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Abstract

The multiple infection of cells with several copies of a given virus has been demonstrated in 

experimental systems, and has been subject to previous mathematical modeling approaches. Such 

models, especially those based on ordinary differential equations, can be characterized by 

difficulties and pitfalls. One such difficulty arises from what we refer to as multiple infection 

cascades. That is, such models subdivide the infected cell population into sub-populations that are 

carry i viruses, and each sub-population can in principle always be further infected to contain i+1 

viruses. In order to study the model with numerical simulations, the infection cascade needs to be 

cut artificially, and this can influence the results. This is shown here in the context of the simplest 

setting that involves a single, homogeneous virus population. If the viral replication rate is 

sufficiently fast, then most infected cells will accumulate in the last member of the infection 

cascade, leading to incorrect numerical results. This can be observed even with relatively long 

infection cascades, and in this case computational costs associated with a sufficiently long 

infection cascade can render this approach impractical. We subsequently examine a more complex 

scenario where two virus types / strains with different fitness are allowed to compete. Again, we 

find that the length of the infection cascade can have a crucial influence on the results. 

Competitive exclusion can be observed for shorter infection cascades, while coexistence can be 

observed for longer infection cascades. More subtly, the length of the infection cascade can 

influence the equilibrium level of the populations in numerical simulations. Studying the model in 

a parameter regime where an increase in the infection cascade length does not influence the 

results, we examine the effect of multiple infection on the outcome of competition. We find that 

multiple infection can promote coexistence of virus types if there is a degree of intracellular niche 

separation. If this is not the case, the only outcome is competitive exclusion, similar to equivalent 

models that do not take into account multiple infection of cells. We further find that multiple 

infection has a reduced ability to allow coexistence if virus spread is spatially restricted compared 

to a well-mixed system. These results provide important insights when analyzing and interpreting 

multiple infection models.
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1. Introduction

Investigating the dynamics of virus spread through target cell populations has produced a 

better understanding of the principles underlying virus dynamics and evolution, and has 

provided insights into in vivo processes that contribute to the development of disease from a 

variety of human pathogens, such as human immunodeficiency virus (HIV), hepatitis B and 

C viruses (HBV and HCV). Mathematical models have played an important role in this 

respect [1; 2; 3]. A relatively underexplored area in virus dynamics is the multiple infection 

of cells, i.e. the simultaneous infection of a cell with more than one copy of a virus. This can 

occur in different infections. For example, adenoviruses are thought to infect cells with 

several viral copies, and interesting dynamics have been observed that appear related to 

multiple infection and that warrant further investigation with mathematical models [4]. 

Some of the better documented data come from human immunodeficiency virus (HIV). A 

collection of in vitro and ex vivo studies clearly showed that more than one virus can enter 

the same cell [5; 6; 7; 8]. For in vivo scenarios, patient data have been reported that showed 

an average of 3–4 proviruses per infected cell in the spleen [9]. Other studies, however, 

argued that the great majority of infected cells in HIV-infected patients in the blood and 

tissues are singly infected [10; 11]. This discrepancy might be due to the particular T cell 

subsets examined in the respective studies, although the reason is not understood. The 

occurrence of viral recombination in vivo, however, further indicates an important role of 

multiple infection, since recombination would otherwise not be possible [7; 9; 12].

Virus dynamics in the presence of multiple infection has been examined mathematically in a 

few studies. Basic dynamics were investigated with ordinary differential equations and 

integro-differential equations by Dixit and Perelson [13; 14], and subsequently investigated 

further in references [15; 16], using ordinary differential equations and agent-based models. 

The effect of recombination, which requires multiple infection, has been modeled, e.g. [17; 

18; 19]. Competition was also incorporated into multiple infection models [20; 21]. The 

ordinary differential equations models that have been reported are similar in structure 

compared to those in the field of epidemiology, where multiple pathogens are assumed to 

infect hosts [22; 23; 24; 25; 26; 27; 28].

Those models can be characterized by certain difficulties and pitfalls, especially when 

investigating simplified formulations in terms of ODEs. ODEs that describe multiple 

infection generally divide the population of infected cells in subpopulations that are infected 

with one, two, three etc viruses. We refer to this as the “multiple infection cascade”. In 

principle, this cascade can be infinite. In practical terms, the number of cells infected with a 

multiplicity that lies above a certain threshold will be negligible, and thus the infection 

cascade can be truncated. It is, however, unclear how exactly the truncation of the cascade 

can affect the results. In the presence of competition, it has been shown that certain 

truncated and simplified model forms can lead to pathological outcomes, where the 
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assumption of two identical (and thus competitively neutral) pathogens can lead to a unique 

equilibrium [27].

