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SUMMARY

Triple-negative breast cancer is a heterogeneous disease characterized by poor clinical outcomes 

and a shortage of targeted treatment options. To discover molecular features of triple-negative 

breast cancer, we performed quantitative proteomics analysis of twenty human-derived breast cell 

lines and four primary breast tumors to a depth of more than 12,000 distinct proteins. We used this 

data to identify breast cancer subtypes at the protein level and demonstrate the precise 

quantification of biomarkers, signaling proteins, and biological pathways by mass spectrometry. 

We integrated proteomics data with exome sequence resources to identify genomic aberrations 

that affect protein expression. We performed a high-throughput drug screen to identify protein 

markers of drug sensitivity and understand the mechanisms of drug resistance. The genome and 

proteome provide complementary information that, when combined, provide a powerful engine for 

therapeutic discovery. This resource is available to the cancer research community to catalyze 

further analysis and investigation.

© 2015 Published by Elsevier Inc.

Correspondence: jvillen@u.washington.edu. 

ACCESSION NUMBERS 
The raw mass spectrometry files associated with this work are available for download at https://www.proteomicsdb.org/#projects/
4167?accessCode=ecf333f8f2323901987aefd9f2982fb38a95acc11538b62af14884df25f553ca

AUTHOR CONTRIBUTIONS
R.T.L. and J.V. designed research. R.T.L., E.M.P., and K.M.H. performed proteomics experiments under J.V.’s supervision. C.P.M. 
performed drug sensitivity assays under C.A.B.’s supervision. H.Y.I. provided reagents. R.T.L. performed proteomics data analysis, 
and integrative analysis. S.-I.L. analyzed drug sensitivity data, and supervised statistical analysis. D.H. developed the web-based 
resource. R.T.L. and J.V. wrote the paper, and all authors edited it.

Authors declare no financial conflicts of interests.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2016 April 28.

Published in final edited form as:
Cell Rep. 2015 April 28; 11(4): 630–644. doi:10.1016/j.celrep.2015.03.050.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.proteomicsdb.org/#projects/4167?accessCode=ecf333f8f2323901987aefd9f2982fb38a95acc11538b62af14884df25f553ca
https://www.proteomicsdb.org/#projects/4167?accessCode=ecf333f8f2323901987aefd9f2982fb38a95acc11538b62af14884df25f553ca


INTRODUCTION

A key challenge for medicine in the twenty-first century is to harness the predictive power 

of molecular data to eradicate cancer (Arteaga and Baselga, 2012; Vidal et al., 2012; 

Weinstein et al., 1997). Like other cancers, breast cancer is caused by a series of inherited 

and/or acquired genetic aberrations that eventually lead to uncontrolled cell proliferation and 

metastasis. The diverse genetic “drivers” of breast cancer have been characterized in 

exquisite detail (Banerji et al., 2012; Curtis et al., 2012; Perou et al., 2000; Prat and Perou, 

2011; The Cancer Genome Atlas Network, 2012; Vogelstein et al., 2013). However, 

characterization of the proteome has lagged behind.

At the functional level, relevant genomic aberrations affect cellular functions by altering the 

activity and abundance of proteins. These effects are context specific and very much depend 

on the unique catalog of proteins expressed by different cell types. For example, a mutation 

in the BRAF kinase might have different functional outcomes in skin cancer than in liver or 

breast cancer. In addition to driving cellular functions, proteins are the most actionable and 

druggable cellular components. Therefore, protein measurements are important to 

understand breast cancer and delineate breast cancer therapies.

In fact, protein measurements are being used today to classify breast cancer types according 

to their receptor status, in which the presence or absence of three cellular receptors (estrogen 

receptor ESR1, progesterone receptor PGR, and human epidermal growth factor receptor-2 

ERBB2) is assessed via immunohistochemistry. Despite the reduced number of molecular 

features measured, this classification is the most useful today for chemotherapy selection. 

Irrespective of genomic aberrations, more than 80% of breast cancers express one or more of 

these receptors (Howlader et al., 2014) and are treatable by hormone deprivation and/or 

ERBB2 inhibition (Untch et al., 2014). Targeted therapies are not currently available for 

tumors that do not express these receptors, which are collectively referred to as triple-

negative breast cancer (TNBC). TNBC is an important and unmet clinical problem. It tends 

to be more aggressive, is correlated with worse prognosis than receptor-positive subtypes 

(Hudis and Gianni, 2011), and is more common among young and African American 

women (Howlader et al., 2014). Identifying subtypes within the TNBC type, and proteins 

within those subtypes that can serve as therapeutic targets will be extremely valuable.

Among protein measurements, reverse-phase protein arrays (RPPA) have been one the most 

widely adopted tools for integrated genomics and drug sensitivity analysis, but a key 

limitation of RPPA technology is its lack proteome coverage, generally less than two 

hundred analytes (Tibes et al., 2006). As such, mRNA expression has been used as a proxy 

for protein levels, despite mediocre quantitative concordance (Gygi et al., 1999; Maier et al., 

2009). Both mRNA and protein expression using RPPA outperform genomic data as 

predictors of drug sensitivity and clinical outcomes (Costello et al., 2014; Yuan et al., 2014). 

These results highlight the potential of systematic protein expression analyses for breast 

cancer research in general and drug discovery in particular.

It is an excellent time to further investigate the triple-negative breast cancer proteome using 

more comprehensive techniques. Mass spectrometry in the form of “shotgun proteomics” is 
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highly quantitative, and has reached the speed and sensitivity to measure proteomes at a 

depth comparable to gene expression studies (Kim et al., 2014; Wilhelm et al., 2014). In 

fact, proteomics is already making an impact in breast cancer research (Geiger et al., 2012a; 

Gholami et al., 2013; Kennedy et al., 2014), but yet, to show its full potential, proteomics 

needs to be integrated with other types of big data.

Here we present an integrative approach using quantitative mass spectrometry to 

characterize TNBC proteomes both as readouts of genetic abnormality and as predictors of 

drug sensitivity. The goal of this work is to refine our understanding of breast cancer 

biology as an integrated ‘proteogenomic’ landscape and to identify molecular diagnostic 

markers to improve drug selection in triple-negative breast cancer.

RESULTS

The triple-negative breast cancer proteome

We assembled a panel of twenty human breast cell lines and four clinical tumors to analyze 

the proteomic landscape of TNBC (Figure 1A). These included 16 triple-negative cell lines 

covering mesenchymal, luminal, and basal-like subtypes, as well as 3 receptor-positive and 

1 non-tumorigenic cell line to serve as a basis for comparison (Lehmann et al., 2011; Neve 

et al., 2006). Primary tumor tissues were derived from patients with metastatic triple-

negative breast cancer (stage II–III). Cell lines were cultured and analyzed in duplicate to 

assess the precision of protein quantification. Proteins were digested in parallel with either 

lysyl-endopeptidase (LysC) or trypsin and separated at the peptide-level into five fractions 

to enhance proteome coverage (Figure 1B). We used liquid chromatography tandem mass 

spectrometry (LC-MS/MS) on a hybrid quadrupole-orbitrap mass spectrometer to acquire 

quantitative profiles of the peptides present in each fraction.

