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Abstract

Purpose—In the last decade several different radiotherapy treatment plan evaluation and 

optimization schemes have been proposed as viable approaches, aiming in dose escalation or in an 

increase of healthy tissue sparing. In particular it has been argued that dose-mass plan evaluation 

and treatment plan optimization might be viable alternatives to the standard of care, which is 

realized through dose-volume evaluation and optimization. The purpose of this investigation is to 

apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable 

healthy tissue sparing to the one achievable through dose-volume optimization.

Materials and Methods—Fourteen non-small cell lung cancer (NSCLC) patient plans were 

studied retrospectively. The range of tumor motion was below 0.5 cm and motion management in 

the treatment planning process was not considered. For each case dose-volume (DV) based and 

dose-mass (DM) based optimization was carried out. Nine-field step-and-shoot IMRT was used, 

where all of the optimization parameters were kept the same between DV and DM optimizations. 

Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% 

of the esophageal volume, doses to 20% and 30% of healthy lung volumes, were used for cross-

comparison. Similarly, mass-based indices (MIs), such as doses to 20% and 30% of healthy lung 

masses, 1% of spinal cord mass, 33% of heart mass, were also tallied. Statistical equivalence tests 

were performed to quantify the findings on the entire patient cohort.

Results—Both DV and DM plans for each case were normalized such that 95% of the planning 

target volume received the prescribed dose. DM optimization resulted in more organs at risk 

(OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus is 23%, 

4%, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung 

doses. On average the doses to 20% and 30% of healthy lung were lower by about 3% and 4%, 

while lungs volumes receiving 2000 cGy and 3000 cGy are lower by 3% and 2%, respectively. 

The behavior of MIs was very similar. The statistical analyses of the results again indicated better 

healthy anatomical structures sparing with DM optimization.
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Conclusions—The presented findings indicate that dose-mass based optimization results in 

statistically significant OAR sparing as compared to dose-volume based optimization for NSCLC. 

However, the sparing is case dependent and it is not observed for all tallied dosimetric endpoints.
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1. Introduction

Lung cancer is the most common cause of cancer-related deaths worldwide. Two major 

types are small or non-small cell lung cancer. Non-small cell lung cancer (NSCLC) 

comprises about 84% of the diagnosed cases.(American Cancer Society, 2014) Definitive 

radiotherapy is suitable for approximately 40% of NSCLC cases.(Perez et al., 2004) It has 

been demonstrated that 70 Gy is a significant threshold in terms of survival benefits,(Kong 

et al., 2005) while doses of ~85 Gy are required to achieve 30 months of local progression-

free survival.(Martel et al., 1999) Phase I RTOG 0117 trial demonstrated that 74 Gy is the 

maximum tolerated dose in combined chemo-radiotherapy for that disease, indicating the 

detrimental effects of chemo-radiotherapy combination which prohibit dose escalation.

(Auperin et al., 2006; Bradley et al.; Gopal et al., 2003a; Meadors et al., 2006) Healthy 

tissue tolerance is very often the dose limiting factor for a definitive lung cancer treatment. 

Symptomatic radiation-induced lung injury occurs in ~30% of the patients, while radiologic 

evidence occurs in ~50% of the NSCLC cases.(Mathew et al.; Movsas et al., 1997; Kocak et 

al., 2005; McDonald et al., 1995; Rodrigues et al., 2004; Evans et al., 2007; Graham et al., 

1999; Marks et al., 2000; Fan et al., 2001; Fu et al., 2001; Anscher et al., 2003; Marks et al.; 

Ma et al., 2009)

Human respiration includes changes in both lung volumes and lung masses.(Wei et al., 

2005; Brecher and Hubay, 1955; Vermeire and Butler, 1968) While the changes in lung 

volumes are intuitive, the changes in lung masses are not obvious, and they have not been 

adequately explored and accounted for.(Nioutsikou et al., 2005; Butler et al., 2004) To date, 

mass information has been utilized only in evaluation of treatment plans and radiobiological 

modeling for NSCLC.(Butler et al., 2004; Forster et al., 2001; Mavroidis et al., 2006; 

