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Abstract

The prognosis of adolescent and young adult patients battling metastatic Ewing Sarcoma Family 

of Tumours (ESFT) remains less than 30% despite the development of systemic therapies. In the 

era of personalized medicine, novel molecular targets have been tested in preclinical or clinical 

settings in ESFT. In this review, we focus on early clinical and translational research that 

identified multiple molecular targets, including IGF-1R; mTOR; tyrosine kinase inhibitors; EWS-

FLI1-related targets, and others. Overall, novel targeted therapies demonstrated modest efficacy; 

however pronounced and durable antineoplastic responses have been observed in small subsets of 

treated patients, for example with IGF-1R antibodies. Identifying outcome-predicting biomarkers 

and overcoming treatment resistance remain major challenges. Due to the rarity of ESFT, multi-

institutional collaboration efforts of clinicians, basic and translational scientists are needed in 

order to understand biology of therapeutic response or resistance, which can lead to development 

of novel therapeutic methods and improved patient outcomes.

Introduction

Ewing sarcoma family tumours (ESFT), heretofore simply referred to as Ewing’s sarcoma 

(ES), are bone or soft tissue sarcomas that are found primarily in adolescents and young 

adults, with peak occurrence between ages 10 and 20 1. ES as a malignant entity is 

genetically characterized by chromosomal translocation involving the Ewing sarcoma 

breakpoint region 1 (EWSR1) gene. Translocation of EWSR1 on chromosome 22 to 
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chromosome 11 occurs in 85% of ES cases, forming the fusion protein product EWS-

FLI12,3. In addition, fusion product EWS-ERG is identified in 10% of cases, whereas 

several other translocation types are rarely identified 4–9 (Table 1). The EWSR1 breakpoint 

appears to be a hot spot for genetic translocations and can promiscuously bind other C-

terminal genes in other sarcoma subtypes such as clear cell sarcoma, extraskeletal myxoid 

chondrosarcoma and others10–12. FLI1, ERG and other ETS genes contain the DNA-binding 

domain 13. Consequently, EWS-FLI1 protein functions as an aberrant transcription factor 

regulating malignant transformation to ES.

Of all ES cases, approximately 26%-28% are metastatic diseases at diagnosis with the 

remainder being localized disease 14. Instituting a systemic chemotherapy regimen in 

combination with surgery and/or radiotherapy has significantly increased the survival of 

patients with localized disease. The 5-year survival rate was less than 15% before 

chemotherapy became available, 44% for patients in the decade between 1973–1982, while 

for the decade between 1993–2004, survival rates from recently completed large cooperative 

groups trials (such as AWES-0031 and EURO-Ewing 99) report survival rates of 

approximately 70% 14,15. Unfortunately, the prognosis of patients with metastatic ES 

remains dismal, with 5-year survival rates of approximately 20%-30%16. In addition to 

standard of care treatment modalities, which will clearly continue to have value, novel 

therapies have been tested in clinical trials with the hopes of increasing survival and clinical 

benefits have been achieved in some patients.

Compared to conventional chemotherapies, targeted therapies are specifically directed to 

molecules associated with tumorigenesis and tumour progression of ES. These include 

insulin-like growth factor 1 receptor (IGF-1R), mammalian target of rapamycin (mTOR), 

tyrosine kinases such as platelet-derived growth factor receptor (PDGFR), KIT, epidermal 

growth factor receptor (EGFR), vascular growth factor receptors (VEGFRs), Aurora A, poly 

ADP ribose polymerase 1 (PARP1), and GD2, all of which are in phase I and II clinical 

testing (Tables 2 and 3) 17–32. Therapies targeting other proteins such as EWS-FLI1 and 

CD99 are in preclinical testing and may be promising targets for novel therapies. In 

addition, new molecules have been identified in mechanistic studies and may be clinically 

applicable. A better understanding of the underlying mechanism of ES and associated 

molecular aberrations will greatly aid in the discovery of new molecular targets and the 

development of targeted therapies.

