1B).
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The reason for this apparent incongruence between extinction neural circuits across different 

drug classes requires further investigation. One of the hallmarks of addiction is decreased 

behavioral flexibility and tendency to perseverate in drug-seeking behavior, and the 

hippocampal-prefrontal BDNF projection is critical for flexible behavior, including 

extinction (Sakata et al., 2013). In particular, CA1 neurons project to infralimbic PFC 

(Hoover and Vertes, 2007), and these are the putative cells that supply BDNF to infralimbic 

neurons, thus enhancing bursting and inducing extinction memory (Peters et al., 2010; 

Rosas-Vidal et al., 2014). Sakata et al. (2013) recently demonstrated that BDNF-dependent 

LTP in CA1 neurons is critical for flexible behaviors including fear extinction. These data 

suggest that BDNF-LTP in the CA1 projection neurons may be a critical substrate for 

behavioral flexibility, raising the intriguing possibility that exogenous-applied BDNF in this 

pathway may be capable of inducing LTP (Messaoudi et al., 2002) and reducing drug 

seeking, at least for drugs that require the hippocampal–prefrontal projection for extinction.

Importantly, while there are notable sex differences in drug seeking and taking, sex 

differences in the relationship between BDNF signaling and drug seeking are only beginning 

to be understood. Data indicate that estrogens interact with BDNF to impact the learning and 

memory processes that are thought to go awry in addictive behavior, suggesting a likely 

mechanism by which BDNF would differentially impact drug-seeking behavior in males and 

females, and perhaps across estrus cycle. Low estrogen leads to a loss of hippocampal LTP 

(Kramar et al., 2009) and cognitive deficits (Sherwin, 2005), both of which can be 

ameliorated by replacing estrogen (Kramar et al., 2009; Sherwin, 2002; Smith and 

McMahon, 2006). Hence, the therapeutic potential of BDNF to enhance the extinction of 

drug seeking requires a careful consideration of sex differences, and especially the role of 

BDNF-estrogen interactions.
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Fig. 1. 
Hippocampal BDNF substitutes for fear extinction, but not extinction of heroin seeking. (A) 

BDNF was infused into hippocampus on the day between conditioning and test in an 

auditory conditioned fear paradigm. BDNF reduced fear at test, as though it substituted for 

extinction training (Republished with permission from Peters et al., 2010). (B) BDNF was 

infused into hippocampus the day prior to initiating extinction training in a heroin self-

administration model. This treatment did not alter extinction learning and memory, nor did it 

alter cue-induced reinstatement of heroin seeking one week later (see text for additional 

experimental details).
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Fig. 2. 
BDNF has extinction-like effects on fear and cocaine memories, but not alcohol seeking. (A) 

BDNF was infused into infralimbic PFC just prior to the initial extinction training session in 

an auditory conditioned fear paradigm. Immediate reductions in fear were observed that 

persisted the following day (Republished with permission from Peters et al., 2010). (B) 

BDNF was infused into infralimbic PFC prior to the first of several repeated extinction trials 

in a cocaine conditioned place preference model. Though no immediate effects of BDNF 

were evident, BDNF facilitated extinction learning over trials (Republished with permission 

of Journal of Neuroscience, from “Infralimbic BDNF/TrkB enhancement of GluN2B 

currents facilitates extinction of a cocaine-conditioned place preference,” Otis et al., 2014; 

permission conveyed through Copyright Clearance Center, Inc.). (C) Adult male CD1 mice 
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were trained to self-administer 10% ethanol. Mice were food restricted to approximately 

95% of free feeding weights, but had ad libitum access to water throughout training. Testing 

was performed in the light cycle. Mice were trained to lever press on a fixed ratio schedule, 

and then were graduated to a random interval 30 s schedule in which each response after a 

randomly generated interval was reinforced. Reinforcer delivery was paired with 

presentation of a tone+light compound cue. BDNF was infused into the infralimbic PFC at 

AP+1.9, ML +/−0.4, DV −2.2 prior to testing in extinction. During test sessions, levers were 

extended into the chambers, but responses did not produce reinforcer delivery or cue 

presentation.
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Fig. 3. 
BDNF produces therapeutic versus pathological effects on drug and fear conditioned 

behaviors depending on its locus of action within mesolimbic and corticostriatal circuits. 