In total, more than 450 peptide fractions were analyzed, yielding approximately 20 million 

high-resolution mass spectra. Across the entire dataset, we identified 289,819 non-redundant 

peptide sequences mapping to at least 12,775 distinct proteins encoded by 11,466 genes 

(protein FDR <1%). To facilitate comparison of specific protein isoforms, we additionally 

retained in our data truncated protein isoforms having high sequence coverage, bringing the 

total proteins analyzed to 15,524. The median protein had 15 peptide matches, 4 isoform-

specific peptide matches, and shared peptides with only one other protein in the dataset 

(Figure S1A–C). Median protein sequence coverage was 52%.

The number of proteins identified was consistent across cell lines, tissues, and replicates. On 

average, 80% of proteins were identified in both replicates. At least 9,000 proteins were 

found in each cell line (Figure 1C), which agrees well with other recent deep proteome 

experiments (Beck et al., 2011; Geiger et al., 2012b; Gholami et al., 2013; Nagaraj et al., 

2011). These proteins represent 56% of the 20,537 genes annotated in Uniprot/Swiss-Prot 

and at least 75% of genes included in the catalog of somatic mutations in cancer (COSMIC) 

(Figure 1D). As expected, we achieved near complete coverage of gene ontology categories 

involved in core cellular functions such as primary metabolism, protein synthesis, and 

general transcription, and lower coverage of tissue-specific categories such as transcription 

factors and receptors (Figure 1E).
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To infer protein absolute abundances (as copies/cell) we used the intensity-based approach 

for absolute quantitation (iBAQ). Quantitative reproducibility between biological replicates 

was uniformly high across all cell lines, with an average R2 equal to 0.92 (Figure 1F, Figure 

S1D). Proteins that were highly abundant and identified in all samples were the most 

reproducibly quantified (median CV = 16%, Figure S1E). By comparison, the average R2 

between different cell lines was 0.72, indicating significant differences in global protein 

expression.

The data presented here comprises more than 200,000 quantitative measurements of 

absolute protein abundance (Table S1). Innovations in instrumentation and extensive peptide 

fractionation prior to analysis have greatly increased the sensitivity and reproducibility of 

“shotgun proteomics” analysis, and our quantitative results compared favorably with a 

recent targeted proteomics study on many of the same cell lines (Kennedy et al., 2014) 

completed by the CPTAC (Clinical Proteomic Tumor Analysis Consortium). To facilitate 

use and dissemination of the data, we have developed a web resource (https://

zucchini.gs.washington.edu/BreastCancerProteome/) in which protein abundances can be 

queried, and correlated to genomic and drug sensitivity data, as presented below. To 

demonstrate the validity of our data set as a quantitative resource, we examined several 

clinical breast cancer biomarkers including ESR1, PGR, and ERBB2 (Figure 2). These 

measurements accurately reproduce the known classification of cell lines based on 

immunocytochemistry (Subik et al., 2010) and correspond with known copy number 

amplifications. In contrast to antibody staining, which assesses the presence or absence of 

expression, mass spectrometry provides sensitive and precise quantitation over a broad 

range. This is an important consideration for markers such as Ki-67, which are dynamically 

expressed in all cells. As another example, the cell line MDA-MB-453 stains negative for 

ERBB2 (Vranic et al., 2011) and was classified as a TNBC cell line (Neve et al., 2006), 

despite bearing a copy number amplification. However, our results show that MDA-MB-453 

expressed ERBB2 at levels 20-fold higher than the median, compared to several hundred-

fold overexpression of ERBB2 by cell lines such as BT474 and SKBR3.

Quantitative analysis of TNBC proteomic subtypes

Molecular subtyping using gene expression or copy-number aberration has been used 

extensively to characterize clinical breast cancer specimens and cell lines (Banerji et al., 

2012; Lehmann et al., 2011; Prat and Perou, 2011). We used hierarchical clustering to 

identify patterns based on correlation of protein expression profiles. This approach classified 

the panel of cell lines into two overarching groups containing four clusters (Figure 3A). To 

illustrate the relationship between driver gene alterations and proteome profiles, we show 

the most frequent census mutations and copy number aberrations for each cell line (Figure 

3A, upper). Cell lines with similar genetic abnormalities tended to cluster together. As has 

been observed previously (The Cancer Genome Atlas Network, 2012), PIK3CA mutations 

were associated with luminal breast cancer subtypes (80% of the cell lines in cluster 1), 

whereas TP53 mutations were characteristic of triple-negative breast cancer (100% of the 

cell lines in clusters 3 and 4). Mutations in the tumor suppressor NF1 were exclusive to the 

mesenchymal-like subtype (cluster 4) and BCR mutations were exclusive to luminal cells 

(cluster 1).
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Protein expression patterns within subtype clusters were still highly cell-type specific. To 

better illustrate this, we used principal component analysis (PCA) to project the distances 

between each proteome onto a two-dimensional coordinate system. Some of the sample 

proteomes formed tight clusters, while others were more distantly related to those in the 

same group (Figure 3B). Additional principal component dimensions are necessary to 

capture the proximity of cell lines such as MFM223, BT474, and HCC1599 to their 

respective subtypes. Intra-subtype correlation was also modest in earlier classification 

studies using mRNA expression (Lehmann et al., 2011), and the differences in mRNA may 

be further amplified at the protein level. The heterogeneity of protein expression underscores 

the importance of data-driven cell line selection in cancer research.

Accurate analysis of genes, transcripts, or proteins from heterogeneous clinical specimens 

represents a major challenge for precision medicine. The proteins expressed >10-fold in 

tumors versus the cell lines were enriched with proteins from blood cells and plasma 

(p<0.001). These proteins accounted for as much as 20% of the total proteome intensity 

from the tumors. Since TNBC cell lines should better represent the cellular component of 

the tumor we correlated tumor samples to the centroids from each cell line cluster to identify 

which proteomic subtype they belonged to, and found that they were all more similar to 

clusters 3 and 4, an observation which can also be made based on PCA (Figure 3B).

Nevertheless, many proteins significantly over- or under-expressed within each cluster could 

be identified. We were particularly interested in potential drug targets and proteins known to 

be involved in cancer biology. For example, the protein STAT5A, a pro-survival 

transcription factor, was expressed at high levels in the tumors and mesenchymal-like cell 

lines (Figure 3C). Using the first cluster as an example, we show how these proteins can be 

identified using our web-based resource (Figure S2A). The transcription factor FOXA1 was 

exclusively expressed by luminal-like cells, while TGFB1 was not found (Figure S2B). 

PPM1A, a protein involved in the suppression of TGF-β signaling pathways (Lin et al., 

2006), was decreased in TNBC, while many proteins involved in immunity and metastasis 

such as POSTN, MYLK, and HLA-A were expressed at higher levels in TNBC (Figure 

S3A). Some of these proteins are thought to be provided by tumor-infiltrating immune cells 

and fibroblasts (Quail and Joyce, 2013), but here we show they are also abundant in the 

homogenous conditions of cell culture.

