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Purpose: To accelerate model-based iterative reconstruction (IR) methods for C-arm cone-beam CT
(CBCT), thereby combining the benefits of improved image quality and/or reduced radiation dose
with reconstruction times on the order of minutes rather than hours.
Methods: The ordered-subsets, separable quadratic surrogates (OS-SQS) algorithm for solving
the penalized-likelihood (PL) objective was modified to include Nesterov’s method, which utilizes
“momentum” from image updates of previous iterations to better inform the current iteration and
provide significantly faster convergence. Reconstruction performance of an anthropomorphic head
phantom was assessed on a benchtop CBCT system, followed by CBCT on a mobile C-arm, which
provided typical levels of incomplete data, including lateral truncation. Additionally, a cadaveric
torso that presented realistic soft-tissue and bony anatomy was imaged on the C-arm, and different
projectors were assessed for reconstruction speed.
Results: Nesterov’s method provided equivalent image quality to OS-SQS while reducing the
reconstruction time by an order of magnitude (10.0×) by reducing the number of iterations required
for convergence. The faster projectors were shown to produce similar levels of convergence as
more accurate projectors and reduced the reconstruction time by another 5.3×. Despite the slower
convergence of IR with truncated C-arm CBCT, comparison of PL reconstruction methods imple-
mented on graphics processing units showed that reconstruction time was reduced from 106 min for
the conventional OS-SQS method to as little as 2.0 min with Nesterov’s method for a volumetric
reconstruction of the head. In body imaging, reconstruction of the larger cadaveric torso was reduced
from 159 min down to 3.3 min with Nesterov’s method.
Conclusions: The acceleration achieved through Nesterov’s method combined with ordered subsets
reduced IR times down to a few minutes. This improved compatibility with clinical workflow
better enables broader adoption of IR in CBCT-guided procedures, with corresponding benefits in
overcoming conventional limits of image quality at lower dose. C 2015 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4914378]
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1. INTRODUCTION

Advances in model-based iterative reconstruction (IR)
methods for x-ray CT and cone-beam CT (CBCT) imaging
have led to numerous studies demonstrating the benefits of
improved image quality and/or reduced radiation dose over
conventional analytic reconstruction methods.1–6 However,
the increased reconstruction time (up to several hours, even
on commercial systems) is a major drawback that limits
the use of IR in many applications, especially those that
require timely images as a part of the clinical workflow.7–10

For example, potential applications of IR for CBCT include
the use of C-arms in image-guided surgery for verifying
device placement (e.g., pedicle screws in spine surgery)
and providing high-quality, low-dose intraoperative checks

against complications in healthy tissue (e.g., intracranial
hemorrhage in neurosurgery).11–14 Such applications demand
image reconstructions on the order of minutes rather than
hours.

Further compounding the challenge, C-arm CBCT data
are typically incomplete and missing information due to
the failure to satisfy Tuy’s condition with a cone-beam
acquisition and a circular orbit15–19 (which yields so-called
cone-beam artifacts), longitudinal truncation (i.e., the long-
object problem), an incomplete orbit (e.g., if 180◦+ the fan
angle is not acquired), sparse sampling (i.e., fewer projections
acquired), and/or lateral truncation [due to the relatively small
field of view (FOV)].20–24 Therefore, the problem is generally
ill-conditioned, leading to slow convergence. In particular,
for truncated acquisitions, expanding the reconstruction FOV
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beyond the C-arm imaging FOV to encompass the object
support is important in IR methods to enforce consistency of
the line integral of the reconstruction with the measurements,
but convergence is slow in the expanded FOV due to the
lack of data. Although image regularization can improve
conditioning of the problem, truncated projections and other
forms of incomplete data remain a challenge for CBCT IR
convergence speed.