Nioutsikou et al., 2005; Tucker et al., 2006; Wei et al., 2005) Dose-mass histograms 

(DMHs) were introduced for evaluation and review of thoracic treatment plans.(Butler et al., 

2004; Forster et al., 2001) Shortly after, the analytic rationale (not complete in our opinion) 

for their application was outlined.(Mavroidis et al., 2006; Nioutsikou et al., 2005) More 

recently a conceptual study, shedding more light on the mathematical formalism of dose-

mass inverse optimization, was published.(Mihaylov and Moros, 2014)

The purpose of the present work is to retrospectively evaluate treatment plans generated 

through conventional dose-volume inverse optimization and newly developed dose-mass 

inverse optimization paradigm.
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2. Materials and Methods

According to published data,(Keall et al., 2006a; Stevens et al., 2001; Mihaylov et al., 2010) 

in nearly half of the lung cases the lesions move less than 0.5 cm in superior-inferior 

direction. The investigation herein is targeted toward those minimally moving lung lesions, 

since the effect of motion would not play a role in the treatment planning and the treatment 

motion management.(Keall et al., 2006b; Keall et al., 2001)

2.1. Patients

Fourteen lung cancer patients, who had time-resolved (4D) computed tomography (CT) 

simulations, were retrospectively evaluated. The 4D CT scans were performed on a Philips 

Big Bore Brilliance multi-slice CT scanner (Philips Medical Systems, Cleveland, OH) 

interfaced with a Varian (Varian Medical Systems, Palo Alto, CA) real-time position 

management (v. 1.62) respiratory gating system(Kubo et al., 2000). The patients were 

scanned under normal respiration without coaching. The tumor motion range was estimated 

from the reconstructed 4D CT data. In all patients selected for this study the tumor motion 

was within 0.5 cm, where the 0.5 cm threshold was determined from a sagittal projection on 

the 4D CT. In other words if motion in superior-inferior and anterior-posterior was less than 

0.5 cm, the patients were selected for the study. The disease stages are T2 (3 patients), T3 (8 

patients), and T4 (3 patients) with different nodal involvement from N0 to N3.

2.2. Phase Selection and Contouring

A mid-ventilation phase, representing an average phase over the entire breathing cycle, was 

selected for external beam inverse treatment planning.(Wolthaus et al., 2008) The GTV was 

contoured in the mid-ventilation phase of the breathing cycle by using anatomical 

correlation between CT simulation data set and available diagnostic imaging studies (i.e. 

CT, MRI or PET-CT). A Planning target volume (PTV) was generated by a uniform 

expansion of 1 cm around the GTV. The lungs were contoured on mid-ventilation phase CT 

data sets with the automatic lung contouring tools in Pinnacle3 (Philips Medical Systems, 

Fitchburg, WI) treatment planning system (TPS). The lung contours were visually verified 

on each slice.

2.3. Treatment Planning

For each patient an IMRT deliverable(Dogan et al., 2006; Mihaylov and Siebers, 2008; 

Siebers and Mohan, 2003; Siebers et al., 2002) optimization was performed. Two plans were 

generated – one with newly proposed dose-mass (DM) optimization,(Mihaylov and Moros, 

2014) and another one based on the standard of care realized through dose-volume (DV) 

optimization.(Fredriksson, 2012; Shipley et al., 1979; Wu and Mohan, 2000) The treatment 

plans consisted of 9 co-planar 6MV beams. DM and DV plans for each patient were 

normalized such that 95% of the PTV received the prescription dose. Once prescription was 

achieved, the doses to organs at risk (OARs) such as spinal cord, heart, esophagus, and lungs 

were iteratively lowered until standard deviation of the dose across the PTV in each plan 

became ~ 4%.(Aaltonen et al., 1997) For the targets with either optimization scheme pure 

dose objectives were used. The objectives included minimum, maximum, and uniform 
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desired doses to the target. For the OARs the IMRT objectives were dose-volume and dose-

mass based, depending on the optimization scheme.