Molecular targets for directed therapy

IGF-1R

When bound to IGF1 (and with less affinity to IGF2), IGF-1R autophosphorylation initiates 

several cancer-related pathways known to regulate cell growth and tumorigenesis 33. The 

best characterized include PI3K/AKT/mTOR and MEK/ERK/MAPK, though other 

pathways are also affected (Figure 1) 34. Not only do most, if not all, ES cell lines and 

clinical samples express IGF-1R, an activated IGF-1R pathway is a prerequisite for 

malignant transformation by the EWS-FLI1 translocation 35,36. As occurs in patients, 

IGF-1R inhibition induces cell death and tumour regression in some ES cell lines and 

xenograft models 37–39. Therefore, IGF-1R is one of the most important targets for novel ES 
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therapies. At least a half dozen IGF-1R targeted monoclonal antibodies produced partial or 

complete responses in small subsets of patients with ES (Table 2). These antibodies include 

human-like IgG1 antibodies AMG 479 40, R1507 17 and cixutumumab 41 as well as the 

human-like IgG2 antibody figitumumab 42.

In a phase I trial using R1507, two (22.2%) of nine ES patients achieved partial responses 

(PR), and one (11.1%) patient had stable disease (SD) for more than 6 months and no dose-

limiting toxicities were identified 17. The subsequent phase II study with R1507 

demonstrated responses in 11 (9.6%) of 115 patients with ES, including one complete 

response (CR) and 10 PRs with a median progression-free survival (PFS) of 1.3 months and 

median overall survival (OS) of 7.6 months 18. In a phase I trial using AMG 479, two 

(16.7%) of 12 ES patients responded to treatment, including one CR and one unconfirmed 

PR19. Using AMG 479, one (5.3%) of 19 ES patients achieved a PR and one patient has had 

SD for more than 24 months with a median PFS of 7.9 months20. In a phase I trial of 

figitumumab, two (12.5%) of 16 ES patients responded, including one CR and one PR and 

six (37.5%) patients had SD longer than 4 months21. In a different phase I/II study of 

figitumumab, one (6.3%) of 16 ES patients had a PR in the phase I portion of the study and 

in the phase 2 portion of the study, 15 (14.2%) of 106 patients had a PR with a median PFS 

and OS of 1.9 months and 8.9 months, respectively 22. In a phase I/II trial of cixutumumab 

in pediatric patients with refractory solid tumours, three (8.6%) of 35 ES patients had a 

PR 23.

In addition to the IGF-1R antibodies that have already been clinically tested, several small 

molecule inhibitors of IGF-1R have been evaluated preclinically. OSI-906, a dual inhibitor 

of IGF-1R and insulin receptor (IR), displayed antiproliferative effects in a variety of 

tumour cell lines as well as in vivo antitumor activity in xenograft models43. A phase I study 

using OSI-906 in combination with erlotinib was conducted in patients with advanced solid 

tumours and one ES patient had SD for at least 12 weeks 44. In addition, BMS-754807, a 

reversible ATP-competitive antagonist of the IGF-1R kinase domain demonstrated moderate 

growth inhibition in in vitro and in vivo ES models. Another small molecule IGF-1R 

inhibitor, ADW742, has been shown to induce dose-dependent G1 phase blockade and 

apoptosis in ES cell lines, which demonstrated synergy with the KIT/PDFGR and BCR-

ABL tyrosine kinase inhibitor imatinib45–47. Despite the modest activity of small IGF-1R 

inhibitors in preclinical studies, further investigation is needed to elucidate their utility and 

translation to the clinic.

Collectively, clinical trials demonstrated that anti-IGF-1R targeting therapies can produce 

striking anticancer activity in small subsets of patients with ES, ranging up to 22%. 

Unfortunately, there were no biomarkers identified to predict response to therapies. The total 

IGF-1R level did not correlate with response. IR isoform IR-A, which is responsible for 

somatic growth, is the only IR expressed in ES and some studies suggested that IGF-1R-

resistant cells are able to switch from IGF1/IGF-1R to IGF-2/IR-A signaling to maintain 

levels of phosphorylated (p-) Akt and other downstream regulators 33,48. Garofalo et al. 

have suggested that the IGF-1R to IR-A ratio may be used as a biomarker for identifying the 

subset of patients that may respond to IGF-1R-related therapies. Patients with higher 

IGF-1R : IR-A ratios are most likely to benefit 33. The mechanisms of resistance to IGF-1R 
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therapies are complicated due to their involvement in relevant downstream pathways. 