Accelerating IR is an active area of research and can be
addressed using a number of possible solutions, including
hardware and/or algorithmic improvements.25–29 A common
acceleration technique divides the projections into ordered sub-
sets (OS) to accelerate the reconstruction by a factor approxi-
mately equal to the number of subsets.28,30 The acceleration
is achieved by using one subset of projections per subiter-
ation to update the volume, which correspondingly reduces
the number of forward and backprojections per update. For
example, the penalized-likelihood (PL) reconstruction prob-
lem, which leverages a statistical model of the measured data
combined with a priori assumptions on the image such as
local smoothness, can be solved iteratively by combining
OS with the separable quadratic surrogates (SQS) algorithm
(previously referred to as separable paraboloidal surrogates,
SPS),30 although other algorithms for maximum-likelihood
(ML) and PL problems have been developed as well, including
expectation maximization (EM), iterative coordinate descent,
and grouped coordinate ascent.28,31–33 OS-SQS uses a highly
parallelizable approach that can leverage advances in parallel
computing on hardware such as general-purpose graphics
processing units (GPUs). Even so, convergence can still be
slow, typically requiring hundreds of iterations and upward
of several hours to perform the reconstruction. This is in
part due to conventional OS-SQS updating the image without
any “memory” of previous updates. Therefore, if the algo-
rithm can be modified to carry “momentum” from previous
updates, it can better inform the current update and achieve
faster convergence.34,35 Such a method, known as Nesterov
acceleration or Nesterov’s method,34 was first applied to total-
variation (TV)-based CT image reconstruction by Jørgensen
et al.36 and Jensen et al.37 TV reconstruction is similar to
PL in that accelerated convergence of the optimization prob-
lem is desired and the objective function is smooth, enabling
the development of an accelerated method called unknown
parameter Nesterov (UPN), which has also been applied to
CBCT reconstruction by others.38,39 Kim et al. also recently
demonstrated the use of Nesterov’s method,40,41 combining it
with OS-SQS for penalized weighted least squares (PWLS) CT
reconstructions. A number of alternative approaches have been
investigated for accelerating PWLS reconstructions, including
work by Ramani and Fessler29 that compared the fast iter-
ative shrinkage-thresholding algorithm (FISTA)42 and split-
Bregman43,44 methods with a splitting-based alternating direc-
tion method of multipliers (ADMM) algorithm accelerated by
a preconditioning filter. Additionally, the linearized augmented
Lagrangian method with ordered subsets (OS-LALM) was
recently developed.45 Such methods could possibly be extended
to PL reconstructions, but are not considered within the scope
of this work. The work below applies Nesterov’s method with

OS-SQS to acceleration of PL reconstruction similar to the
approach by Kim et al.40,41 and applies the algorithm to C-
arm CBCT in the context of image-guided surgery, with a
particular emphasis on how acceleration can help to over-
come convergence speed issues associated with truncated data.
Performance is assessed relative to SQS in an anthropomorphic
head phantom for truncated and untruncated data and demon-
strated in a cadaveric torso emulating a scenario of CBCT-
guided abdominal surgery.

2. METHODS
2.A. Statistical reconstruction algorithms

The PL framework30 enables statistical image reconstruc-
tion by first applying a basic Poisson statistics model to the
data

yi ∼Poisson
�
bie−li

�
, (1)

where y are the noisy measured projection data, b are the
number of incident photons, l =Aµ are the line integrals
computed for system matrix A (forward-projection) and image
volume µ, and i indexes the rays. PL then formulates the
reconstruction as the solution to an optimization problem,
where the objective Φ(µ; y) comprises the log-likelihood
function L(µ; y) of the data and image regularization by a
roughness penalty R(µ) with strength β,

µ̂= argmax
µ
Φ(µ; y) s.t. µ≥ 0. (2)

Φ(µ; y)= L(µ; y)− βR(µ). (3)

Ignoring constant terms, the log-likelihood function is

L(µ; y) � −

i

bie−li+ yili (4)

and the image roughness penalty30 is calculated as

R(µ)=

j


k ∈Nj

wjkψ
�
µ j− µk

�
, (5)

where j indexes all voxels, k indexes the voxels in a neighbor-
hood Nj about voxel j (first-order neighborhood in this work),
wjk are the weights within a neighborhood (unity in this work),
and ψ is the penalty function.