2.4. Analysis

The dose distributions computed with the DM optimization were used as a reference to 

which the dose distributions computed with the DV optimization were compared. The metric 

used to perform the comparison was based on dose-volume indices (DVI), isovolumes 

(volumes encompassed by certain isodose line), dose-mass indices (DMI) derived from 

dose-mass histograms,(Butler et al., 2004; Nioutsikou et al., 2005) and isomasses (mass of 

healthy tissue receiving greater than pre-specified dose). The evaluated DVIs were 

DVIPTV 95% (dose to 95% of the PTV), DVICord 1%, DVIHeart 33%, DVIEsophagus 50%, 

DVILung 20%, and DVILung 30%. The compared DMIs were for 1% of the mass of the cord, 

33% of the heart, 50% of the esophagus, and 20% and 30% of the lungs. DMIs are 

represented by the dose covering certain mass of an OAR while DVIs are doses covering a 

certain volume of an OAR.

A statistical equivalence test was used to determine the minimum dose, volume, or mass 

interval around the reference DIs, MIs, isovolumes, and isomasses, such that the reference 

and the compared index values were equivalent.(Mihaylov and Siebers, 2008; Mihaylov et 

al., 2010) The test was performed for each index using two one-tailed paired t-tests(Rosner, 

1986). The dose/fractional volume/mass interval was initially set to zero and the t- and p-

values computed. Subsequently, the dose/fractional volume interval was progressively 

increased in 1 cGy/1 g steps until equivalence between the indices with p < 0.05 was 

reached.

3. Results

Both DV and DM plans were normalized such that 95% of the PTV received the 

prescription dose. Therefore, with either optimization scheme the therapeutic effects of the 

plans are supposed to be the same and dosimetric indices for the targets would not be 

evaluated further

3.1. OAR DIs, MIs, Isovolumes and Isomasses

The results from the per-patient evaluation of the OAR normalized DVIs and isovolumes are 

presented in Figure 1. In the normalization of the tallied indices, the quantities obtained 

from the DM plans were used as a reference. Therefore, doses for different DVIs or 

isovolumes for different patients could be visualized together on a single plot.(Mihaylov et 

al., 2007; Mihaylov and Siebers, 2008) In order to aid the evaluation of the obtained 

differences unity is denoted on the figure by a dotted line. If a normalized DV or isovolume 

is greater than unity then the DM optimization results in lower absolute value for that 

quantity and vice versa. Majority of DVIs for spinal cord, heart end esophagus demonstrate 

that DM optimization results in more OAR sparing than DV optimization (cf. top panel of 

Figure 1). The differences range from −23% (dose to 1% of the spinal cord for patient 3) to 

more than 60% (dose to 1% of the spinal cord for patient 5) with average sparing of cord, 

heart, and esophagus of 23%, 4%, and 6% respectively. Negative difference corresponds to 
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better lower dosimetric values with DV optimization. Bottom panel of the figure represents 

the healthy lung indices. The behavior is very similar to the spinal cord, heart and esophagus 

DVIs. For majority of the indices DM optimization yields lower lung doses. On average the 

doses to 20% and 30% of healthy lung are lower by about 3% and 4%, while lungs volumes 

receiving 2000 cGy and 3000 cGy are lower by 3% and 2% respectively.

Figure 2 represents the corresponding MIs and isomasses. For all OARs, the majority of the 

tallied indices indicate more healthy tissue sparing with DM optimization. The average 

DMIs for the spinal cord, the heart, and the esophagus have values very close to the average 

DVI differences. Doses to 20% and 30% mass of lung tissue differ between DM and DV 

optimization by 4% and 4.8%, while lung mass receiving more than 2000 cGy and 3000 cGy 

differ by 3% and 2.6% respectively.