Further investigation is warranted to identify biomarkers that can contribute to predicting 

outcomes of IGF-1R therapies.

mTOR

Genetic and epigenetic aberrations of the PI3K/AKT/mTOR pathway play a critical role in 

tumorigenesis and cancer progression for many cancer types, and ES is no exception (Figure 

1) 34,49. Activation of the PI3K/AKT/mTOR pathway is characterized by upregulated 

phosphorylated (p-) Akt levels50, and has been observed frequently in ES samples 51. 

Among the components of the PI3K/AKT/mTOR pathway, mTOR is one of the most 

frequently targeted molecules in ES-related clinical trials.

In a nonselective phase I trial in multiple tumour types treated with the mTOR complex 1 

(mTORC1) inhibitor, deforolimus 24, the only patient with ES enrolled in the study achieved 

a PR. In a phase I trial using the mTOR inhibitor temsirolimus, irinotecan and 

temozolomide, one (14%) of seven ES patients achieved SD and continued on therapy for 

more than five months with no evidence of disease progression 25. However, this response is 

likely due to the known activity of irinotecan and temozolomide52.

Inhibitors of mTOR have been shown more effective in combinations such as with IGF-1R 

than as single agents by our institution and others24,26,27,53. mTOR inhibition releases the 

inhibitory feedback loop on the insulin receptor substrate 1 (IRS-1) and, therefore, 

upregulates PI3K and Akt in an IGF-1/IGF-1R dependent manner 54,55. Additionally, 

mTOR inhibition can lead to autocrine release of IGF-1, a cancer promoting effect that can 

be successfully blocked by IGF-1R antibodies56. Just as mTORi has counter-regulatory 

effects upon the IGF-1R/Akt/mTOR pathway, morphoproteomic profiling of ES tumour 

samples ES suggest that resistance to IGF-1R monotherapy is driven by the downstream 

activation of the PI3K/mTOR pathway, which can be plausibly abrogated by mTOR 

inhibitors57. Proving the synergy of IGF-1R and mTOR inhibition to maximally blunt 

proximal and distal pathway components, a phase I trial conducted by Naing et al. combined 

cixutumumab with temsirolimus; two (11.8%) of 17 ES patients achieved a CR and three 

(17.6%) patients had SD lasting for 8, 15 and 18 months, respectively 26. Interestingly, one 

of two patients with the CR had a history of a previous PR when treated with the single-

agent IGF-1R antibody R1507 alone, which lasted for nearly 30 months17. A number of 

interesting conclusions can be drawn from a confirmatory trial that used the same drug 

combination in diverse sarcoma subtypes. First, the IGF-1R/mTOR inhibitors combination 

did, in fact, lead to considerably higher response rates than had been observed when either 

agent was used alone; four (14.8%) of 27 ES patients achieved a PR 27. Second, the duration 

of response among ES patients was significantly less than the prior study, a result likely 

attributable to the mTOR inhibitor temsirolimus dose reductions that were mandated in the 

nearly half of patients that exhibited mild transaminitis. Last, prospective patient 

stratification by immunohistochemical staining of IGF-1R expression did not predict 

response to therapy.

Despite an abundance of data and strong rationale that IGF-1R and/or mTOR targeted 

therapies are most effective when used together or combined with other biologically targeted 
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therapies, no clinical trials were available for ES patients at the time of this publication. In 

communication with Pharma, one explanation is their concern that IGF-1R inhibitors would 

not receive FDA approval as a single-agent activity and, therefore, would not be allowed 

conditional approval in combination with mTOR inhibitors or other agents (personal 

communication). Though some sarcoma subtypes are dependent upon single oncogenic 

targets (gastrointestinal stromal tumour’s reliance upon KIT or PDGFR, for example), this is 

the exception rather than the norm. It is much more likely that multiple biologically targeted 

therapies must be used together to prevent rapid drug-induced signaling changes that 

counteract the intended drug effects and, ultimately, leads to treatment failure.