In this paper, we examine in more detail ODE modeling approaches to study the multiple 

infection of cells with viruses. We start by investigating how the truncation of the multiple 

infection cascade can affect the outcome in different parameter regions in the context of 

basic dynamics. We then expand the multiple infection models to investigate the 

competition between two virus strains, taking into account both competition for target cells 

(as in standard virus competition models) and the competition for intracellular resources.

This analysis will be performed in the most general setting, without considering one specific 

infection. The aim of this work is to gain a better understanding of how model structure can 

influence outcome in models that describe the multiple infection of cells by viruses. This can 

form the basis for future work that applies this type of model to specific infections, which 

will require careful consideration of assumptions that are specific to the virus in question.

2. Results

2.1. Basic ODE models of multiple infection

Mathematical models of virus dynamics are often based on ordinary differential equations, 

and this approach has also been used to describe the infection of cells by multiple copies of 

the same virus (multiple infection). Denoting the population of susceptible cells by S, free 

virus by V, and the population of cells infected with i viruses by Ii, the model is given as 

follows.

(1)

This is an extension of basic virus dynamics models [1; 2; 3], and has been described first by 

Dixit and Perelson [13], with extensions published subsequently [2; 3]. Susceptible target 

cells are produced with a rate λ and die with a rate d. Infection of susceptible cells by virus 

occurs with a rate β, generating cells infected with a single copy of the virus. These cells can 

be infected by further virus particles with a rate β, generating cells infected with i copies of 

the virus. This process can continue until the end of the infection cascade, In, is reached. 
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Cells in this population cannot be infected any further. Infected cell populations die with a 

rate ai and produce virus with a rate ki. Free virus decays with a rate u. In this formulation, 

the rate of virus production, k, and the rate of infected cell death, a, can depend on the 

multiplicity of infection, i, although it does not have to. In the simplest form, these 

parameters do not depend on the multiplicity of infection, as described by [13]. In this case, 

virus production is determined predominantly by cellular factors, keeping the overall 

amount of virus produced constant and independent of the number of viruses in the cell. 

Alternatively, it is possible that the rate of virus production and the death rate of infected 

cells can increase to a certain degree in multiply infected cells, a scenario considered in [16]. 

In models that have been applied to HIV infection, it has also been assumed that the ability 

of a cell to become infected can be lost over time, as a result of e.g. receptor down-

modulation [13]. This will not be considered in the present context.

One aspect we would like to explore here is the dependency of the dynamics on model 

structure. In particular, the ODE formulation requires an arbitrary end to the infection 

cascade, In. The larger the value of n, the more computationally expensive simulations of 

this system become. The value of n, however, can impact the dynamics that are observed in 

this model, and this will be investigated in the following sections. First, it will be assumed 

that virus parameters are independent of the infection multiplicity. Subsequently, we will 

assume that multiply infected cells produce more virus during their life-span than singly 

infected cells.

2.1.1. Virus parameters are independent of infection multiplicity—This system 

has been studied analytically before, and the reader is referred to these analyses for details 

[13; 16]. If the basic reproductive ratio of the virus is greater than one, the virus and cell 

populations converge to an internal, stable equilibrium, which has been defined [13; 16]. 

Here, we concentrate on the distribution of cells infected with different multiplicities. The 

most abundant infected cell population are singly infected cells, I1, and the abundance of 

multiply infected cells, Ii, are successively lower (Figure 1). The population size of the 

infected cell sub-populations decline exponentially with increasing multiplicities of infection 

(Figure 2a), and the rate of this exponential decline is given by , and 

hence depends on the parameters that determine the basic reproductive ratio of the virus. 

The faster the basic reproductive ratio of the virus, the slower the rate of decline. In other 

words, the singly infected cells become less dominant and the distribution becomes more 

even for faster viral replication kinetics. In the extreme case where the basic reproductive 

ratio of the virus is very large, all infected cell sub-populations are almost equally abundant.