The composition of each cluster showed striking similarity to subtypes defined by mRNA 

expression arrays and morphological studies (Kenny et al., 2007; Lehmann et al., 2011; 

Neve et al., 2006). Cluster 1 contained the luminal breast cancer cell lines SKBR3, MCF7, 

and BT474 as well as “luminal-androgen-receptor” cell lines MFM-223 which expresses the 

androgen receptor protein, and MDA-MB-453 which overexpresses ERBB2 as described 

above. The set of proteins that were highly expressed by these cell lines was enriched for 

functions typically expected of cancer cells including insulin and ErbB signaling, glycolysis, 

and nucleotide excision repair (Figure 3D). Cluster 2, most similar to the “basal-like 2” gene 

expression subtype, contained, DU4475, SW527, HCC1806, MDA-MB-436, and the normal 

breast epithelial cell line MCF10A. Cluster 3 included all “basal-like 1” cell lines: HCC38, 

HCC1143, HCC1937, BT20, and MDA-MB-468. Cluster 4, containing BT549, HS578T, 

MDA-MB-231, and MDA-MB-157, was identical to “mesenchymal-like/claudin-low” 
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subtype (Lehmann et al., 2011), all showing stellate morphology in 3D culture (Kenny et al., 

2007), and high invasiveness in chamber assays (Neve et al., 2006) (Figure 3D). To better 

understand the biology of each subtype, we compared the distribution of protein abundance 

within gene ontology categories. Interestingly, luminal-like cells expressed higher levels of 

pathways associated with proliferation such as cell cycle, growth factor signaling, 

metabolism, and DNA damage repair mechanisms (Figure 3E, Figure S3B). TNBC cell 

types, particularly the tumors and more invasive cells, expressed higher levels of pathways 

associated with metastasis such as ECM-receptor interaction, cell adhesion, and 

angiogenesis (Figure 3E, Figure S3B). The expression of proliferation and metastasis 

pathways were mutually exclusive, an observation also made in an analysis of mRNA 

expression profiles from claudin-low tumors (Prat et al., 2010). Thus, therapies targeting 

immune and metastatic signaling are an exciting avenue for TNBC treatment.

Differential expression of cancer signaling proteins

The cancer genome has been studied extensively (Futreal et al., 2004; Vogelstein et al., 

2013). We sought to characterize the abundance of proteins derived from cancer census 

genes and signaling pathways (Figure 4, Figure S4). The abundance of most signaling 

proteins spanned two to three orders of magnitude, but others were expressed similarly 

across all cell lines (Figure 4A–G). These proteins included several members of the RAS-

MAPK pathway such as GRB2, HRAS/KRAS/NRAS, MEK1/2, and ERK1/2. In certain 

cases expression of these proteins was associated with proteomic-based breast cancer 

subtypes. For example, CHEK2, HMGA2, POT1, and IL6STwere highly expressed by 

members of clusters 1 through 4, respectively (Figure 4H–I). However, protein expression 

was generally variable and cell-type specific. MLL3 was specifically expressed by BT474, 

BT20, and tumor A, which were each from different clusters (Figure 4H). HCC1806 and 

MDA-MB-436 specifically lacked expression of the protein kinase AKT1/2 (Figure 4B). 

PKCα was expressed at high levels in each of the cell lines from cluster 4, but also was 

highly expressed in DU4475 (Figure S4J). These results show that despite overall 

concordance of whole proteome profiles with various cellular phenotypes, in most cases the 

expression of particular cancer proteins did not uniformly belong to one subtype or another. 

The identification of proteins with very specific outliers or large dynamic range provides a 

valuable resource for TNBC drug development efforts. EGFR, ERBB2, ESR1, and PGR 

exemplify these properties (Figure 4A, Figure S4D) and are already routine clinical targets 

in breast cancer, but there are many others. For example, ephrin type A receptors, which are 

involved in embryonic development and not normally present in adult tissues, were 

overexpressed by several orders of magnitude in many TNBC cell lines compared to 

luminal-like cells (Figure 4A). With the increasing availability of comprehensive 

quantitative proteomics datasets, protein expression should continue to be one of the most 

valuable parameters for drug development and clinical diagnostics.

Isoform-specific protein expression

The identification and quantification of protein isoforms resulting from alternative splicing 

is a significant challenge in proteomics, arising from the reduced number of isoform-specific 

peptides that are amenable to analysis by mass spectrometry. For this dataset, we first relied 

on isoform-specific peptides to unambiguously identify proteins mapping to the same gene 

Lawrence et al. Page 6

Cell Rep. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the Uniprot sequence database. This led to the identification of 1,860 protein isoforms 

that corresponded to 844 genes, 52 of which were members of the COSMIC census. Next, 

we examined the relative quantification of protein isoforms. Protein isoforms share long 

segments of identical sequence but are missing certain protein domains, resulting in altered 

signal intensity from those parts of the protein.

We relied on manual inspection to analyze the expression of isoforms for proteins involved 

in cancer progression. For most proteins, different isoforms were nearly perfectly correlated, 

indicating no difference in expression of specific isoforms, but there were notable 

exceptions. For example, we identified variants in the p65 subunit of the transcription factor 

NF-κB, the tumor antigen CD47, and focal adhesion kinase PTK2. The protein sequence of 

the NF-κB p65 variant is identical to the canonical sequence until proline 344, followed by 

the read-through translation of 33 amino acids and an early stop (Figure 5A). The alternative 

sequence lacks many important regulatory regions including the residues phosphorylated by 

IKKB that directly affect its transcriptional activity (Sakurai et al., 1999). The p65 variant 

was detected in two cell lines and was expressed at higher levels in all four tumor samples 

(Figure 5B). This result was confirmed by an isoform-specific peptide, FSSVQLR, which 

matched no other entry in the Uniprot protein sequence database (Figure 5A). This finding 

was especially interesting since the tumor proteomes were enriched in immuno-modulatory 

pathways. NF-κB modulates the inflammatory response and plays an important role in 

cancer by promoting metastasis (Huber et al., 2004; Luo et al., 2004).

CD47 is an atypical G-protein coupled receptor with five membrane spanning domains that 

participates in integrin signaling and is proposed to have many important roles in cancer 

(Sick et al., 2012). We detected two of the four known alternative splice variants which 

differentially encode the cytoplasmic tail. The cell line DU4475 expressed higher levels of 

the long isoform (Figure 5C–D), which is highly expressed in neurons (Brown and Frazier, 

2001). While little is known about the functional differences between the isoforms, it is 

likely that this tail mediates intracellular signaling downstream of the receptor.

PTK2, or focal adhesion kinase 1, is a tyrosine protein kinase involved in cell migration 

(McLean et al., 2005). We confirmed the presence an N-terminally truncated form of this 

protein which lacks the FERM (4.1-Ezrin-Radixin-Moesin) domain (Figure 5E). The FERM 

domain regulates PTK2 localization and interaction with other proteins to affect its activity 

(Frame et al., 2010). Interestingly, the full-length form appeared to be expressed higher in 

HS578T and BT20 cells based on the relative intensity of N-terminal versus C-terminal 

peptides (Figure 5E–F). The differential expression of structural protein variants, many of 

which occur post-translationally, could be a significant regulatory mechanism in cancer. 