The OS-SQS method30 is often employed to solve Eq. (2)
and utilizes highly parallelizable voxel-wise operations on vol-
umes. Additionally, the forward and backprojection operators
are performed on the entire volume and subsets of projec-
tions, respectively, which are tasks well-suited for implemen-
tation on parallel hardware architectures such as GPUs. OS-
SQS leverages a separable quadratic “surrogate” function that
locally approximates the PL objective function, and the surro-
gate function is maximized during each update to increase
the objective value of the reconstructed volume. The starting
image µ(0) can be initialized by the filtered backprojection
(FBP) reconstruction (although a common alternative is a zero
image). When M subsets are used (providing acceleration by
approximately a factor of M), the algorithm is run for N itera-
tions as follows (Algorithm I, denoted SQS-M):
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A I. SQS with M ordered subsets (SQS-M ).

Initialize µ = µ(0)
Precompute γm =Am1, for m = 1,2,3, . . .,M
For n = 1,2,3, . . .,N

For m = 1,2,3, . . .,M

l =Amµ (6)

ḣi = yi−bie
−li, ∀i ∈ Sm (7)

L̇ =MAT
mḣ (8)

ci (li)=



2bi

(
1−e−li− lie−li

)
/l2

i li > 0

bi li = 0
(9)

d =MAT
m(γm ·c(l)) (10)

∆ j =−
L̇ j+β


k∈Nj

wjkΨ̇(µ j− µk)
d j+β


k∈Nj

2wjkωψ(µ j− µk) (11)

µ = [µ+∆]+ (12)

where Am and Am
T are the forward and backprojection

operators, respectively, for subset m; γm are the projections of
a volume of all ones for the mth subset; Sm are the projections
in subset m; i and j index detector pixels and volume voxels,
respectively; L̇ and d are the gradient and curvature of the
likelihood surrogates, respectively; · denotes an element-wise
product of two vectors; ψ̇ and ωψ are the derivative and
curvature of the penalty function surrogates, respectively; ∆
is the image update; and [·]+ is a thresholding operation at 0
that enforces a non-negativity constraint. The reconstructed
image after N iterations of M subsets is denoted as µ(N )

SQS M
.

In this work, the edge-preserving Huber penalty was used,
with

ψH (x)=



x2

2δ
|x | ≤ δ

|x |− δ
2

|x | > δ
, (13)

ωψH
(x)= 1

max(|x |,δ) , (14)

where δ is used to control the degree of edge preservation by
controlling the width of the quadratic penalty region around
x = 0.

Despite the OS acceleration, SQS-M convergence can be
very slow. Kim et al.40,41 demonstrated significant acceleration
can be achieved by adapting Nesterov’s original method34

with a modified and improved set of momentum weights
[Eq. (17), below]46 to accumulate momentum from image
updates ∆ [denoted −D−1M∇Ψm(µ) in Refs. 40 and 41],
where the improved weights provide faster convergence.
The algorithm is run for N iterations and M subsets
as follows (Algorithm II, denoted Nes-M): where z is the
current image estimate; v is the cumulative momentum from
all image updates; t is a scalar momentum weight that increases
approximately linearly with each subiteration; and the image
µ is now a state variable that linearly combines the current
image estimate with a momentum-based image (the cumulative
momentum added to the initial image). Note that after each

A II. Nesterov acceleration of SQS-M (Nes-M ).

Initialize z = µ = µ(0), v = 0, t = 1
For n = 1,2,3, . . .,N

For m = 1,2,3, . . .,M
Compute ∆ in (6)–(11)

z = [µ+∆]+ (15)

v = v+ t∆ (16)

t =
(
1+


1+4t2

)
/2 (17)

µ =

(
1− 1

t

)
z+

1
t


µ(0)+ v


+

(18)

iteration, the current image estimate is now z rather than µ,
with this redefinition of µenabling the same definition of image
update ∆ with relation to µ [Eqs. (6)–(11)].

The additional computational expense of Nesterov’s
method is minimal: it requires just one additional volume
v in memory storage (an implementation that eliminates
the intermediate variable z), and the additional computation
of v and µ are multiply-and-add, voxel-wise operations of
volumes that can be performed in parallel. Because t ≥ 1 and
is an increasing function (Fig. 1), the momentum-based term
in Eq. (18) takes larger steps in the combined direction of
the previous updates, but does so in a controlled manner due
to the 1/t weight. The selection of momentum weights is
key to the acceleration and stability of the method;34,46–48 for
example, as a special case, if the weights were fixed at t = 1
for all subiterations, the Nes algorithm would be equivalent
to the SQS algorithm. In the case of Nesterov’s method, the
momentum weight t asymptotically approaches s/2, where s
is the number of subiterations,

s = (n−1)M+m. (19)