If the decline of the successive infected cell sub-populations is relatively slow, the modeling 

approach discussed here can become difficult. If the length of the multiple infection cascade, 

n, is not sufficiently large, the majority of the infected cells will accumulate in the last 

member of the cascade, i.e. in In (Figure 2b). This is clearly an unrealistic feature that can 

lead to artificial results (explored further below). For fast viral replication rates, it is possible 

to observe this behavior even if relatively large values of n are chosen, making it unlikely 

that the dynamics can be numerically studied in a realistic way. Such parameter regimes are 

characterized by a very high average multiplicity of infection in the cells.
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2.1.2. Virus parameters depend on infection multiplicity—Here, it will be assumed 

that the rate of viral replication increases in multiply infected cells. In this case, this also 

leads to an increase in the burst size of the infected cells (number of viruses produced during 

the life-span of the cell), which is given by ki/ai in the model [26]. For simplicity, it is 

assumed that only ki is an increasing function of i, and that the death rate of infected cells 

remains independent of infection multiplicity. In particular, we will assume that the rate of 

virus production is given by . The overall rate of virus production is a saturating 

function of the infection multiplicity. The parameter ε is the saturation constant. This 

parameter also appears in the numerator to avoid having to re-scale the parameter k if the 

value of ε is changed. For ε=0, this expression reverts back to the previous model where the 

rate of virus production was independent of the infection multiplicity. For ε→∞,the rate of 

virus production increases linearly with the infection multiplicity. This extreme case, 

however, is most likely not realistic and will not be analyzed here. We note that although a 

simplified scenario is considered in which only the rate of viral replication increases with 

the multiplicity of infection, the general results that we describe are not dependent on this 

simplification. The results hold as long as the burst size of infected cells (given by the rate 

of virus production divided by the infected cell death rate) increases with infection 

multiplicity. In reality, a higher viral replication rate can lead to a higher rate of infected cell 

death. As long as the increase in the death rate of infected cells is less than the increase in 

the viral replication rate at higher infection multiplicities, the burst size increases and our 

results hold. If the death rate of the infected cells increases more than the replication rate of 

the virus in multiply infected cells, the burst size of infected cells does not increase, which 

represents a different regime.

The properties of this type of model have been examined in a previous study [16], and can 

involve more complex dynamics. In particular, whether the infection is established or not 

can depend on the initial conditions, and hence, is not determined entirely by the basic 

reproductive ratio of the virus anymore. If an infection is established, the virus and cell 

populations again converge to a stable equilibrium, the properties of which have been 

described before [16]. As in the previous model, the infected cell sub-populations at 

equilibrium are a declining function of the infection multiplicity, and the decline is again 

exponential. The exact rate of decline could not be calculated in this system. In contrast to 

the previous system (model 1), however, there is a stronger tendency for the decline to be 

relatively slow, leading to a more even distribution of the infected cell sub-populations. The 

reason is that on average, the virus replicates faster as a result of the higher virus output 

from multiply infected cells. Hence, the average multiplicity of infection rises more as the 

replication kinetics of the virus are increased. Therefore, in this model it is easier to enter a 

parameter regime where most of the infected cells accumulate in the last element of the 

infection cascade, In, leading to difficulties for numerical simulations of this system (Figure 

2 c,d).

2.2 Competition dynamics

Competition between different virus strains that infect the same target cell population has 

been studied with mathematical models, using approaches that are extensions of basic virus 
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dynamics models that do not take into account multiple infection [1; 3]. In such scenarios, 

competitive exclusion is typically observed, where the virus strain with the higher basic 

reproductive ratio wins the competition. As expected from ecological theory, coexistence is 

observed in models that assume a degree of niche separation between the competing virus 

strains, such as the infection of different kinds of target cells [29; 30; 31]. Coinfection has 

been argued to be a mechanism that can promote coexistence [20; 21; 22; 23; 24; 25; 26; 

27], both in models that describe the spread of pathogens among hosts, and in models that 

describe the spread of viruses through cell populations. At the same time, it has been pointed 

out that model structure can be problematic in this respect [27]. Certain simplified models 

that are characterized by coexistence of competing strains have the unrealistic feature that a 

unique equilibrium is attained under the assumption that the two pathogen strains are 

competitively neutral, i.e. practically indistinguishable. Such models are not a good basis to 

explore the competition dynamics.

Here, model (1) of the previous section is extended to include two virus strains that compete 

for the same target cell population. Again, the model includes multiple infection cascades. In 

this case, cells can be infected with i copies of virus strain 1 and j copies of virus strain 2, yij. 

The model is thus given by the following ordinary differential equations.