Further work will be necessary to systematically identify and accurately quantify these 

events.

Proteogenomic analysis identifies signatures of driver mutations

Genetic aberrations such as sequence mutations and amplifications, which typically occur in 

regulatory proteins, can have pleiotropic downstream effects on other proteins that more 

directly drive cancer phenotypes. We integrated publicly available exome sequence and 

gene copy number (CN) data from COSMIC (Forbes et al., 2011) with proteome profiles 
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from 18 cell lines. Protein abundance trended positively with gene CN. The average 

expression of all proteins in each CN bin correlated strongly with CN (R = 0.96). However, 

it was more variable and correlated poorly on a pairwise basis (n = 56,579, R = 0.19) (Figure 

6A). For example, the cancer census gene NDRG1 was not correlated with CN (R = −0.06) 

and was not highly expressed even when amplified (Figure 6B). This poor correlation is 

expected for proteins under high transcriptional, translational or proteasomal control.

Driver mutations occur frequently in regulatory proteins such as protein kinases, E3 

ubiquitin ligases, and transcription factors which alter the physiology of the cell by 

modulating the abundance or activity of other proteins. For example, our data showed that 

DU4475, the cell line with an APC mutation, expressed more than 4-fold median levels of β-

catenin (P = 3.3×10−4, heteroscedastic t-test) (Table S1), which APC normally targets for 

degradation. Initially we characterized cellular subtypes according to protein abundance 

profiles and asked whether frequent genetic mutations were associated with these subtypes 

(Figure 3). An alternative analysis approach is to group cell lines by their mutational status, 

and ask whether the abundance of specific proteins are associated with these mutations, as in 

the β-catenin and APC example.

We reasoned that mutations in certain driver genes, such as those in the same signaling 

pathway, would likely converge to regulate common effectors. To determine the global 

effects of driver gene mutations on protein expression, we systematically evaluated gene-

protein associations for frequently mutated census genes (n ≥ 3 cell lines) by comparing the 

abundance of each protein in cell lines with versus without a mutation, and plotted this 

information as a network. Driver genes and their protein targets formed clusters according to 

their shared associations (Figure 6C). The number of significant (P<0.001) associations for 

each gene ranged from 11 to 320 (Figure 6D). The network degree distribution fit an 

exponential function (R2 = 0.99), revealing 233 ‘hub’ proteins, each associated with 3 or 

more cancer census genes (Figure 6E). ‘Cell cycle’ was the only significantly enriched gene 

ontology term among hub proteins (P = 5.66×10−4). While not surprising, it demonstrates 

that dysregulation of cell cycle protein abundance may be a common effect of diverse 

genetic mutations.

On an individual basis, proteins regulated downstream of genetic lesions (e.g. TP53 loss-of-

function) might represent more suitable therapeutic targets than the gene product itself. 

Several highly significant (P<0.001) gene-protein associations are shown (Figure 6F–J). In 

the case of TP53, nearly all of the significantly associated proteins were involved in DNA 

metabolism and repair. One such protein was ecto-5′-nucleotidase (NT5E or CD73), a GPI-

anchored cell surface enzyme involved in the production of membrane-permeable 

nucleosides which can be used for nucleotide salvage (Zimmerman, 1992). Targeting it by 

siRNA or small molecule inhibition (using adenosine [(α,β)-methylene] diphosphate) 

arrested the cell cycle and triggered apoptosis in MDA-MB-231 breast cancer cells (Zhi et 

al., 2010). Monoclonal antibodies against NT5E were also demonstrated to block breast 

cancer metastasis in vivo (Stagg et al., 2010). NT5E may be an effective drug target 

specifically for cancers with TP53 mutations. In addition to the discovery of potential drug 

targets, these proteins could also be used as markers to infer whether or not a mutation is 

deleterious.
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Proteomics of drug sensitivity

To generate a resource for drug sensitivity prediction, we screened the sixteen TNBC cell 

lines from our panel against a library of 160 compounds at eight different concentrations 

spanning four orders of magnitude. We used this data to determine the IC50, defined as the 

dose required to reach a 50% reduction in cell viability, for each drug in each cell line 

(Table S2). Approximately three quarters (123/160) of the compounds elicited a measurable 

response in at least one cell line, and each cell line was sensitive to at least 5 compounds at 

sub-micromolar doses. The distribution of responses for each drug was diverse (Figure 7A). 

The IC50 distribution for most drugs spanned a wide range, 790-fold on average. Some 

drugs were very specific with few sensitive cell lines (e.g. everolimus, methotrexate, 

lapatinib), while other drugs were indiscriminate with few resistant cell lines (e.g. 

bortezomib, paclitaxel, MG132).

Next, we combined our pharmacological data set with publicly accessible data from the 

Genomics of Drug Sensitivity in Cancer (CRx) resource (Yang et al., 2013) and performed 

regression analysis against mass spectrometry-derived protein abundances to discover 

proteomic markers of drug sensitivity or resistance. We used hierarchical clustering to 

analyze global patterns among drug sensitivity-protein expression relationships, revealing 

many distinct clusters (Figure 7B). Drugs targeting proteins in the same pathway (e.g. 

BRAF and MEK inhibitors) showed similar correlation profiles. Interestingly, proteins that 

were part of the same pathways or complexes also clustered together, which did not occur 

using protein expression data alone (Figure 3A). The cluster that was highly enriched with 

mitochondrial proteins was associated with sensitivity to drugs that might depend on 

mitochondrial protein expression (belinostat, vorinostat, obatoclax). For example, since 

protein acetylation is known to be enriched within the mitochondrial space, cells with more 

mitochondria might be more sensitive to deacetylase inhibition. In a similar vein, the cluster 

that was enriched with translation factors was associated with increased sensitivity to 

proteasome inhibitors MG132 and bortezomib. These results show that integration of 

proteomics and drug sensitivity data using regression analysis provides a rich resource to 

identify unexpected modes-of-action and to discover new features of target pathways.

We used the regression analysis to select the most effective and robust drugs for known 

targets. For example, EGFR expression was, as expected, strongly associated with 

sensitivity to the EGFR inhibitor lapatinib in both drug screens (our data: R = 0.96, P = 2.36 

× 10−9; CRx: R = 0.99, P = 6.2 × 10−4) (Figure 7C). Proteomics data can also be used to 

uncover mechanisms of drug sensitivity. For example, several cell lines were hypersensitive 

to the drug bleomycin, an antibiotic used to treat plantar warts as well as many forms of 

cancer by inducing DNA damage. Expression of DDX60, an antiviral RNA/DNA helicase 

that binds cytosolic DNA (Miyashita et al., 2011), was most significantly associated with 

sensitivity to bleomycin (R = 0.99, P = 1.1 × 10−15) (Figure 7D).

We curated these drug sensitivity results to ask whether drug sensitivity associated with (1) 

genetic mutations or protein expression of the drug target itself, (2) proteins in the same 

pathway as the target, or (3) other literature-supported ‘synthetic lethal’ interactions. Drug 

sensitivity associated strongly with both genomic and proteomic features of known targets. 