Tyrosine kinases

PDGFRα and KIT—PDGFRα and KIT are members of the class III receptor tyrosine 

kinases (RTKs) 58. Both PDGFRα and KIT are expressed and activated in ES samples 59,60. 

Accordingly, the specific tyrosine kinase inhibitor imatinib was used to target PDGFRα and 

KIT in preclinical and clinical studies. Though in vitro preclinical experiments demonstrated 

proof of concept, in ES the IC50 values of imatinib (10–12 µM) markedly exceeded levels 

achievable in the clinic 28,29,61,62. In a phase II study of patients with refractory or relapsed 

pediatric solid tumours, one (4.2%) of 24 ES patients had a PR28. Despite this low response 

rate, the therapy may benefit a small subset of patients. Because imatinib primarily targets 

PDGFRα and KIT, a high protein expression level in tumour could be considered as one 

criterion for trial enrollment. In another phase II clinical trial, immunohistochemical 

evidence of expression ≥2+/4+ for either KIT or PDGFRα was, in fact, applied as one of the 

required criteria for patient enrollment29. One (20%) out of five ES patients had a PR after 

eight months of treatment. Of interest, the only patients responding to the therapy had the 

highest expression level of PDGFRα and KIT (3+/4+ PDGFRα and 3+/4+ KIT) 29. The low 

response rates of the clinical trials thus far suggests that stricter selection criteria for 

PDGFRα and KIT levels in combination with novel biomarkers should be required to 

enhance the efficacy of imatinib treatment in future clinical trials. As mentioned previously, 

one could hypothesize that imatinib activity could be enhanced if it were combined with 

other biologically targeted therapies, though this has not yet been demonstrated in clinical 

practice.

EGFR—EGFR is a tyrosine kinase receptor that modulates cell proliferation, tumour 

growth and angiogenesis through downstream activation of the RAS/RAF/MEK/ERK and 

PI3K/AKT/mTOR pathways (Figure 1)63. Gefitinib is a small molecule inhibitor targeting 

the intracellular kinase domain of EGFR64,65. In a phase I study in patients with pediatric 

solid tumours, one (33.3%) out of three ES patients had a PR that lasted 10 weeks; however, 

the mechanism of action remains unclear30. Somatic EGFR mutations, which are associated 

with a salutary response to EGFR inhibitors in non-small cell lung cancer patients, have not 

been reported in ES66–68. In addition, an analysis of biomarkers from a phase I trial of 

gefitinib in pediatric patients with solid tumours showed no correlation between baseline 

levels of plasma EGFR and VEGF and antitumor activity69. There was also no significant 

alteration of EGFR or VEGF levels in responding patients69. Tumours with increased 

expression of p-Akt were associated with a better response to gefitinib in non-small cell lung 

cancer patients with unknown mutational status70. Though it is plausible that the baseline 
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Akt phosphorylation level could serve as a biomarker of EGFR activity in ES, this remains 

just an untested hypothesis.

VEGFR—VEGFR signaling is stimulated by the binding of VEGF and promotes 

angiogenesis 71. Cediranib is an ATP competitive, small molecule inhibitor targeting the 

tyrosine kinase domains of VEGFR272. In a phase I trial using cediranib in children and 

adolescents with refractory solid tumours, one (33.3%) out of three ES patients achieved a 

PR with an overall 77% reduction in tumour size31. Other inhibitors targeting VEGF/

VEGFR signaling, such as the anti-VEGF antibody bevacizumab, multi tyrosine kinase 

inhibitors (including VEGFR inhibitor) sorafenib and pazopanib were used in ongoing 

studies of ES (Table 3)32.

No validated biomarkers are available for selecting patients for anti-angiogenic treatment. 

