Table 1.
Summary of the morphology of endothelial cells in confluent monolayers subjected to shears stress, and in resected vessels.
Cell
|
SS
|
t
|
C | Err | IAR | Err | θ
|
Err | N | Comments | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
line | (dyne cm−2) | (h) | (deg) | |||||||||
HUVEC | CP | 0 | 0.63 | Data from Fig. 2 | Blackman (2002) | |||||||
7.5 | 24 | 0.5 | ||||||||||
HUVEC | LF | 0 | 0.56 | 0.12 (SD) | Data from Table 1 | Chiu et al. (1998) | ||||||
21 | 24 | 0.34 | 0.14 (SD) | |||||||||
HUVEC | CP | 0 | 0.73 | Data from Fig. 2 | Simmers, Am J Heart Circ Physiol (2007) | |||||||
7.5 | 96 | 0.65 | ||||||||||
HAAEC | LF/T | 18 | 12 | 0.38 | Data from Fig. 3 | Rouleau et al. (2010)) | ||||||
24 | 0.36 | |||||||||||
BAE | CP | 0 | 0.72 | 0.02 (SE) | 55 | 3.0 (SE) | 60 | Data from analysis of microscope images (Fig. 2) | Malek and Izumo (1996) | |||
20 | 24 | 0.24 | 0.01 (SE) | 15 | 1.6 (SE) | 36 | ||||||
BAE | LF | 0 | 0.77 | 0.10 (SD) | 141 | Data from Table 1 | Eskin et al. (1984) | |||||
34 | 21 | 0.5 | 0.14 (SD) | 140 | ||||||||
BAE | LF | 0 | 0.85 | 0.66 | 140–400 | Morphological parameters calculated from data in Table 1: | Levesque and Nerem (1985) | |||||
10 | 24 | 0.74 | 0.53 | 140–400 | C from cell area and perimeter; IAR from cell length and width; | |||||||
0 | 0.9 | 0.7 | 140–400 | orientation angle from Fig. 4 | ||||||||
30 | 24 | 0.55 | 0.33 | 140–400 | ||||||||
0 | 0.8 | 0.62 | 45 | 140–400 | ||||||||
85 | 24 | 0.47 | 0.27 | 14 | 140–400 | |||||||
BAEC | LF | 0 | 0.58 | 40 | Data from Fig. 2 | Ensley et al. (2012) | ||||||
15 | 24 | 0.33 | 9 | |||||||||
Animal | Vessel | |||||||||||
Rabbit | Aorta | 0.29 | 0.01 (SE) | 0.14 | 0.01 (SE) | 6.7 | 0.76 (SE) | 52 | Data obtained from analysis of microscope image (Fig. 1) | Reidy and Langille (1980) | ||
Rabbit | Aorta | 0.25 | 0.02 (SE) | 0.16 | 0.01 (SE) | 4.9 | 0.9 (SE) | 19 | Data from analysis of microscope image (Fig. 1) | Silkworth and Stehbens (1975) | ||
Rabbit | Aorta | 0.34 | 0.17 | 15 | Circularity and average orientation angle from Table 1; | Nerem et al. (1981) | ||||||
IAR calculated from cell length and width (Table 1) | ||||||||||||
Rat | Aorta | 0.2 | 500 | IAR calculated from cell length and width in Table 2 | Zand et al. (1988) | |||||||
Rat | Aorta | 0.3 | 0.02 (SE) | 0.19 | 0.02 (SE) | 4.5 | 0.7 (SE) | 20 | Data from analysis of Fig. 1 | Kibria et al. (1980) | ||
Aorta | 0.18 | 0.24 | 310 | IAR calculated from cell length and width in Table 2 | ||||||||
Pulmonary vein | 0.48 | 0.1 | 184 | |||||||||
Dog | Aorta | 0.33 | 0.02 (SE) | 0.19 | 0.02 (SE) | 5.7 | 0.9 (SE) | 20 | Data from analysis of microscope image (Fig. 2a) | Levesque et al. (1986) |
SS – shear stress, C – circularity (C = 4πA/P2), A – cell area, P – cell perimeter, IAR – inverse aspect ratio (cell width/cell length), θ – average orientation angle with respect to the direction of flow, N – number of cells analyzed. BAE – bovine aortic endothelial cells, HUVEC – human umbilical vein endothelial cells, BAEC – baboon artery endothelial cells, HAAEC – human abdominal aortic endothelial cells. CP – cone and plate, LF – linear flow, LF/T laminar flow in a tube.