(2)
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The general model structure is the same as that explained in model (1), except that we now 

track cells infected with two strains. The rate of virus production in infected cells merits 

further explanation. In a given cell, progeny virus of stain 1 is produced with a rate 

. This captures competition between the virus strains within a cell. Different viruses 

or virus strains are likely to use common resources within the cell, thus introducing 

competition for cellular products. Hence, the rate of virus production of strain 1 is 

negatively impacted by both the presence of further viruses of the same strain (intraspecific 

competition, i), and by viruses of the second strain (interspecific competition, j). The relative 

strength of interspecific competition is captured in the parameter c1. If c1=1, the negative 

impact of strain two on strain one is identical to the negative impact of additional strain 1 

genomes on themselves. If c1<1, the degree of interspecific competition is reduced. That is, 

a strain 2 viruses have less of an impact on strain 1 than strain 1 has upon itself. In the 

extreme case where c1=0, the two virus strains replicate independently within the cell and 

there is no competition for intracellular resources. If c1>1, a strain 2 virus has a stronger 

impact on strain 1 than strain 1 viruses have upon themselves. This can be interpreted as 

direct inhibitory effects. In the extreme case for large values of c1, strain 1 practically does 

not produce offspring in cells that are coinfected with both strains. This is a “winner takes it 

all” situation, where strain 2 is the winner. The same arguments hold for the production rate 

of virus strain 2, where the parameter c2 describes the degree of inhibition of strain 2 by the 

presence of strain 1.

We need to add some more clarifying remarks about the case where c1,2<1. If c1,2=1, the 

interpretation is that these are two strains of the same virus. In the opposite extreme, c1,2=0 

means that they are two separate viruses that infect the same cells. Complete lack of 

resource sharing means that they replicate by completely separate mechanisms. For 

0<c1,2<1, the situation is intermediate. When we analyzed models for a single virus 

population, we distinguished between two scenarios: (i) Viral parameters are independent of 

the infection multiplicity. In this case, the burst size of the infected cell did not depend on 

the infection multiplicity either. (ii) Viral parameters, and thus the burst size of the infected 

cells, do depend on infection multiplicity. In the context of two competing viruses, scenario 

(i) is a little more complex. This is best illustrated for c1,2=0. Even if viral parameters are 

independent of how many copies of this virus reside in the cell, the total burst size of a cell 

that contains both virus of type 1 and virus of type 2 is higher compared to the burst size of a 

cell that contains only one virus type. Hence, in this case there is no clear correlation 

between whether viral parameters do or do not depend on infection multiplicity and the total 

burst size of infected cells. Similar considerations apply if 0<c1,2<1. This should be kept in 

mind in the following sections.

To summarize, this model contains two layers of competition: competition for the common 

pool of target cells (as assumed in standard virus dynamics models without coinfection), and 

intracellular competition for resources that are required for viral replication. The balance of 

these two forces determines the outcome of the competition, which is investigated below. 

Two virus strains with the following characteristics will be considered. Strain 1 will be the 

“superior” strain, characterized by a faster replication rate than the “inferior” strain 2 (i.e. 
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k1>k2). This makes strain 1 the better competitor for the target cell pool. This is analogous 

to a competitive advantage in simpler models that do not allow for multiple infection, and 

thus allows us to compare how multiple infection modulates the outcome of this 

competition. For simplicity, all other parameters are assumed to be identical for the two 

virus strains. In our analysis, we will first assume that multiple infection does not influence 

viral parameters. Subsequently, this will be examined assuming that the rate of virus 

replication increases with the multiplicity of infection.

2.2.1. Virus parameters are independent of infection multiplicity—We only 

consider parameter regions in which each virus strain can persist in isolation. We find that 

both competitive exclusion and coexistence are possible, depending on the model 

parameters (Figure 3). Coexistence only occurs if c<1. That is, on an intracellular level, a 

degree of niche separation is required. In other words, the two virus types / virus strains 

need to utilize the intra-cellular resources in a somewhat different manner. Further, the 

replication kinetics of the viruses plays an important role. Figure 4 shows the outcome of 

competition as the virus spread parameters, as well as the parameter c are varied. The rate of 

virus spread is determined by a variety of parameters. In Figure 4a, we vary the death rate of 

infected cells, a, and in Figure 4b, we vary infection rate of the viruses, β. A higher infection 

rate and a lower death rate of infected cells increase the rate of virus spread. We observe that 

extinction of the inferior competitor is promoted by slower virus spread and by high values 

of c. For slower virus spread, the equilibrium number of uninfected cells is relatively high, 

and the equilibrium number of infected cells is relatively low. Therefore, new infections 

likely result in singly infected cells and multiple infection is not a very important force 

driving the dynamics. Hence, competition for target cells is the most important determinant 

of the dynamics, and the properties of the model are similar to those of a model that does not 

take into account multiple infection. Consequently, competitive exclusion occurs. For faster 

virus spread, on the other hand, many coinfected cells are generated and the competition for 

target cells is reduced. Now, intracellular competition becomes an important driving force of 

the dynamics, and coexistence occurs as long as there is sufficient resource separation 

between the two virus strains within the cells (value of c below a threshold). How large the 

coexistence parameter regime is depends on the fitness cost of the inferior virus. In Figure 