F. 1. Momentum weight t for Nesterov acceleration increases approx-
imately linearly with the number of subiterations [despite the nonlinear
recursive definition, Eq. (17)] and asymptotically approaches s/2.
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2.B. Experimental setup

The performance of the SQS-M and Nes-M algorithms
was compared using CBCT data acquired with an x-ray test
bench and a prototype mobile C-arm capable of CBCT (modi-
fied PowerMobil, Siemens Healthcare). Studies employed an
anthropomorphic head phantom containing a natural skeleton
and simulated soft-tissue inserts as well as a cadaveric torso
emulating an abdominal surgery scenario. The test bench incor-
porated a 43× 43 cm2 flat-panel detector with 0.278× 0.278
mm2 pixel size (PaxScan 4343CB, Varian Medical Systems,
Palo Alto, CA) providing little or no lateral truncation of the
head phantom. The C-arm employed a 30× 30 cm2 detector
with 0.388× 0.388 mm2 pixel size (PaxScan 3030+, Varian
Medical Systems, Palo Alto, CA) with realistic lateral trunca-
tion (Fig. 2). The acquisition technique and geometry of the
test bench replicated that of the C-arm—100 kVp tube voltage,
80 mA s total exposure (3.3 mGy head dose), 198 projec-
tions over ∼180◦ orbit, 60 cm source-axis distance (SAD), and
120 cm source-detector distance (SDD). Additionally, a sepa-
rate study emulating a scenario of CBCT-guided abdominal
surgery was conducted on the C-arm using a fresh, unfixed
cadaveric torso presenting realistic anatomical structures and
an acquisition technique of 100 kVp, 120 mA s (3.1 mGy body
dose).5

The SQS and Nes algorithms were implemented using
custom CUDA libraries (Nvidia, Santa Clara, CA) to leverage
the parallel computing capabilities of GPUs. Unless otherwise
noted, the voxel-based separable footprints with trapezoidal
basis functions (SF-TT) projector was used due to its greater
accuracy49—the forward projector was previously defined as
matrix operator A and the backprojector by AT . As described
in Ref. 5, the original SF-TT approach was extended from a
circular trajectory (five degrees of freedom, DOF) to handle an
arbitrary 9-DOF geometry represented by projection matrices.
The extension changed computation of the “amplitude”
(i.e., height of the trapezoid function of the footprint of
each voxel) to calculating the intersection length between
the voxel and a ray connecting the source and the center
of the voxel,50 followed by determining the detector pixels
intersecting the trapezoidal footprint by projecting the eight

vertices of the voxel to compute the trapezoid vertices. Each
voxel was projected by a single thread on the GPU, enabling
a highly parallelized implementation.

While the high-fidelity but relatively slow SF-TT projector
was used by default, reconstructions with faster, less accurate
projectors were also evaluated—in particular, the ray-driven
Siddon forward projector51 and voxel-driven Peters backpro-
jector,52 denoted SP. The use of mismatched forward and
backprojectors (sometimes referred to as dual-matrix recon-
struction) to reduce computation time has been previously
proposed and empirically shown to accelerate the reconstruc-
tion process with little penalty on image quality, despite
convergence no longer necessarily being guaranteed, even for
SQS-1.53–55 We therefore assessed the impact of the faster
SP projectors on both reconstruction time and convergence
speed. The GPU-based implementation assigned each ray
to a computational thread for the Siddon projector, while
each voxel was assigned to a computational thread for
the Peters backprojector, and both projectors were found
to be substantially faster than the SF-TT projectors due to
faster computation and efficient memory access. An additional
modification was made to better match the voxel size (0.6 mm
isotropic at isocenter with a magnification of ∼2.0) with
the pixel size (0.388 mm at the detector): prior to each
backprojection, the projection was convolved with a 3×3
averaging window to approximately match the pixel and
(magnified) voxel size. A number of other projection methods
have been developed, and the topic remains an active area
of research.56–58 Comparison to other projectors, such as
distance-driven,59 blobs,60 and B-splines,61 and their tradeoffs
between computation time and accuracy for PL reconstruction
can be considered in future work.