For example, we found that sensitivity to all-trans retinoic acid (ATRA) was correlated with 
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the expression of its target protein RXRB (R = 0.98, P = 7.91 × 10−9). HCC1806 cells, 

which expressed the highest level of RXRB, were >200-fold more sensitive than the median 

cell line (Figure 7E). The cell line DU4475, which harbors the hyperactive BRAF-V600E 

mutation, was hypersensitive to both BRAF and MEK inhibitors (6,000-fold and 100,000-

fold versus median, respectively) despite similar expression of the target proteins.

Another potential mechanism of drug sensitivity is synthetic lethality, in which the right 

combination of genetic, proteomic, or pharmacologic perturbations leads to cell death. 

Synthetic lethality tends to occur between proteins in the same pathway. For example, the 

AKT1/2 inhibitor MK-2206 was not associated with expression of AKT isoforms, but was 

significantly associated with expression of RPS6KB2 (R = 0.84, P = 3.54×10−4) (Figure 7F), 

which lies downstream in the signaling pathway (Shaw and Cantley, 2006). Other drugs 

correlated with proteins that are not known to be in the same pathway, but have been 

previously proposed to be synthetic lethal relationships in genetic datasets. For example, 

poly-ADP ribose polymerase (PARP) inhibition disrupts DNA repair leading to genotoxic 

stress and cellular senescence, a process shown to be accelerated in overactive AKT 

signaling mutants (Chatterjee et al., 2013; Mendes-Pereira et al., 2009). In our data, AKT 

protein expression was also significantly correlated with sensitivity to PARP inhibition 

using AG-014699 (R = 0.74, P = 0.0014) (Figure 7G).

Finally, we explored how the differences in drug sensitivity and target expression between 

members of a signaling pathway relate to pathway structure. In the Akt-mTOR-S6K 

signaling pathway, ribosomal protein S6 kinases (RPS6KB1/2) are activated by mTOR. 

Curiously, despite its association with MK-2206 sensitivity, expression of either RPS6KB1 

or RPS6KB2 was inversely correlated with the S6K inhibitor PF-4708671 in luminal breast 

cancer cells (R = −0.96, P = 0.04) (Figure S5A). This is consistent with the suggestion that 

S6K inhibition may amplify upstream cancer signaling due to the chronic ablation of a 

negative feedback loop (Carracedo et al., 2008; Manning, 2004). Thus, the tumorigenic 

action of this protein may be best targeted indirectly (Figure S5B). Unlike RPS6KB2, 

RPS6KB1 expression did not correlate with AKT1/2 inhibitor MK-2206 sensitivity but 

instead was most highly correlated with the p21-activated kinase (PAK) inhibitor IPA-3 (R 

= 0.99, P = 1.91×10−12). Based on images from the Human Protein Atlas (Figure S5C), 

RPS6KB1 and PAK2 are localized to the nucleus whereas RPS6KB2 and PAK1 are 

cytoplasmic (Uhlen et al., 2010). Thus, the reported activation of PAK1 downstream of S6K 

(Ishida et al., 2007) might be localized and isoform-specific. Together, these results 

demonstrate that integrated analysis of drug sensitivity and protein expression provides a 

useful strategy for drug selection, finding diagnostic markers, and identifying potential 

mechanisms of cellular signaling. Further experimentation will be required to confirm these 

findings.

Finally, to demonstrate the potential clinical utility of these results, we asked how many 

proteins from the drug association analysis could be identified in primary tumors. We found 

that 73% (6,798/9,292) were quantifiable in the four clinical specimens we analyzed (Figure 

S5D). Of these, 494 were at least 5-fold more abundant than the average sample in at least 1 

tumor. For example, the abundance of the protein kinase AKT2 was higher in one of the 

tumor samples than in any cell line analyzed in this study (Figure S5E).
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DISCUSSION

Despite the success of large-scale ‘omic’ studies in providing molecular targets for 

therapeutic intervention, these studies have been limited by the lack of comprehensive 

protein data. Mass spectrometry-based proteomics has advanced rapidly and it has become a 

routine to reproducibly quantify near-complete proteomes using this technology. Here we 

used mass spectrometry to interrogate the proteomes of TNBC. We then integrated 

proteomics, genomics and drug sensitivity data to study the effects of genomic aberrations in 

the proteome and build prediction models of drug response using proteomics.

This dataset is a useful resource to further explore the biology of TNBC. For example, many 

of the recently described metastatic stem cell pathways were highly expressed at the protein 

level in TNBC compared to luminal breast cells. The most invasive TNBC cells and solid 

tumors expressed low levels of proteins involved in cell proliferation and high levels of 

proteins involved in the epithelial-to-mesenchymal transition. Thus, the highly specialized 

nature of metastatic TNBC cells may be one reason they are so difficult to treat using 

conventional cytotoxic agents that target highly proliferative cells. Precise knowledge of the 

proteomes of these cells can guide the development of new drugs to target the metastatic 

transition.

Machine learning has become a useful tool to capture the molecular features responsible for 

differences in drug sensitivity (Barretina et al., 2012; Costello et al., 2014; Weinstein et al., 

1997; Yang et al., 2013). Statistically significant differences in drug sensitivity based on 

cellular subtype have been observed (Lehmann et al., 2011), but the effect sizes are small 

compared to treatment strategies directed towards precise molecular insults. Examples 

include ERBB2 amplification (trastuzumab), BCR-ABL fusion (imatinib), or BRAF-V600E 

mutation (vemurafenib), all of which result in orders-of-magnitude increases in drug 

sensitivity. In reality, large effect sizes are needed to make an impact in the clinic. In this 

study, drug sensitivity and the expression of cancer-related proteins was not generally 

attributable to subtypes derived by clustering global protein profiles. Considering these cells 

were all derived from the same tissue type (breast) and were cultured in the same conditions, 

the dynamic range and specificity of protein expression for established regulatory proteins 

and drug targets was surprising. Using regression and prior knowledge to interrogate 

mechanisms of protein expression in drug sensitivity, we found that in many cases, drug 

sensitivity was strongly correlated with the expression of the drug target itself (e.g. retinoic 

acid receptors, EGFR) or proteins in the same biological pathway (e.g. S6K expression as a 

marker for sensitivity to AKT inhibitors).

With the exception of drugs targeting amplified genes, the importance of protein expression 

in drug efficacy might be underestimated. While it is evident that the target of a drug must 

be expressed at some level in order for the drug to take effect, many drugs are developed 

with the assumption that the target is expressed at similar levels in all cells. Even in the case 

of gene amplification, copy number does not fully account for differences in protein 

expression between specimens. In any case, quantitative analysis of drug targets and genetic 

abnormalities at the protein level might represent a useful addition to the current adjuvant 

therapy selection algorithm. Indeed, this is already routine for estrogen, progesterone, and 
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epidermal growth factor receptor-2. Larger panels of cell lines will be necessary to capture 

rare genetic events and to enable more robust machine learning approaches. This will 

facilitate the discovery of less obvious markers of drug sensitivity, such as synthetic lethal 

interactions. Proteomics could also provide an indispensable tool to rescue clinical trial 

results which do not improve patient outcomes in aggregate, but have many exceptional 

responses that might be due to underlying molecular features.