4a,b, a 5% fitness cost was assumed and coexistence was observed for values of c up to 0.9 

(where c=1 means complete resource overlap). For higher fitness costs, the coexistence 

regime is reduced and lower values of c are necessary (Figure 4c, illustrated for the case 

where the parameter a was varied, c.f. Figure 4a).

So far, we have not examined the assumption of c1,2>1, i.e. when there is active interference 

among the viruses, with the extreme assumption being that the winner takes it all. In this 

case, the outcome of competition can depend on the initial conditions. A higher initial 

abundance of one virus strain relative to the other promotes the persistence of this virus 

strain and the exclusion of the competitor. Thus, if the relative initial abundance of the 

inferior strain is sufficiently large, it can win the competition. The higher the fitness 

disadvantage of the inferior strain, the higher its relative initial abundance needs to be for it 

to win. These patterns have been explored with computer simulations, although they are not 
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graphically shown here. This dependence on initial conditions is similar that seen in 

standard Lotka-Volterra competition equations [32].

2.2.2. Virus parameters depend on infection multiplicity—The above analysis was 

repeated assuming increased viral replication rates in multiply infected cells. The 

corresponding results are shown in Figure 4d for parameter values that correspond to those 

used in the last section (compare to Figure 4a). We observe that results are qualitatively 

similar, but that an increased virus replication rate in multiply infected cells leads to a 

smaller parameter regime in which coexistence is observed. Faster viral replication in 

multiply infected cells essentially increases the fitness discrepancy between the two viruses. 

The superior virus will multiply infect more cells than the inferior virus. Hence it will enjoy 

the resulting faster replication kinetics in a larger number of cells than the inferior virus. 

This in turn leads to a more pronounced fitness advantage, explaining the numerical 

observations.

2.2.3. Effect of the infection cascade length—Section 2.1. examined basic multiple 

infection dynamics assuming a single virus population. We found that the length of the 

multiple infection cascade, n, can have an influence on the dynamics especially if the basic 

reproductive ratio of the virus is relatively large and the average multiplicity of infection is 

relatively large. In this case it is possible that most infected cells accumulate at the end of 

the infection cascade, i.e. in In. For the competition model, it was assumed that the end of 

the cascade was reached when i+j=n. Because cells at the end of the cascade cannot be 

infected anymore, the opportunity for multiple infection to occur is reduced, and this can 

affect the outcome of competition. This is demonstrated in Figure 5. With a relatively large 

cascade length of n=100, coexistence is observed. With the shortest cascade length (n=2), 

competitive exclusion occurs. With a cascade length of n=5, the outcome is again 

coexistence, but the equilibrium levels of the virus populations are different compared to 

n=100. This shows that the assumed cascade length can have a profound influence not only 

on the observed dynamics, but also on the qualitative outcome of the interactions between 

the viruses. Therefore, special attention has to be given to the cascade length when studying 

such dynamics, ensuring that an increase in n does not lead to different dynamics. This was 

done in the previous section which analyzed the competition outcomes.

2.3. Effect of space

The previous analysis assumed perfect mixing of populations, i.e. mass action. Here, we 

consider a spatially explicit model in order to examine the effect of spatial restriction on the 

outcome of competition. This is done with a stochastic, agent-based model that tracks the 

fate of individual cells. This modeling approach also eliminates the problem of infection 

cascades explored in the previous section, because it tracks individual cells and their 

multiplicity of infection. The model assumes a two-dimensional grid of size N×N, and is 

described as follows. Each spot in the grid can be empty, contain an uninfected cell, or 

contain an infected cell that is characterized by its multiplicity of infection. At each time 

step, N2 spots of the grid are randomly sampled. If the sampled spot is empty, an uninfected 

cell can be produced with a probability L. If the sampled spot contains an uninfected cell, it 

can die with a probability D. If the sampled spot contains an infected cell, the following 
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actions can occur. The cell can die with a probability A. Alternatively, the cell can attempt 

to pass on the infection to another cell with a probability B. In this case, a cell within a given 

neighborhood is randomly chosen as a target for infection. If the chosen spot is empty, no 

infection occurs. If the chosen spot contains an uninfected cell, it becomes infected with one 

virus. If the chosen spot contains an already infected cell with a given multiplicity, another 

virus is added to this cell. The radius around the source cell from which a target cell is 

chosen can be varied. At one extreme, the target cell can be chosen from all cells in the 

system, and this corresponds to mass action, also described by the above ODEs. At the other 

extreme, the target cell is chosen from the eight nearest neighboring cells, and this 

corresponds to the most stringent degree of spatial restriction. We will compare the 

dynamics assuming nearest neighbor interactions and mass action.