Reconstruction parameters were set at b = 8000 quanta,
β = 200 (for the bench data, and β = 80 for the C-arm data to
compensate for the smaller detector array, which results in a
smaller log-likelihood magnitude [Eq. (4)] relative to the image
roughness [Eq. (5)]), δ = 10−4 mm−1, and 0.6×0.6×0.6 mm3

voxel size. The effect of M was quantified for integer divi-
sors of the number of projections—thus, M ∈ {66,33, . . ., 1}.
Different reconstruction algorithms (e.g., Nes-11 vs SQS-1)
were compared by assessing how many iterations nA were

F. 2. (a) Benchtop system with anthropomorphic head phantom. (b) Mobile C-arm system with phantom on operating table. (c) The bench and C-arm FOV
are depicted with respect to a CT image of the phantom, display window [−400 400] HU.
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F. 3. Acceleration factor for SQS and Nes relative to SQS-1 (note the different y-axis scaling). (a) SQS-66 reaches a suboptimal limit cycle and cannot further
improve the objective, while SQS-{33,22,11} achieve the same objective as 104 iterations of SQS-1 in {321,469,922} iterations, respectively, and provide AF
approximately equal to M . (b) On the other hand, Nes-18 (and greater M ) exhibits unstable, nonmonotonic acceleration, while Nes-{11,9,6} achieve the same
objective as 104 iterations of SQS-1 in only {28,34,50} iterations, giving AF of {357,294,200}, respectively.

required for Algorithm A to achieve the same objective value
as nB iterations of Algorithm B,

min nA s.t. Φ
(
µ
(nA)
A

; y
)
≥Φ

(
µ
(nB)
B ; y

)
. (20)

In this way, the acceleration factor (AF) of Algorithm A could
be determined in relation to Algorithm B,

AFA
B(nB)= nB/nA. (21)

For example, the acceleration of SQS-M relative to SQS-1 is
expected to produce the familiar AFSQS−M

SQS−1 (n)≈M . The work
below exclusively computes the AF for SQS-M and Nes-M
(Algorithm A) relative to SQS-1 (Algorithm B), so the algo-
rithm names are dropped from the AF notation for simplicity.
Additionally, the root mean square difference (RMSD) be-
tween µ(n) and a “converged” reconstruction µ∗ was used to
quantify image accuracy as a function of iteration. Conversion
from reconstructed units of mm−1 to Hounsfield units (HU) was
approximated as 5×104 HU/mm−1.

F. 4. Accuracy of image reconstructions. (a) For RMSD= 2.0 HU, the fewest iterations required for SQS were M = 66, N = 140 and (b) for Nes were
M = 18, N = 15. (Note the different x-axis scalings.) (c) Reference volume µ* and region used for RMSD evaluation annotated in the white dashed circle,
display window [−400 400] HU. The SQS and Nes reconstructed images are shown on the left half of (d) and (e), respectively, for RMSD= 2.0 HU, while the
right half shows the difference image with µ∗, display window [−20 20] HU.
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F. 5. Convergence and accuracy in truncated data. (a) SQS and (b) Nes reconstructions of truncated projections provided reconstructions with RMSD < 4 HU
but were subject to divergence at a large number of iterations. (c) The converged solution µ∗ shows a reasonably accurate reconstruction inside the C-arm FOV.
A RMSD= 4.0 HU was achieved by (d) 197 iterations of SQS-33, (e) 21 iterations of Nes-11, and (f) 32 iterations of Nes-11 with the simpler SP projectors. In
(d)-(f), the reconstructed result is shown in the left half (display window [−400 400] HU), while the difference image with µ∗ is shown in the right half (display
window [−40 40] HU).