This study builds upon other deep proteomic characterizations of cancer (Geiger et al., 

2012b; Gholami et al., 2013; Nagaraj et al., 2011; Zhang et al., 2014) and represents the first 

deep proteome characterization targeting triple-negative breast cancer. With the 

development of large “omics” approaches, personalized, predictive medicine is the 

prevailing direction of next-generation healthcare technology (Tian et al., 2012). Systematic, 

data-driven approaches are necessary to meet this goal. We anticipate that genome-scale 

nucleic acid sequencing and protein analysis will provide the basic molecular diagnostics 

toolbox for precision cancer medicine. Triple-negative breast cancer is one of many unmet 

clinical needs that will benefit from future research in this area.

EXPERIMENTAL PROCEDURES

Sample preparation

Samples were lysed in denaturing buffer and centrifuged at 12,000 g for 10 min to pellet 

insoluble material. Protein extracts were reduced with 5mM DTT at 55°C and alkylated with 

15mM iodoacetamide at room temperature in the dark. Extracts from each sample (25μg) 

were diluted and digested in solution overnight with either lysyl-endopeptidase (Lys-C) 

(Wako) or sequencing grade trypsin (Promega). Peptides were desalted and fractionated on 

StageTips (Rappsilber et al., 2007) by basic reverse-phase using a step-wise gradient of 

increasing acetonitrile (5%, 10%, 15%, 25%, 80%) in 0.1% NH4OH. The resulting fractions 

were analyzed by LC-MS/MS.

LC-MS/MS

Peptide fractions were analyzed on an EASY-nLC-1000 (Thermo) coupled to a hybrid 

quadrupole-orbitrap Q-Exactive mass spectrometer (Thermo) configured for data dependent 

acquisition. Raw mass spectra were searched using Sequest (release 2012.01.0 of UW 

Sequest) against a concatenated forward and reverse version of the Uniprot human protein 

sequence database (v11/29/2012). Peptide spectral matches for all fractions corresponding to 

the same sample were filtered to reach a protein identification false discovery rate of less 

than 1%, resulting in an aggregate peptide-level FDR of less than 0.1% for the entire dataset. 

Protein quantifications were calculated using the intensity-based absolute quantitation 

(iBAQ) approach (Schwanhäusser et al., 2011).

Drug screen and curve fitting

Compounds were added to cells using the CyBi-Well Vario Workstation (CyBio) and 

incubated at 37°C, 5% CO2 for 96 hours. Cell viability was measured by luminescence using 

quantitation of ATP as an indicator of metabolically active cells. Measurements were 

corrected for background luminescence and percentage cell viability is reported as relative 
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to the DMSO solvent control. Non-linear curve fitting was performed using MATLAB’s 

‘nlinfit’ function. External drug sensitivity data (IC50) was downloaded from the 

“Genomics of Drug Sensitivity in Cancer” resource (Yang et al., 2013), release 2.0 (http://

www.cancerrxgene.org).

Statistical analysis

Significance tests and correlation analysis were performed using built-in functions within 

Microsoft Office Excel 2013 or R statistical computing environment version 3.1.0. Gene 

enrichment significance testing was performed in DAVID version 6.7 using the EASE 

metric, a modified Fisher’s exact test(Huang et al., 2009). All error bars represent standard 

deviation unless otherwise noted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Elisabeth Mahen and Chaozhong Song for excellent technical support and members of the Villén 
laboratory as well as Elizabeth O’Day for critical reading of this manuscript. This work was supported by a Howard 
Temin Pathway to Independence Award K99/R00 from NIH/NCI (R00CA140789) to J.V., a National Science 
Foundation grant (DBI-1355899) to S.-I.L, and funds from the South Sound CARE Foundation, the Washington 
Research Foundation, the Gary E. Milgard Family Foundation (to C.A.B.).

References

Arteaga CL, Baselga J. Impact of Genomics on Personalized Cancer Medicine. Clin Cancer Res. 2012; 
18:612–618. [PubMed: 22298893] 

Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, 
Sivachenko AY, Sougnez C, Zou L, et al. Sequence analysis of mutations and translocations across 
breast cancer subtypes. Nature. 2012; 486:405–409. [PubMed: 22722202] 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, 
Kryukov GV, Sonkin D, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature. 2012; 483:603–607. [PubMed: 22460905] 

Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, Herzog F, Rinner O, 
Ellenberg J, Aebersold R. The quantitative proteome of a human cell line. Mol Syst Biol. 2011; 
7:549. [PubMed: 22068332] 

Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 2001; 
11:130–135. [PubMed: 11306274] 

Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas 
G, Kozma SC, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-
dependent feedback loop in human cancer. J Clin Invest. 2008; 118:3065–3074. [PubMed: 
18725988] 

Chatterjee P, Choudhary GS, Sharma A, Singh K, Heston WD, Ciezki J, Klein EA, Almasan A. PARP 
Inhibition Sensitizes to Low Dose-Rate Radiation TMPRSS2-ERG Fusion Gene-Expressing and 
PTEN-Deficient Prostate Cancer Cells. PLoS ONE. 2013; 8:e60408. [PubMed: 23565244] 

Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, 
Hintsanen P, Khan SA, et al. A community effort to assess and improve drug sensitivity prediction 
algorithms. Nat Biotechnol. 2014; 32:1202–1212. [PubMed: 24880487] 

Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa 
S, Yuan Y, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel 
subgroups. Nature. 2012; 486:346–352. [PubMed: 22522925] 

Lawrence et al. Page 13

Cell Rep. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cancerrxgene.org
http://www.cancerrxgene.org


Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, 
et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in 
Cancer. Nucleic Acids Res. 2011; 39:D945–D950. [PubMed: 20952405] 

Frame MC, Patel H, Serrels B, Lietha D, Eck MJ. The FERM domain: organizing the structure and 
function of FAK. Nat Rev Mol Cell Biol. 2010; 11:802–814. [PubMed: 20966971] 

Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census 
of human cancer genes. Nat Rev Cancer. 2004; 4:177–183. [PubMed: 14993899] 

Geiger T, Madden SF, Gallagher WM, Cox J, Mann M. Proteomic portrait of human breast cancer 
progression identifies novel prognostic markers. Cancer Res. 2012a; 72:2428–2439. [PubMed: 
22414580] 

Geiger T, Wehner A, Schaab C, Cox J, Mann M. Comparative Proteomic Analysis of Eleven Common 
Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Mol Cell Proteomics. 
2012b; 11:M111014050.

Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, Kuster B. Global Proteome Analysis of 
the NCI-60 Cell Line Panel. Cell Rep. 2013; 4:609–620. [PubMed: 23933261] 

Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in 
yeast. Mol Cell Biol. 1999; 19:1720–1730. [PubMed: 10022859] 

Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LAG, Cronin KA. US Incidence of 
Breast Cancer Subtypes Defined by Joint Hormone Receptor and HER2 Status. J Natl Cancer Inst. 
2014; 106:dju055. [PubMed: 24777111] 

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using 
DAVID bioinformatics resources. Nat Protoc. 2009; 4:44–57. [PubMed: 19131956] 

Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T. 
NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast 
cancer progression. J Clin Invest. 2004; 114:569–581. [PubMed: 15314694] 

Hudis CA, Gianni L. Triple-Negative Breast Cancer: An Unmet Medical Need. The Oncologist. 2011; 
16:1–11. [PubMed: 21278435] 

Ishida H, Li K, Yi M, Lemon SM. p21-activated kinase 1 is activated through the mammalian target of 
rapamycin/p70 S6 kinase pathway and regulates the replication of hepatitis C virus in human 
hepatoma cells. J Biol Chem. 2007; 282:11836–11848. [PubMed: 17255101] 

Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, Kim JS, Zhang Y, Wang X, Ivey RG, 
et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify 
human proteins. Nat Methods. 2014; 11:149–155. [PubMed: 24317253] 

Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-
Hoff MH, Petersen OW, et al. The morphologies of breast cancer cell lines in three-dimensional 
assays correlate with their profiles of gene expression. Mol Oncol. 2007; 1:84–96. [PubMed: 
18516279] 

Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, 
Isserlin R, Jain S, et al. A draft map of the human proteome. Nature. 2014; 509:575–581. 
[PubMed: 24870542] 

Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification 
of human triple-negative breast cancer subtypes and preclinical models for selection of targeted 
therapies. J Clin Invest. 2011; 121:2750–2767. [PubMed: 21633166] 

Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC, et 
al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell. 2006; 125:915–
928. [PubMed: 16751101] 

Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-κB in cancer cells converts 
inflammation- induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. 
Cancer Cell. 2004; 6:297–305. [PubMed: 15380520] 

Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS 
Lett. 2009; 583:3966–3973. [PubMed: 19850042] 

Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J 
Cell Biol. 2004; 167:399–403. [PubMed: 15533996] 

Lawrence et al. Page 14

Cell Rep. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC. The role of focal-
adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer. 2005; 5:505–515. 
[PubMed: 16069815] 

Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, Waldman T, Lord CJ, 
Ashworth A. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol 
Med. 2009; 1:315–322. [PubMed: 20049735] 

Miyashita M, Oshiumi H, Matsumoto M, Seya T. DDX60, a DEXD/H box helicase, is a novel antiviral 
factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol. 2011; 31:3802–3819. 
[PubMed: 21791617] 

Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Pääbo S, Mann M. Deep proteome 
and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 2011; 7:548. [PubMed: 
22068331] 

Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, et 
al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. 
Cancer Cell. 2006; 10:515–527. [PubMed: 17157791] 

Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, 
Akslen LA, et al. Molecular portraits of human breast tumours. Nature. 2000; 406:747–752. 
[PubMed: 10963602] 

Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011; 5:5–23. 
[PubMed: 21147047] 

Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM. Phenotypic and 
molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer 
Res. 2010; 12:R68. [PubMed: 20813035] 

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 
2013; 19:1423–1437. [PubMed: 24202395] 

Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and 
storage of peptides for proteomics using StageTips. Nat Protoc. 2007; 2:1896–1906. [PubMed: 
17703201] 

Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W. IkappaB kinases phosphorylate NF-kappaB p65 
subunit on serine 536 in the transactivation domain. J Biol Chem. 1999; 274:30353–30356. 
[PubMed: 10521409] 

Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global 
quantification of mammalian gene expression control. Nature. 2011; 473:337–342. [PubMed: 
21593866] 

Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006; 
441:424–430. [PubMed: 16724053] 

Sick E, Jeanne A, Schneider C, Dedieu S, Takeda K, Martiny L. CD47 update: a multifaceted actor in 
the tumour microenvironment of potential therapeutic interest. Br J Pharmacol. 2012; 167:1415–
1430. [PubMed: 22774848] 

Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ. 
Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci 
USA. 2010; 107:1547–1552. [PubMed: 20080644] 

Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks 
DG, et al. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by 
Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Cancer Basic Clin Res. 2010; 
4:35–41.

The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. 
Nature. 2012; 490:61–70. [PubMed: 23000897] 

Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, 
personalized and participatory (P4) medicine. J Intern Med. 2012; 271:111–121. [PubMed: 
22142401] 

Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM. Reverse phase protein 
array: validation of a novel proteomic technology and utility for analysis of primary leukemia 

Lawrence et al. Page 15

Cell Rep. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specimens and hematopoietic stem cells. Mol Cancer Ther. 2006; 5:2512–2521. [PubMed: 
17041095] 

Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, 
Wester K, Hober S, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 
2010; 28:1248–1250. [PubMed: 21139605] 

Untch M, Konecny GE, Paepke S, von Minckwitz G. Current and future role of neoadjuvant therapy 
for breast cancer. Breast. 2014; 23:526–537. [PubMed: 25034931] 

Vidal M, Chan DW, Gerstein M, Mann M, Omenn GS, Tagle D, Sechi S, Workshop Participants. The 
human proteome - a scientific opportunity for transforming diagnostics, therapeutics, and 
healthcare. Clin Proteomics. 2012; 9:6. [PubMed: 22583803] 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome 
Landscapes. Science. 2013; 339:1546–1558. [PubMed: 23539594] 

Vranic S, Gatalica Z, Wang ZY. Update on the molecular profile of the MDA-MB-453 cell line as a 
model for apocrine breast carcinoma studies. Oncol Lett. 2011; 2:1131–1137. [PubMed: 
22121396] 

Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ, Kohn KW, Fojo T, Bates SE, 
Rubinstein LV, Anderson NL, et al. An Information-Intensive Approach to the Molecular 
Pharmacology of Cancer. Science. 1997; 275:343–349. [PubMed: 8994024] 

Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM, Ziegler E, 
Butzmann L, Gessulat S, Marx H, et al. Mass-spectrometry-based draft of the human proteome. 
Nature. 2014; 509:582–587. [PubMed: 24870543] 

Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, 
Thompson IR, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic 
biomarker discovery in cancer cells. Nucleic Acids Res. 2013; 41:D955–D961. [PubMed: 
23180760] 

Yuan Y, Van Allen EM, Omberg L, Wagle N, Amin-Mansour A, Sokolov A, Byers LA, Xu Y, Hess 
KR, Diao L, et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor 
types. Nat Biotechnol. 2014; 32:644–652. [PubMed: 24952901] 

Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, 
et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014; 513:382–
387. [PubMed: 25043054] 

Zhi X, Wang Y, Zhou X, Yu J, Jian R, Tang S, Yin L, Zhou P. RNAi-mediated CD73 suppression 
induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci. 2010; 101:2561–
2569. [PubMed: 20874842] 

Zimmermann H. 5′-Nucleotidase: molecular structure and functional aspects. Biochem J. 1992; 285(Pt 
2):345–365. [PubMed: 1637327] 