As before, two virus strains are assumed to be present. Hence, a cell can be infected with i 

copies of virus 1 and j copies of virus 2. The rate of virus production is determined as 

follows for each strain present in the cell. For each copy of the virus a target spot is 

randomly chosen. If the chosen spot contains a susceptible cell, this copy gets passed on 

with probability  for strain 1, and  for strain 2. This corresponds to the 

same assumptions that were made for the ODEs in the previous sections, and captures the 

intracellular competition between the virus strains in the same way. As before, if ε=0, virus 

parameters do not depend on the multiplicity of this virus in the cell. If ε>0, the rate of virus 

replication increases if multiple copies of this virus infect the cell. For simplicity, we will 

concentrate our analysis on the ε=0 scenario for the spatial analysis.

In general, for the nearest neighbor scenario, the same types of outcomes are observed as in 

the mass-action scenario, and the determinants of the outcome are qualitatively identical. 

This was obtained by extensive numerical simulations of the model (Figure 6a). We were 

interested in whether the parameter regime under which extinction occurs was smaller or 

larger for the nearest neighbor situation compared to mass action. Hence, we compared the 

two scenarios in the following way. We determined the outcome as a function of the 

infection rate of the virus, B, and the competition parameter c (Figure 6a). We then 

superimposed the extinction parameter regions for the spatial and the non-spatial scenarios 

in order to compare which one is larger. For this, we note that the spatial model has a higher 

threshold value of B required to sustain the infection than the mass action model. Thus, to 

properly compare the extinction regimes for the two scenarios, we subtracted the difference 

in the threshold values from the B-parameter in the spatial simulations.

The results are shown in Figure 6a. We observe that the extinction regime is larger in the 

spatial compared to the mass action scenario. In other words, competitive exclusion is 

promoted by nearest neighbor interactions. The reason for this result is shown in Figure 6b. 

For the nearest neighbor model, the two virus strains are less likely to meet in the same 

infected cell. Although multiple infection readily occurs, cells are typically infected with 

multiple copies of the same virus. Thus, Figure 6b shows that the fraction of cells infected 

with both virus strains remains significantly lower in the spatial setting compared to the 

mass action setting. Because the reason for the coexistence is the occurrence of coinfection 
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with both strains, the coexistence regime is reduced, and extinction occurs over a wider 

parameter regime.

3. Discussion and Conclusion

This paper examined the use of ordinary differential equations for studying virus dynamics 

under the assumption that multiple viruses can infect the same cell. We started with basic 

dynamics where only one, homogeneous virus population exists. Such models have been 

studied before [13; 16], but we provided a more detailed account of how the length of the 

infection cascade can influence the results. In general, the number of cells declines 

exponentially with the multiplicity of infection. How fast the numbers decline, however, 

depends on the replication rate of the virus. Especially for larger viral replication rates, or 

for scenarios where the rate of viral replication increases in multiply infected cells, the 

number of cells harboring i viruses declines relatively slowly with the multiplicity of 

infection. In this case, most of the cells will accumulate in the last member of the infection 

cascade even for relatively long cascades, and this can influence the properties of numerical 

simulations. For such cases, the use of ODEs might be impractical, because very long 

infection cascades become computationally expensive.

These models were then expanded to study competition dynamics. Previous work has shown 

that inappropriate model simplification can give rise to pathological results, such as the 

presence of a unique coexistence equilibrium if two strains are competitively neutral [27]. 

Here, we show that even if the model is formulated in a way such that this effect is not 

observed, the outcome of competition can be influenced by the length of the infection 

cascade. For example, for identical model parameters, competitive exclusion can be 

observed for shorter infection cascades, while coexistence is observed for longer cascades. 

There can also be more subtle effects, where the equilibrium population levels that are 

observed in numerical simulations can vary, depending on the length of the infection 

cascade. Therefore, when studying such competition dynamics with ODEs, it is important to 

make sure that a parameter regime is explored in which an increase in the length of the 

infection cascade does not change the results of numerical simulations.