3. RESULTS
3.A. Untruncated reconstructions of the head

Test bench images of the head phantom were reconstructed
using the SQS-M algorithm run for 1000 iterations for each
M and the acceleration factors relative to SQS-1 demonstrated
the speedups associated with SQS-M (Fig. 3). As expected,
SQS-M achieved AF up to M (although the AF tends to fall
off due to suboptimal limit cycles,28,62 as seen with SQS-66).
The Nes-M algorithm was run for 100 iterations each and
demonstrated much greater AF than SQS-M . For example,
Nes-11 exhibited AF = 357 at 104 equivalent SQS-1 iterations
and the AF continued to monotonically increase with more
iterations, suggesting a faster rate of convergence than SQS
and increasingly more benefit from additional iterations. The
AF also appeared to be proportional to M (for M ≤ 11). For
M > 11, the reconstruction may not converge due to limit-
cycle issues or instability, since momentum from each subset
only contains information from a few projections, which may
lead the reconstruction to false local optima.

A converged reference volume µ∗ was achieved with 3000
iterations of Nes-1 followed by 3000 iterations of convergent
SQS-1 and was confirmed to have greater objective value than
any of the other reconstructions. Although the Nes-1 iterations
appeared to be convergent, the behavior of the Nes algorithm
has not been thoroughly investigated. The 3000 iterations

of Nes-1 produced an objective value that appeared to be
within the numerical accuracy limits of the computations
(performed in single-precision floating-point format), with
numerical errors potentially accumulating in the momentum
term. Therefore, the additional 3000 iterations of SQS-1 were
performed to verify the Nes-1 solution and found to slightly
increase the objective value. The RMSD before and after the
additional SQS-1 iterations was only 0.0025 HU, suggesting
that the Nes-1 solution was already very close to µ∗.
Alternatively, SQS-1 alone could have been run for tens of
thousands of iterations to provide µ∗, requiring an extremely
long run time (weeks).

The convergence speed of SQS-M and Nes-M was asses-
sed by the RMSD with µ∗ in a region encompassing soft-
tissue simulating inserts (Fig. 4). For SQS reconstructions,
SQS-66 most rapidly reduced RMSD in early iterations but
quickly leveled out after achieving 2.0 HU accuracy in 140
iterations, while SQS-33 was capable of RMSD = 1.0 HU
after 260 iterations. On the other hand, Nes-18 only required
15 iterations to achieve RMSD= 2.0 HU (9.3× acceleration vs
SQS-66) and continued to reduce the error, achieving RMSD
= 1.0 HU in 28 iterations (9.3× acceleration vs SQS-33).
Although the difference images contain some dissimilarities
due to the different algorithms and subsets, they have the
same RMSD and illustrate the most challenging aspect
of convergence in the central axial slice—high frequency
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structure at edges and residual streaks at the posterior of the
skull arising from the incomplete orbit (180◦). Both SQS-M
and Nes-M are capable of reducing the residual errors and
streak artifacts beyond what is shown in Fig. 4 through
a combination of lower M and more iterations, although
this comes at the expense of higher run times, as indicated
by the RMSD plots. For SQS-M , this requires using fewer
subsets, since SQS-66 reaches a limit-cycle and converges
to a RMSD = 1.9 HU. On the other hand, more iterations
could be applied to Nes-18 (eventually achieving RMSD
= 0.9 HU), or Nes-11 could be used to achieve even lower
RMSD.

3.B. Truncated reconstructions of the head

For the truncated C-arm projections, the AF followed a
similar trend as the untruncated bench data, with Nes-11
providing a stable, monotonic increase in AF up to 345× for
104 equivalent SQS-1 iterations. However, analysis of RMSD
illustrated the challenge of truncated projections, particularly
due to missing data outside the C-arm FOV and the slow
convergence in those regions (Fig. 5). Both SQS and Nes
were unable to achieve RMSD as low as their counterparts
in the untruncated data, in large part due to influence from
the large errors outside the C-arm FOV (RMSD > 180 HU
outside the C-arm FOV). The algorithms therefore require
more iterations even for a higher RMSD than in untruncated
data, with SQS-33 achieving 4.0 HU RMSD in 197 iterations
and Nes-11 in 21 iterations. Even so, Nes-11 provided a 9.4
× reduction in the number of iterations required with SQS-33.
Additionally, large M (e.g., SQS-66, Nes-18) resulted in
unstable reconstructions and was susceptible to divergence
from the optimal solution with too many iterations, possibly
due to the missing data in truncated projections. For example,
SQS-66 only utilizes three truncated projections per subset
and errors from each update begin to accumulate, especially
in regions of the reconstructed volume outside the C-arm
FOV. Similarly, errors can accumulate in the cumulative
momentum term for Nes-M—even moderate values of M for
Nes exhibited some degree of divergent behavior. The stability
of both SQS-M and Nes-M as a function of the number of
subsets is the subject of ongoing work by others47 and can
continue to be investigated further.