One interesting study to date does, however, suggest that specific VEGF germline single 

nucleotide polymorphisms (VEGF-2578 AA and VEGF-1154 AA) were associated with 

superior median OS in breast cancer patients treated with a bevacizumab containing therapy, 

whereas other genotypes (VEGF-634 CC and VEGF-1498 TT) were associated with 

significantly fewer side effects such as hypertension73. Recent studies have suggested that 

among the VEGFRs, VEGFR1 is a kinase-defective receptor tyrosine kinase and negatively 

modulates angiogenesis by acting as a decoy receptor, whereas VEGFR2 is the major 

mediator that promotes downstream angiogenesis activity74. A study in patients with locally 

advanced rectal cancer showed that individuals with high concentrations of plasma VEGFR1 

did not benefit as much from a bevacizumab-based therapy as patients with lower 

concentrations 75. In addition to VEGF polymorphisms and VEGFR1 levels, some VEGFR 

mutations also contribute to drug response. For example, a VEGFR1 Y1053D mutation was 

found to be associated with sorafenib resistance76. Taken together, VEGF polymorphism, 

VEGFR1 level and VEGFR somatic mutations can be further investigated as promising 

biomarkers for drug response in therapies targeting VEGF/VEGFR signaling.

EWS-FLI1 and related molecular targets

EWS-FLI1 is specifically expressed in ES cells and is theoretically considered an optimal 

drug target for ES (Figure 2) 77,78. EWS-FLI1 contains a DNA-binding domain at the C-

terminus, which regulates DNA transcription activities79, serving as a transcriptional 

activator as well as contributing to down-regulation and up-regulation of multiple genes in 

different transcriptional machinery settings80. One microarray study reported that EWS-

FLI1 upregulated 320 and downregulated 1,151 genes at a 95% confidence level81.

Theoretically, one could target EWS-FLI1 in several ways. The first is to interfere with the 

transcriptional modulators to which EWS-FLI1 binds. Second, the genes dysregulated by 

EWS-FLI1 expression might be targeted. Finally, the EWS-FLI1 protein itself may serve as 

a valid therapeutic target.

RHA

RNA helicase A (RHA) is a highly expressed transcription modulator in ES cell lines and 

patient samples82. Binding of EWS-FLI1 to RHA stimulates the transcription activity of 
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EWS-FLI1 (Figure 2)82. A small molecule inhibitor of RHA, YK-4-279, has been shown to 

interrupt the binding of EWS-FLI1 to RHA, inducing apoptosis in ES cell lines 83. In vivo, a 

rat xenograft model treated with the active (S)-enantimer of YK-4-279 resulted in a 

sustained CR in two of six (33.3%) models 84. Other than the FLI1 ETS gene, YK-4-279 

also inhibited ERG and ETV1 in ETS-expressing prostate cancer, likely through inhibiting 

RHA 85. Decreased tumour growth and metastasis inhibition was also observed in in vivo 

mouse xenografts of prostate cancer 86. Our experience using an oral formulation of 

YK-4-279 in mouse xenografts bearing ES explants demonstrated significant clinical 

activity and early phase clinical trials using YK-4-279 or a close analog are in the concept 

stage (personal communication).

Aurora kinase A

Aurora kinase A is a serine threonine kinase that associates with the spindle poles to regulate 

the entry for cell mitosis (Figure 2)87. A screening with 200 small molecule kinase inhibitors 

in two different ES cell lines as well as additional validation by RNA interference revealed 

that inhibition of aurora kinases A and B lead to specific vulnerability to ES cells 88. 

Furthermore, Wakahara et al. reported that EWS-FLI1 up-regulates levels of aurora kinase 

A and B by directly binding to their promoter regions89. Preclinical testing using an aurora 

kinase A inhibitor MLN8237 showed maintained CRs in pediatric cancer xenograft models 

including ES90. MLN8237 is currently being evaluated in an ongoing phase II trial 

sponsored by the Children’s Oncology Group for young patients with recurrent or refractory 

solid tumours or leukemia and results are expected soon (Table 3) 32.

EWS-FLI1 downstream signatures

Grohar et al. reported that trabectedin could reverse induced downstream targets of EWS-

FLI1, and ES cells lines are more sensitive to the drug than other sarcoma types such as 

osteosarcoma, rhabdomyosarcoma, and others91. In addition, a high-throughput screen of 

compounds potentially capable of reversing consequences of downstream activation of 

EWS-FLI1 downstream activation and other preclinical studies led to identification of 

mithramycin, which is now being tested in clinical trials at the National Institute of Health 

(Table 3) 32,92.