3.2. Statistical analyses

Table 1 contains the average value of the DVIs (estimated from the doses derived by the 

DM optimization) in cGy, the statistical equivalence in cGy, and the percent change in the 

dose index necessary to establish statistical equivalence. In addition, the bottom two rows of 

the table contain the lung volumes encompassed by 2000 and 3000 cGy isodose lines in 

cm3, as well as the statistical equivalence interval and the percent change with respect to the 

average. The statistical equivalence tests demonstrate that the DVIs percent change for 

equivalency for the lungs range from 3.5% to 5.4%. However, the DIs to heart, cord, and 

esophagus differ from 8% to more than 40%. Table 2 is the counterpart of Table 1, with the 

only difference that the tallied quantities were derived from the dose-mass histograms. The 

statistically significant sparing of lung mass varies from 4% to almost 6.5%. The statistically 

significant differences in sparing of heart, esophagus, and spinal cord tissue are from 8% to 

40%. Table 3 presents the statistical significance test results for generalized equivalent 

uniform doses for (gEUDs) for the OARs of interest.(Niemierko, 1997, 1999) The 

parameters a used in the calculation of the gEUDs is based on the available published 

values.(Wu and Mohan, 2000; Burman et al., 1991; Cella et al., 2014; Belderbos et al., 

2005) The percent change with respect to the average gEUDs calculated from the DM plans 

again range from about 4% for the heart to nearly 100% for the spinal cord.

4. Discussion and Conclusion

Radiation toxicity and normal tissue injury is a common problem in radiotherapy.(Marks 

and Ma, 2007) Several studies have demonstrated that chemo-radiotherapy combination in 

cancer treatments has rather detrimental effects on normal tissue.(Bentzen and Trotti, 2007; 

Bradley et al.; Gopal et al., 2003b) In case of NSCLC phase I RTOG 0117 trial 

demonstrated that combined chemo-radiation prevents dose escalation,(Bradley et al., 2010) 

while single institution studies have reported on decreased total lung capacity and lung 

diffusing capacity as a result of chemo-radiotherapy combination.(Gopal et al., 2003a) 

Those findings indicate that new approaches, allowing reduction of radiation induced 

toxicity in normal tissue, would benefit those patients who need radiation therapy as part of 

their standard of care.
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The findings herein show that on average DM based optimization results in better OAR 

sparing than DV optimization for lung cancer patients. This has been demonstrated by both 

comparing the observed differences on point-by-point basis as well as performing paired 

statistical analyses on the data. The statistical equivalence tests indicate sparing ranging 

from 4% to more than 40%. In case of the seventy individual DIs presented on Figure 1 

twenty of them showed percent differences larger than the statically equivalent values 

quoted in Table 1. Therefore, in more than one quarter of the observed points the DM 

optimization results were at least as large as the quoted significant differences. In case of the 

gEUDs, the observed differences were in excess of the relative levels reported in Table 3 in 

eighteen out of fifty six individual data points for all patient, thereby indicating that in 

almost one third of all tallied gEUDs DM optimization outperforms DV optimization. Those 

lower doses can be used for normal tissue sparing or alternatively isotoxic dose escalation 

may be exploited.

Notably, target dose differences of 3% and more have observable clinical significance.

(Bentzen, 2004; Dutreix, 1984; Mijnheer, 1996) It should be noted however, that the sparing 

is case dependent and it is not observed for all tallied dosimetric endpoints. The combined 

plots evaluating all of compared dosimetric quantities indicate that the most modest healthy 

tissue sparing is observed in the lungs and in the heart, while significantly better sparing is 

achieved in the spinal cord and the esophagus with dose-mass based inverse optimization. 

Investigation of DM optimization on an idealized simulated phantom indicated that DV 

optimization is a special case of DM optimization, where in homogeneous media there is no 

difference between the cost functions.(Mihaylov and Moros, 2014) The simple example 

presented therein also demonstrated the fact that in DM optimization dose is delivered to the 

target through lower density regions where the attenuation is lower.