Reconstruction with the modified, faster SP projectors
was also able to yield RMSD = 4.0 HU compared to the
SF-TT-based µ∗ but required a greater number of iterations
[32 iterations for Nes-11-SP, Fig. 5(f)]. It should be noted
that Nes-11-SP barely achieved RMSD = 4.0 HU, so the
stopping criterion is essential to any potential advantage of
using the SP projectors. For example, if a lower RMSD were
desired, fewer subsets would have to be used (e.g., Nes-6-SP),
resulting in slower convergence speed. Much of the increased
RMSD is attributable to inherent differences between the SP
and SF-TT projectors, with a converged, SP-based µ∗ having
a RMSD= 3.7 HU relative to the SF-TT-based µ∗. Although
SF-TT has been shown to be more accurate for projecting
voxels,49 neither set of projectors produces the “true” image.
Stability remains a concern for Nes-M-SP since the error

F. 6. Reconstruction time for a full head volume (300×360×300 voxels)
at fixed RMSD= 4 HU. (a) The time per iteration for each algorithm shows
that Nesterov’s method only adds a negligible amount of computation and
that the SP projectors are substantially faster. (b) Nesterov’s method reduces
the number of iterations required to achieve the same RMSD= 4 HU by an
order of magnitude over SQS. (c) The combined effect of Nesterov’s method
and fast projectors yields a reconstruction time of ∼2 min for Nes-11-SP.

begins increasing shortly after reaching a minimum. In the
case of Nes-11-SP, the target RMSD was reached in 32
iterations and the minimum was soon reached at 38 iterations
before increasing again, demonstrating the need for a carefully
chosen stopping criterion, whereas Nes-11 reached the target
RMSD in 21 iterations and continued to lower the error until
RMSD = 1.3 HU at 70 iterations. Nonetheless, despite the
mismatched projectors, the RMSD= 4.0 HU error level was
achievable without introducing noticeable artifact due to the
addition of the smoothing step (convolving the projection
with a 3×3 averaging window) prior to backprojection as
well as the image regularization innate to PL. Therefore,
the SP projectors may be useful if the benefit of increased
speed outweighs the cost of additional iterations—e.g., in
near-real-time CBCT for image-guided surgery.

3.C. Reconstruction time with GPU implementation

Reconstruction times for C-arm CBCT (768×768×198
data) were measured for the full head volume (300× 360
× 300 voxels) on a PC workstation with a single GPU
(GeForce GTX Titan Black, Nvidia, Santa Clara, CA). The
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F. 7. Accelerated reconstruction of a cadaveric torso in CBCT-guided surgery. (a) Coronal slice of the multidetector CT volume, provided for visualization
purposes only. (b) CBCT reference reconstruction µ∗. The reconstruction FOV encompassed the axial extent of the abdomen, while the C-arm FOV (outlined in
the figure) covered the right kidney, liver, spine, and small pockets of gas in the bowels. (c) SQS-33 provided RMSD= 6.0 HU (measured in a ROI around the
kidney) in 205 iterations (9522 s), while (d) Nes-11-SP provided the same RMSD in 38 iterations (197 s). Display window [−500 500] HU.

vast majority of the reconstruction time is spent in the forward
and backprojection operations (Fig. 6). Relative to the SQS-
11 time per iteration, SQS-33 added an additional 7.94%
computational time cost (primarily due to regularizing and
updating the volume for each subset), while Nes-11 only
added 1.34% cost [Fig. 6(a)]. Conversely, the faster SP
projectors dramatically reduced the time per iteration by
almost a factor of 8 since they are particularly well-suited for
efficient parallel implementation. When the time per iteration
is multiplied by the number of iterations required, a RMSD
= 4 HU could be accomplished in ∼11 min for Nes-11 SF-TT
(cf. 106 min for SQS-33), while the faster SP projectors
allowed reconstruction in just over 2 min (121 s). Therefore,
Nesterov’s method (Nes-11) alone reduced reconstruction
time by 10.0× over SQS (SQS-33), and faster projectors
enabled an additional speedup of 5.3× over SF-TT with the
same RMSD.