Though targeting the downstream signatures of EWS-FLI1 may eventually prove to be 

effective, the shear number of downstream targets affected by EWS-FLI1 raises challenges 

of their own. As an example, cytarabine was recently identified from a drug library enriched 

for FDA-approved drugs as an agent able to reverse a EWS-FLI1 gene signature. While 

effective in vitro, the subsequent phase II human clinical trial was disappointing. Of ten ES 

patients enrolled, minimal activity and considerable hematologic toxicity were seen 93.

PRKCB

The protein kinase PKC-β (PRKCB) was shown to phosphorylate histone H3T6, which 

leads to increased cell survival in vitro and tumour growth in vivo in ES cell lines94. In 

addition, there is a strong overlap between genes modulated by the EWS-FLI1 fusion 

protein and PRKCB94. Inhibiting PRKCB may counteract gene transcription alteration 
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caused by the EWS-FLI1 fusion protein. PRKCB could thus be a promising target for ES 

therapy.

PARP

Poly (ADP-ribose) polymerase (PARP) plays a role in repairing single-strand DNA 

breaks95. A recent study showed that PARP-1 interacts with ES fusion proteins EWS-FLI1 

and EWS-ERG96. In ES cell lines expressing EWS-FLI1 or EWS-ERG, inhibition of 

PARP-1 leads to reduced DNA damage following lowered expression level of the fusion 

proteins96. In a screening of PARP inhibitor olaparib, ES cells demonstrated higher 

sensitivity compared to cells of other tumour types, including bone and soft tissue 

sarcoma97. In addition, olaparib in combination with temozolomide resulted in CR in a 

mouse xenograft model of ES96. Preclinical studies using ES cell lines showed that the 

combination of olaparib and radiation amplifies the DNA damage level caused by radiation 

therapy, synergistically increasing lethal DNA damage 98. In addition to the indirect 

targeting against ES fusion targets, a preclinical study also found that PARP inhibitors could 

reduce the viability of human cells depleted for cohesin complexes99. Three recently 

published comprehensive studies reported STAG2, the gene encoding one of the cohesin 

subunits SA2, as a secondary mutation in about 15–20% of the ES tumours100–102. Mutation 

in STAG2 can lead to the truncation of SA2, which causes the structural disruption of the 

cohesin complex, resulting in chromosomal instability and aneuploidy 103. Because STAG2 

mutation is frequently observed in ES tumours, targeting the cohesin complex using PARP 

inhibitors may benefit this population of ES patients.

Phase I clinical trials using olaparib for recurrent/metastatic ES are being conducted (Table 

3) 104.

Targeted immunotherapy

Targeted immunotherapy requires the use of antibodies to specifically identify tumour cells. 

Several molecules have been identified in ES as potential targets for immunotherapy.

Targeting EWS-FLI1 with vaccine therapy

The tumour-specific fusion protein EWS-FLI1 can be used as an optimal target in ES. 

However, a pilot vaccination study using peptides derived from the breakpoint region of the 

fusion proteins had minimal antitumor activity105. Preclinical data suggested that native 

peptides from the breakpoint region of EWS-FLI1 had a weak affinity to HLA-A2.1, 

resulting in poor stability of the peptide/MHC complex on cell surface and was thus unable 

to induce cytotoxic T-lymphocytes (CTL) that recognize and kill ES cells106. Another EWS-

FLI1-modified peptide induced CTL and cell death in several ES in vitro and in vivo 

models 106.

Vaccine therapy might be a promising approach for ES treatment. However, the utility of 

such an approach needs to be further studied, and novel targets for cancer vaccines including 

EWS-FLI1 need to be explored.
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CD99

Cluster of differentiation 99 (CD99) is a membrane protein expressed in most cases of 

ES 107. Because it is expressed specifically across the membranes of tumour cells, it can be 

investigated as an antigen for targeted immunotherapy. Studies have suggested that CD99 

inhibits neural differentiation of ES cell lines through the MAPK pathway, contributing to 

cell proliferation and tumour growth108. A 64Cu-labeled anti-CD99 antibody was 

successfully used for targeted imaging in ES murine xenografts; however, the therapeutic 

utility remains unknown109.

GD2

Ganglioside antigen G (D2) (GD2) is found on the surface of many cancer cells including 

ES110–112. It is not widely expressed in normal cells, which makes it a possible target for 

immunotherapy113,114. GD2-related therapies have shown promising results in preclinical 

and clinical studies115,116. GD2-specific T cells demonstrated activity in ES xenografts115. 