Lawrence et al. Page 16

Cell Rep. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Mass spectrometry-based profiling of triple-negative breast cancer
(A) Overview of samples analyzed. N: normal epithelial, +: ER/PR/ERBB2+, L: luminal-

like, M: mesenchymal-like, B: basal-like, ?: not matched. TNBC cell line classifications 

according to (Lehmann et al., 2011) (B) Workflow of proteomics sample preparation and 

data collection. (C) Average number of proteins identified in each replicate (blue bars), total 

number of proteins for each cell line (green bars). Error bars represent S.D. (D) Percent of 

identified proteins relative to the Uniprot/Swiss-Prot database (left) and the COSMIC census 

(right). (E) Number and percent representation of indicated gene ontology categories. (F) 
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Representative scatter plot for cell line SKBR3 replicate protein measurements showing 

quantitative reproducibility of iBAQ protein abundance.
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Figure 2. Quantification of clinical breast cancer biomarkers
ESR1: estrogen receptor, PGR: progesterone receptor, ERBB2: human epidermal growth 

factor receptor-2, TP53: tumor protein p53, MKI67: Ki-67 antigen, EGFR: human epidermal 

growth factor receptor. Sample labels are shown in the bottom panel. Absolute protein 

abundance was calculated using intensity-based absolute quantification (iBAQ). Error bars 

represent S.D. Red dots indicate gene copy number amplification (>7 copies).
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Figure 3. The triple-negative breast cancer proteome
(A) Hierarchical clustering of protein expression profiles computed using centered Pearson’s 

correlation identified four proteome subtypes as indicated. Protein expression values were 

normalized to a scale from 0 to 1 prior to clustering. Frequent genetic aberrations are 

overlaid onto the proteome clustering results. Green circles represent exonic mutations. Red 

and blue circles represent copy number gain (>7 copies) or loss (0 copies), respectively. 

Colored background shading corresponds to cluster membership. At the time of writing, 

exome sequence and copy number data were not available for MCF10A, SW527. (B) Scatter 

plot of principal component 1 and 2. Principal component analysis was performed using 
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protein expression profiles. Each point represents a sample. Colors represent hierarchical 

cluster membership from (A). (C) Biological pathways enriched from the indicated proteins 

clusters. Inverted log10 p-values are shown. (D) Representative example of a protein 

upregulated in cluster 4 and tumors. STAT5A: signal transducer and activator of 

transcription 5A. Error bars represent S.D. (E) Distribution of protein abundances within 

each cluster (colors) for indicated biological processes. For all panels, cluster membership is 

indicated by the same colors used in (A), with tumor samples indicated in yellow.
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Figure 4. Expression of cancer signaling proteins
(A–G) Distribution of absolute abundance for each protein in the signaling network. Chart 

titles indicate subnetwork membership. Each data point represents a sample, color coded 

according to cluster membership from Figure 4A. (H) Top 25 most differentially expressed 

proteins (highest standard deviation between different samples) from the COSMIC gene 

census or (I) the protein kinase superfamily.
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Figure 5. Differential expression of protein isoforms
(A) Schematic of RELA (NF-κB subunit p65) mRNA sequence variants and intensity-based 

quantification of the isoform-specific peptide FSSVQLR in each sample. Peptide intensity 

was divided by the total proteome intensity for normalization. The location of an exon read-

through event is indicated. (B) Scatterplot of the full length NF-κB protein versus the read-

through variant highlighting off-diagonal samples. (C) Four alternative splice variants 

encode the cytoplasmic tail of integrin associated protein CD47. The sequence of these 

variants is shown along with the quantification of the peptide specific to isoform 1, 

AVEEPLNAFK. (D) Scatterplot of CD47 isoform 1 versus isoform 3 highlighting off-
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diagonal samples. (E) Schematic of N-terminally truncated form of focal adhesion kinase 

PTK2 and quantification of N-terminal/C-terminal intensity in each sample. (F) Scatterplot 

of PTK2 long form versus short form highlighting off-diagonal samples.
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Figure 6. Proteogenomic associations
(A) Boxplot showing relationship of protein abundance versus gene copy number. Protein 

abundances were row-normalized to a scale of 0 to 1 to account for differences in absolute 

expression. (B) NDRG1 (N-myc downstream regulated gene 1), a representative protein that 

was not correlated with copy number. CN: copy number. CN>6 highlighted in red. R 

represents Pearson’s correlation. Error bars represent S.D. between replicate measurements.

(C) Network of gene-protein associations. Each edge represents an association (p < 0.001) 

between a mutated census gene (gray nodes) and protein expression (yellow nodes). Only 

genes from the COSMIC census mutated in at least 3 cell lines were analyzed. Node size 
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represents the number of connections. The network was plotted in Cytoscape using ‘edge-

weighted spring embedded’ layout so that genes with common associations cluster together. 

(D) Number of outgoing associations for each mutated gene in network. (E) Number of 

incoming associations for each target protein in network (node degree distribution). Cell 

cycle proteins were enriched among proteins with 3 or more associated genes (p = 5.66 × 

10−4). (F–J) Representative gene-protein associations (p < 0.001) for common genetic 

lesions in breast cancer. Protein is indicated in chart title, and mutated gene shown in italics 

below plot. Error bars represent S.E.M.
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Figure 7. Protein expression and drug sensitivity
(A) Distribution of drug sensitivity (−log10IC50) values across 16 TNBC cell lines for each 

drug in order of increasing median sensitivity. Drugs with sub-micromolar IC50 in at least 

one cell line are shown. Grey dots represent outlier values (>1.5× interquartile range). (B) 

Hierarchical clustering of drug-protein associations. Pairwise Pearson’s correlation was 

calculated systematically between drug sensitivity (inverted IC50) and protein abundance 

(iBAQ) values and clustered in both dimensions. Enriched gene ontology terms are shown 

for several clusters with Benjamini-Hochberg adjusted p-value. (C) Association of drug 

sensitivity with EGFR expression. The EGFR inhibitor lapatinib was significantly associated 
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in both drug screen datasets (CRx: P = 6.2×10−4, our data: P = 2.4×10−9, FDR < 0.05). (D) 

Association of protein expression with bleomycin sensitivity. The protein DDX60 was 

significantly associated bleomycin sensitivity (P = 1.1×10−15, FDR < 0.05). (E–G) Pairwise 

comparison of protein expression and drug sensitivity for three examples. Direct target: 

expression of the target protein indicates sensitivity to the drug. Pathway target: expression 

of a protein in the pathway of the drug target, but not the target itself, indicates sensitivity. 

Synthetic lethal: expression of a protein in an independent pathway from the drug target 

indicates sensitivity. Left panel: protein abundance (iBAQ) across cell lines. Right panel: 

drug sensitivity (inverse IC50, M−1) across the same cell lines. RXRB: retinoid X receptor 

beta, RPS6KB2: ribosomal protein S6 kinase-2, AKT1: RAC-alpha serine/threonine-protein 

kinase. ATRA: RXR agonist all-trans retinoic acid, MK-2206: pan-isoform AKT inhibitor, 

AG-014699: poly-ADP ribose polymerase 1/2 inhibitor. Pearson’s correlation and p-value is 

indicated below the plots. CRx: Data from (Yang et al., 2013). Panel A includes only data 

generated in this study. For panels B–G, data from the CRx was included. Missing IC50 

values were not imputed.
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