In order to shed some light on the significance of the observed differences through Figures 1 

and 2 as well as Tables 1 through 3 an normal tissue complication probability (NTCP) 

model based on the original work by Kutcher et. al. was developed.(Kutcher et al., 1991) 

The organ dependent model parameters n, m and TD50 for the different anatomical structures 

have been derived from published studies. (Belderbos et al., 2005; Burman et al., 1991; 

Cella et al., 2014; Semenenko and Li, 2008; Schultheiss, 2008) According to the model the 

differences in the gEUDs of an OAR may result in substantial change in the expected 

complication probability. If lung gEUD is 20 Gy, then 6% increase in dose will result in 

modest 3% increase of the NTCP. Similarly, if heart gEUD is 20 Gy, a change of 4% will 

result only in 2.5% increase of the NTCP. A change of 47.5% in esophageal gEUD of 20 Gy 

will result in about 9.5% increase in the NTCP predicted by the model. Obviously change in 

cord gEUD of ~100% for 20 Gy would result in rather small increase of the NTCP, but a 

change of that magnitude for gEUD of 30 Gy will result in NTCP increase of over 25%. 

Nonetheless, dose reduction to normal tissue, for adequate therapeutic dose to the tumors, 

would always benefit patients regardless of the model derived numbers.

It is possible that the advantages afforded by dose-mass inverse optimization over dose-

volume inverse optimization can be attributed to further personalizing the dose optimization 

to a given patient by weighting the cost function components by the variable mass in every 
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voxel (density).(Mihaylov and Moros, 2014) In dose-volume optimization voxels are usually 

all of the same volume so the weighting is uniform.
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Figure 1. 
Normalized dose indices and isodose volumes for all patients. In the top panel the indices 

for the heart, spinal cord, and esophagus are presented, while in the bottom panel the lung 

data is plotted.
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Figure 2. 
The presented data is the same as in Figure 1, but in this case the dose data has been 

extracted from the dose-mass histograms. In the top panel are the normalized doses to 1% 

mass of the spinal cord, 33% of the heart mass, and 50% of the esophagus mass. In the 

bottom panel the presented data is for doses to 20% and 30% of lung mass, as well as the 

lung tissue mass receiving 2000 and 3000 cGy.
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Table 1

Dose intervals at which statistical equivalence test indicates that the differences between DM and DV derived 

DVIs are statistically significant (p<0.05). The average doses or volumes are derived from the DM 

optimization.

Dose Volume
Index

Average Value of
Tallied Index
[cGy or cm3]

Statistical Equivalence
Interval

[cGy or cm3]

Percent change for
equivalency
(% Sparing)

[%]

heart DI33% 981.3 79 8.0

cord DI1% 1366.0 571 41.2

esophagus DI50% 443.8 81 18.3

lungs DI20% 2421 126 5.2

lungs DI30% 1708.5 93 5.4

Isovolume 2000 cGy 819.1 31 3.8

Isovolume 3000 cGy 510.8 17.1 3.5
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Table 2

The same as Table 1 but for the dose intervals derived from the dose-mass histograms.

Dose Mass
Index

Average Value of
Tallied Index

[cGy or g]

Statistical Equivalence
Interval

[cGy or g]

Percent change for
equivalency
(% Sparing)

[%]

heart MI33% 967.7 77 8

cord MI1% 1387.8 559 40.3

esophagus MI50% 442.7 74 16.8

lungs MI20% 2285 128 5.6

lungs MI30% 1572 101 6.4

Isomass 2000 cGy 253.5 9.8 3.9

Isomass 3000 cGy 159.5 7.0 4.4
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Table 3

The same as Table 1 but for generalized equivalent uniform doses derived from the dose-volume histograms.

gEUD Average Value of
Tallied Index

[cGy]

Statistical
Equivalence Interval

[cGy]

Percent change for
equivalency
(% Sparing)

[%]

heart (a = 6.0) 3058 118 4

cord (a = 7.4) 758 736 97

esophagus (a = 1.5) 1200 569 47.5

lungs (a = 1.2) 1533 93 6.1
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