Immunotherapy using a GD2 antibody combined with GM-CSF and IL-2 significantly 

improved PFS and OS in high-risk neuroblastoma patients116. Clinical trials using anti-GD2 

antibodies or T cells expressing anti-GD2 chimeric antigen receptors are being conducted 

(Table 3).

TRAIL receptors

Tumour necrosis factor (TNF)-related apoptosis–inducing ligand (TRAIL) is a member of 

TNF super family and was shown to specifically induce apoptosis in tumour cells including 

ES but not in normal cells117,118. HGS-ETR2 is a TRAIL receptor 2 antibody that 

agonistically binds to TRAIL receptor 2 and induces apoptosis119. In phase I clinical trial 

using HGS-ETR2 to treat pediatric patients with solid tumour120, no CR or PR was achieved 

in any of the four patients with ES, although minor tumour shrinkage was observed. Further 

studies are warranted to explicate the efficacy of TRAIL receptor antibodies.

NY-ESO-1

The expression of cancer testis antigen NY-ESO-1 (also known as CTAG1) is limited to 

germ cells but is frequently identified in cancer cells. Individual cases of the NY-ESO-1 

expression in ES have been reported121. A phase I clinical trial using the vaccine in 

combination with sirolimus is being conducted (Table 2). However, a phase I trial with the 

combination of decitabine and dendritic cell vaccine targeting cancer testis antigens MAGE-

A1, MAGE-3 and NY-ESO-1 demonstrated no clinical benefits in two ES patients 122.

Other molecular targets

STAT3

Signal transducer and activator transcriptor 3 (STAT3) is a transcription factor, activated 

upon phosphorylation and essential in cell growth123,124. However, enhanced STAT3 

phosphorylation may lead to tumorigenesis and it is observed in approximately 50% of ES 

samples125, but with an unknown underlying mechanism. Protein tyrosine phosphatase 

receptor type D (PTPRD) regulates STAT3 through dephosphorylating Y705. A PTPRD 
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mutation W775 stop was identified in a patient with ES 126. This mutation results in a 

truncated PTPRD protein, causing accumulation of phosphorylated STAT3, which likely 

explains the enhanced level of activated STAT3 found in some of the ES samples125. A 

phase 0 trial has been reported using a STAT3 decoy agent, which is an oligonucleotide that 

binds specifically to STAT3 and inhibits its downstream transcription regulation127. Two 

(20%) out of the ten tumour xenograft models of head and neck cancer treated with the 

STAT3 decoy achieved a CR 127. Because STAT3 phosphorylation is frequently observed in 

ES, it is reasonable to target STAT3 as a novel therapy. Another study has suggested that 

recruitment of STAT3 to IGF-1R was required for STAT3 phosphorylation123. Therefore, in 

addition to directly targeting STAT3, an IGF-1R inhibitor might also be used to 

downregulate STAT3 phosphorylation.

MEK

The GTPase KRAS and NRAS are upstream regulators of the MEK/ERK pathway. 

Enhanced GTPase function may lead to oncogenic stimulation 128. There is anecdotal 

evidence from early phase clinical trials in ESFT that resistance to IGF1R and mTOR 

targeting therapies can be mediated through KRAS mutation and MAPK pathway 

activation129. In addition, an NRAS mutation, which activates the MAPK pathway, has been 

anecdotally reported in patients with ES and the biological implication remains unclear130. 

MEK inhibitors are being investigated as a means to overcome the deleterious effects of 

MAPK activation.

Challenges of Targeted therapies

Biologically targeted therapies have shown promise in some patients with advanced ES and 

some drug combinations—notably IGF-1R antibodies with mTOR inhibitors—may offer 

significant synergy. However, no specific therapies for this patient population have yet been 

approved by the US Food and Drug Administration, which is likely the result of 

disinterested pharmaceutical companies because of the relative rarity of ES. Targeted 

therapies for ES face several challenges.