In this regime, we investigated whether multiple infection can promote the coexistence of 

two virus stains with different fitness. In equivalent models that do not take into account 

multiple infection, competitive exclusion tends to be the only outcome [1]. With multiple 

infection, however, we found that coexistence can occur in the models studied here, but we 

need to distinguish two levels of competition: competition for target cells, as in previous 

virus dynamics models that do not take into account multiple infection; and competition for 

intracellular factors. If the two viruses / virus strains in question use the exact same 

intracellular resources, i.e. if their intracellular niches completely overlap, then multiple 

infection cannot lead to the coexistence of the strains. The faster growing strain will win and 

exclude the slower growing strain. If, on the other hand, there is a degree of niche separation 

within cells, then multiple infection can allow the coexistence of the different viruses, 

consistent with general ecological theory [32]. The crucial factor is not the multiple 

infection in general, but the simultaneous infection of cells by the two different viruses. If a 

sufficient number of cells harboring both viruses is generated, then coexistence becomes 
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possible. This in turn can be influenced by assumptions about virus spread. We showed that 

spatially restricted virus spread leads to lower numbers of cells carrying both viruses 

because spatial restriction promotes multiple infection of cells with the same virus type 

rather than the coinfection with both types. Hence, multiple infection promotes coexistence 

of strains to a lesser degree in a spatial setting compared to a well-mixed system. In general, 

this analysis indicates that related strains of the same virus are unlikely to coexist in the 

context of multiple infection, but that multiple infection can promote coexistence of 

different viruses with separate replication mechanisms that infect the same cells.

Our analysis provides important new insights into the properties of models that describe the 

multiple infection of cells by viruses. This can form the basis for building such modeling 

approaches for specific infections, where particular biological realities need to be taken into 

account for accurate descriptions. An interesting case study to explore would be 

adenoviruses, where multiple infection is thought to readily occur and where multiple 

infection is thought to allow the virus to replicate at a faster rate. In a set of experiments a 

culture of 293 cells, arranged in a 2-dimensional monolayer with agar layover, was infected 

with an engineered fluorescent adenovirus at very low multiplicities of infection [4]. This 

allowed the very early spread of the infection from a single infected cell to be monitored 

over time. It was found that once at least three infected cells were generated, virus spread 

became significantly faster and the virus population never went extinct anymore. This was 

inconsistent with the expected extinction probabilities calculated from parameters that were 

estimated from singly infected cells. Because in the 2D monolayer culture, spread of the 

virus to nearest neighbors was ensured by agar layover, multiply infected cells became 

readily generated as soon as the virus had spread to only a few cells. This in turns 

accelerated the rate of viral replication, accounting for the experimental observations. A 

better understanding of those growth dynamics, and an investigation of competition 

dynamics between different virus strains in such a setting, would be important to gain 

further insights into the spread of adenoviruses, which would also be relevant for human 

health. This will require multiple infection models that are based on the ones discussed here 

and that also take into account spatial aspects. Our work provides guidelines for such an 

analysis. As summarized at the beginning of this article, multiple infection has also been 

observed with HIV, and a variety interesting questions remain to be explored in this respect. 

The relevance of multiple infection in vivo, however, has been debated, and there is the 

additional complication that multiple infection is promoted by direct cell-to-cell 

transmission through virological synapses [8], which requires different modeling approaches 

[33].
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Highlights

• Models capturing multiple infection of cells are studied

• Basic dynamics are investigated

• Competition dynamics are investigated

• Details of the model formulation are found to influence results
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Figure 1. 
Distribution of the number of cells infected with i viruses, according to model (1) where the 

rate of virus production does not depend on infection multiplicity. Singly infected cells are 

most abundant, and the number of cells containing higher infection multiplicities are 

successively lower. Parameters were chosen as follows. λ=10; d=0.1; a=1; β=0.1; k=1; u=1; 

ε=0. Infection cascade length n=100.
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Figure 2. 
Equilibrium number of cells as a function of the infection multiplicity, according to model 

(1). The number of cells declines exponentially with the infection multiplicity. (a) If the rate 

of viral replication is relatively slow and does not increase with infection multiplicity, the 

numerical simulations reflect the expected exponential decline. (b) For faster viral 

replication rates, however, the equilibrium number of cells with increasing infection 

multiplicity declines much slower, and in numerical simulations, most infected cells 

accumulate at the end of the infection cascade, giving rise to artificial properties. (c, d) This 

effect is more pronounced if the rate of viral replication increases for higher infection 

multiplicities, ε>0. Base parameters were chosen as follows. λ=10; d=0.1; β=0.1; k=1; u=1. 