Therapeutic (green) reductions in fear and drug seeking have been linked to elevated BDNF 

protein in the hippocampus (Peters et al., 2010, fear), prelimbic (PL; Berglind et al., 2007, 

2009; McGinty et al., 2009, cocaine) and infralimbic (IL; Otis et al., 2014, cocaine; Peters et 

al., 2010, Rosas-Vidal et al., 2014, fear) prefrontal cortices, and nucleus accumbens (Nac) 

core (Li et al., 2013, cocaine), although for the core, a pathological (red) enhancement of 

drug seeking has also been observed (Horger et al., 1999). Enhancement of drug-seeking 

behavior has also been associated with elevated BDNF protein in the Nac shell (Graham et 

al., 2007; Bahi et al., 2008; Li et al., 2013, cocaine) and ventral tegmental area (VTA; 

Grimm et al., 2003; Lu et al., 2004a, cocaine; Vargas-Perez et al. 2009, 2014, opiates; Ting-

A-Kee et al., 2013, alcohol). Conflicting evidence suggests that BDNF in the VTA may be 

therapeutic for opiate memories (Koo et al., 2012).
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Table 1

Effects of ethanol and opiate exposure on BDNF mRNA and protein expression. While BDNF and opiates 

appear to impact BDNF expression, the direction and magnitude of these effects depends on the duration and 

method of exposure as well as where changes are measured. A greater understanding of the role of BDNF in 

opiate and alcohol seeking behavior requires a more thorough analysis of the time course and loci of these 

effects.

Species Drug exposure Measure Change Reference

Ethanol

Human (dependent alcoholics) Self-administration Serum BDNF protein ↓in serum Zanardini et al. 
(2011)

Human (abstinent alcoholics) Self-administration protein ↑in serum
=in plasma

D’Sa et al. 
(2012)

Human (30 day abstinent 
alcoholics)

Self-administration protein ↓in plasma Joe et al. (2007)

Mouse Acute injection (2 mg/kg)
Self-admin, 4 weeks

mRNA ↑in hippocampus and 
dorsal striatum
=in PFC
↑in dorsal striatum
=in PFC and 
hippocampus

McGough et al. 
(2004)

Mouse Vapor chamber, 2 weeks mRNA ↓in PFC
=in accumbens and 
hippocampus

Melendez et al., 
(2012)

Mouse Self-admin Acute Chronic, 6 weeks mRNA ↑in dorsal striatum
=in accumbens and 
cortex
=in dorsal striatum and 
accumbens
↓in ventral PFC, 
frontal and posterior 
cortex

Logrip et al. 
(2009)

Rat Liquid diet, 28 weeks mRNA ↓in hippocampus MacLennan et 
al. (1995)

Rat Vapor chamber, 10 days Protein ↓in hippocampus Hauser et al. 
(2011)

Rat Vapor chamber, 4 weeks
12 hours withdrawal

mRNA ↓in CA1 and dentate 
gyrus, supraoptic 
nucleus of 
hypothalamus
↓in CA1, dentate gyrus 
at control levels.
↑in CA3 and 
supraoptic nucleus

Tapia-
Arancibia et al. 
(2001)

Rat Vapor chamber, 7 weeks mRNA ↓in medial PFC Tapocik et al. 
(2012, 2014)

Opiate

Rat Heroin injection, 5 days Protein ↑in prelimbic PFC
↓in dorsal 
hippocampus
=in ventral 
hippocampus and 
nucleus accumbens

Zilkha et al. 
(2014)

Rat Self-administration, 1, 11, or 30 days 
abstinent

mRNA and protein =in nucleus 
accumbens and dorsal 
striatum

Theberge et al. 
(2012)

Human (dependent) Self-administration Protein ↑in serum Heberlein et al. 
(2011)
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Species Drug exposure Measure Change Reference

Human (dependent) Self-administration Protein ↓in serum Angelucci et al. 
(2007)

Human (dependent) Self-administration In withdrawal Protein ↓in serum
No change

Zhang et al. 
(2014)
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