The first challenge stems from the disconnection between preclinical studies and human 

clinical trial results. Frequently, clinical trials showed low efficacy despite promising results 

in preclinical trials. Several factors are behind this. First, the origin of ES is not precisely 

known, which adds difficulty in understanding the transformation from normal cells to 

tumour 131. Second, it is difficult to build in vitro and animal models for preclinical testing. 

Two-dimensional monolayer cells have been used predominantly in in vitro studies while 

several studies have shown phenotype and drug sensitivity changes in three-dimensional 

cultures using the same cell line132. In addition, there are no spontaneous ES animal models 

and genetically-engineered ones fail to result in ES-like tumours, limiting the predictive 

value of preclinical animal studies133. Third, most of the tested targetable proteins play a 

role in initial tumor growth and hence their inhibition may be clinically helpful in early 

disease. However, clinical trials are usually performed on advanced stage tumours, in which 

targeting these proteins may not be sufficient to inhibit the tumorigenesis process. Last but 

not least, potential and attractive targets, such as AKT, still do not have a clinically useful 

and stable inhibitor.
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The second challenge is to identify biomarkers that accurately forecast treatment 

outcome 134. Our institutional experience from several advanced cancers suggests that 

therapies matching underlying actionable somatic mutations can improve outcomes 

compared to unmatched therapies135. Unfortunately, this strategy has not yet been 

successfully adapted for the treatment of ES. Recently published studies utilizing next-

generation sequencing technologies have shown that significant fraction of ES patients have 

recurrent genetic mutations other than EWSR1-ETS fusion gene product, particularly STAG2 

mutations, which may lead to chromosomal structural defect and aneuploidy 100–102. 

Crompton et al. suggested that relapsed disease is genetically different from disease at 

diagnosis, which increases the genomic complexity of the disease101.

The third challenge is to understand the mechanisms of drug resistance. There are several 

different mechanisms of ES tumour to develop drug resistance. First, cancer stem cells are 

capable of proliferate and generate tumor cells with new sets of mutations which may harbor 

different protein targets 136. Second, drug resistance may rise from altered modulation of 

related cellular signalling pathway as a result of targeted therapies. For example, anti-

IGF-1R therapies may lead to activation of downstream pathways and thus result in tumour 

drug resistance through a bypass pathway26,57. In order to improve long term treatment 

outcomes, resistance mechanisms need to be elucidated. This may require serial blood and 

tumor tissue collections for systematic molecular and other correlative studies.

Conclusion

Targeted therapies for ES have shown promising results in a small subset of patients with 

advanced disease. However, disconnection between preclinical studies and clinical trials, 

identification of outcome-predicting biomarkers, and understanding drug resistance 

mechanisms remain challenging. Due to the rarity and complexity of ES, a multi-

institutional global collaboration is warranted in better understanding the genomic/proteomic 

landscape of ES and development of new, targeted therapies.
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Highlights

• The prognosis of patients with metastatic Ewing sarcoma remains dismal and 5-

year survival usually does not exceed 30%.

• Targeting IGF1-R was found effective in preclinical models and small subsets 

of patients with advanced Ewing sarcoma.

• Other targeted therapies such as therapies against EWS-FLI1-related targets are 

in clinical development.

• Biomarkers predicting efficacy of novel targeted therapies remain to be 

identified.
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Figure 1. 
Schematic figure of targeted molecules in ES-related pathways and drugs used in clinical 

and preclinical testing.
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Figure 2. 
Indirect targeting of EWS-FLI1. A) Interaction between EWS-FLI1 and PARP. PARP 

inhibitors are used to directly target EWS-FLI1. B) EWS-FLI1 regulates gene expression by 

binding to RHA, a transcription modulator. YK-4-279, interrupts of the binding of RHA to 

EWS-FLI1. C) EWS-FLI1 regulates transcription of aurora kinase A, which is a cell cycle 

regulator. Aurora kinase inhibitors are being used to indirectly target EWS-FLI1.
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Table 1

ES translocation types and fusion products

Fusion product translocation
type

EWS-FLI12 t(11;22)

EWS-ERG4 t(21;22)

EWS-ETV15 t(7;22)

EWS-E1AF6 t(17;22)

EWS-FEV7 t(2;22)

FUS-ERG8 t(21;16)

FUS-FEV9 t(2;16)
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