For (a) ε=0; a=2. For (b) ε=0; a=0.1. For (c) ε=1000; a=2. For (d) ε=1000; a=0.1. Infection 

cascade length n=100.
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Figure 3. 
Outcomes of the competition model (2). (a) Competitive exclusion. (b) Coexistence. 

Parameters were chosen as follows. λ=10; d=0.1; β=0.1; k1=1; k2=0.95; u=1; ε=0. For (a) 

c=1, for (b) c=0.7. Not that the only difference between the two strains was assumed to lie in 

the rate of virus production, k. Infection cascade length n=100.
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Figure 4. 
Outcome of competition in model (2), depending on parameters that determine the rate of 

virus spread, and the parameter c, which describes the relative strength of intracellular 

competition among the two virus strains. Blue indicates coexistence, while red indicates 

exclusion of the inferior mutant by the wild-type. Results are based on numerical 

simulations. (a) Effect of the death rate of infected cells, assuming that the mutant has a 5% 

fitness cost compared to the wild-type virus. The higher the death rate of infected cells, the 

slower the spread of the virus, and the more difficult it is to observe coexistence. That is, for 

higher values of a, coexistence requires a lower value of c, i.e. more intracellular niche 

separation. If the value of a lies above a threshold, coexistence is impossible. (b) Effect of 

the rate of infection, assuming a 5% fitness cost. The lower the rate of infection, the more 

difficult it is to observe coexistence. (c) Same as (a), but with a 15% fitness cost, which 

reduces the coexistence regime. (d) Same as (a), but assuming increased viral output in 

multiply infected cells. Now, the coexistence regime is larger. Parameters were chosen as 

follows. λ=10; d=0.1; a=0.2; β=0.1; k1=1; u=1. For (a,b) k2=0.95; ε=0. For (c) k2=0.85; ε=0. 

For (d) k2=0.95; ε=50. Infection cascade length n=100. Larger infection cascade lengths (up 

to n=500) were also explored and did not change the results plotted here. These simulations 
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were computationally much more costly, were not run to include as many data points, and 

are hence not shown.
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Figure 5. 
Dependence of the competition outcome in model (2) on the length of the infection cascade, 

n. (a) For n=2, numerical simulations lead to competitive exclusion. (b) For higher values of 

n, coexistence is observed. However, the equilibrium population values to which the 

simulations converge can depend on the exact length of the infection cascade. Thus, when 

studying the competition dynamics with this model, it is important to make sure that 

parameter regions are considered where the length of the infection cascade does not 

influence outcome or equilibrium values in numerical simulations. Parameters were chosen 
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as follows. λ=10; d=0.1; a=0.2; β=0.1; k1=1; k2=0.95; u=1; c=0.9, ε=0. Cascade lengths are 

indicated in the figure.
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Figure 6. 
(a) Competition in spatial (nearest neighbor) versus non-spatial (mass-action) settings, using 

the agent-based model described in the text. Only the extinction parameter region is plotted, 

both for the spatial (red) and mass-action (blue) settings, depending on the infection 

probability B and the intracellular competition parameter c. Because in stochastic 

simulations, population extinction will occur if the simulation runs for a sufficiently long 

period of time, the outcome of competition was determined as follows. Initial conditions 

were used in which spontaneous extinction of either virus in isolation was very unlikely. 
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One hundred infected cells of each type were seeded randomly across the grid. If the inferior 

strain went extinct before a time threshold, the outcome was recorded as competitive 

exclusion. Otherwise, the outcome was recorded as coexistence. The time threshold was 

chosen such that the outcome did not change if the duration of the simulation was increased 

further. As mentioned in the text, the spatial and the non-spatial simulations have different 

infection rate thresholds for establishment of infection. To directly compare the size of the 

extinction regimes in the two settings, we subtracted the difference in the threshold values 

from the infection probability parameter in the spatial simulations. Parameters were chosen 

as follows. L=0.8; D=0.01; A=0.02; ε=0. The grids size was 50×50. (b) Reason for the 

larger extinction region in the spatial simulation. In the spatial setting, fewer cells are 

generated that contain both virus strains than in the mass-action setting, accounting for the 

larger extinction regime. Parameters were chosen as follows. L=0.8; D=0.01; A=0.02; 

B=0.0623; c=0.73; ε=0. The grids size was 50×50.
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