3.D. Truncated reconstructions of the abdomen

The same analysis of SQS and Nes algorithms was per-
formed in reconstructions of fully truncated C-arm projections
of a cadaveric torso (Fig. 7). Because of the larger object size,
the reconstructed volume was increased to 500× 350× 330
voxels and a balance between reconstruction time and RMSD
was found with SQS-33 providing 6.0 HU RMSD in 205
iterations (9522 s= 2.6 h), while Nes-11-SP was able to do so
in only 38 iterations (197 s= 3.3 min). Compared to the head
reconstruction, the abdomen reconstruction required more
iterations even for a higher RMSD due to the greater degree
of truncation and missing data. However, the acceleration of
Nes-M-SP relative to SQS-M was just as pronounced, with
a 48.3× reduction in reconstruction time, demonstrating the

applicability of the algorithm to objects with even more severe
truncation.

4. DISCUSSION AND CONCLUSIONS

Nesterov’s method offers dramatic reduction in reconstruc-
tion time by accelerating convergence of the conventional or-
dered-subsets SQS algorithm by an order of magnitude (∼10×)
for typical reconstructions. With faster Siddon-Peters type
projectors, a GPU implementation of Nesterov-accelerated
SQS was capable of providing a volumetric reconstruction of
the head in∼2 min, despite the challenges of fully truncated C-
arm CBCT projections and/or other forms of incomplete data
that lead to ill-conditioning and slower convergence. Of course,
conventional FBP reconstruction is still faster than iterative
reconstruction since by definition it requires only a single back-
projection (cf. multiple forward/backprojections for IR). For
example, FBP reconstruction of the head volume only required
19.3 s [18.0 s for filtering (implemented on GPU, but not yet
fully optimized for run time) and 1.3 s for backprojection].
Nonetheless, reconstruction speeds accomplished by Nesterov
acceleration further facilitates incorporation of IR methods
in image-guided interventions, with corresponding benefits to
image quality and reduced radiation dose.

Ongoing work includes integration of other methods for
addressing lateral truncation, e.g., a fit of projection data to
an elliptical model of the volume.63,64 Using coarser voxels
outside the C-arm FOV (i.e., a multiresolution volume) could
provide further acceleration, since accuracy outside the C-arm
FOV is not as critical despite comprising up to 68% of the
total voxels in the reconstructed FOV. Simultaneous use of
multiple GPUs has been investigated to reduce forward and
backprojection time for the SF-TT projector by distributing
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the projections within each subset among the GPUs, whereas
the already fast SP projectors were unable to take advantage
of multiple GPUs due to the overhead cost of transferring
data between GPUs. For example, a GPU workstation with
3× GTX Titan’s reduced the time per iteration of the head
volume to 15.52 s [2.1× reduction, cf. Figure 6(a)] for Nes-
11, but increased the time to 6.84 s (1.8× increase) for Nes-
11-SP. Further acceleration is also possible by using pre-
computed likelihood curvatures to eliminate one backprojec-
tion per iteration,30 applying spatially nonuniform updates,65

and applying different momentum techniques that increase
stability or optimize convergence speed.41,47,48 The impact
of these modifications on convergence properties deserves
further study, including whether the precomputed likelihood
curvatures converge at the same rate and whether the curvatures
should be updated every few iterations. Future work includes
determining a method for selecting M a priori to maximize
acceleration and minimize instability for a given level of
RMSD as well as incorporation of a convergence criterion
for terminating the reconstruction at an appropriate number
of iterations. Additionally, comparison to other Nesterov-
accelerated methods, such as the TV-based UPN method36,37

applied to accelerated barrier optimization compressed sensing
(ABOCS),39 could be made. Future work includes comparison
of the growing number of such momentum-based methods,
not only in terms of reconstruction performance but also in
obtaining the converged reference, which requires numerical
stability and can benefit from a better understanding of conver-
gence behavior. In conclusion, the increased compatibility of
an accelerated reconstruction with the clinical workflow has
the potential to increase adoption and the routine use of IR
methods for C-arm CBCT.
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