

HHS Public Access

Author manuscript *Am J Ophthalmol.* Author manuscript; available in PMC 2016 June 01.

Published in final edited form as:

Am J Ophthalmol. 2015 June ; 159(6): 1152–1160.e2. doi:10.1016/j.ajo.2015.03.008.

P-selectin plasma levels and genetic variant associated with diabetic retinopathy in African Americans

Alan Penman¹, Suzanne Hoadley², James G. Wilson³, Herman A. Taylor⁴, Ching J. Chen², and Lucia Sobrin⁵

¹Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216

²Department of Ophthalmology, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216

³Department of Physiology and Biophysics, University of Mississippi, 2500 North State Street, Jackson, Mississippi, 39216

⁴Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216

⁵Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, Massachusetts, 02114

Abstract

Purpose—To report the prevalence and risk factors for retinopathy in African Americans with impaired fasting glucose and type 2 diabetes in the Jackson Heart Study and to determine if P-selectin plasma levels are independently associated with retinopathy in this population.

Design-Prospective, cross-sectional observational study

Methods-Setting: Community-based epidemiologic study

Study Population: 629 patients with type 2 diabetes and 266 participants with impaired fasting glucose

<u>Observation Procedures:</u> Bilateral, seven-field fundus photographs were scored by masked readers for diabetic retinopathy (DR) level. Covariate data including P-selectin plasma levels and genotypes were collected in a standardized fashion.

<u>Main Outcome Measures</u>: Association between risk factors, including P-selectin plasma levels and genotypes, and retinopathy

^{© 2015} Published by Elsevier Inc.

Corresponding Author: Lucia Sobrin, MD, MPH, 243 Charles Street, 12th floor, Boston, MA 02114, Tel.: 617-573-4279, Fax: 617-573-3011, lucia_sobrin@meei.harvard.edu.

Financial Disclosures: Dr. Sobrin is a consultant for Santen (Osaka, Japan). Dr. Chen is a member of the clinical advisory board for Allergan (Irvine, California).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Results—The prevalences of any retinopathy among participants with IFG and type 2 diabetes were 9.4% and 32.4%, respectively. Among those with type 2 diabetes, in multivariate models adjusted for age, gender and other traditional risk factors, higher Pselectin levels were associated with any DR (odds ratio =1.11, 95% confidence interval = 1.02-1.21, P=0.02) and proliferative DR (odds ratio = 1.23, 95% confidence interval = 1.03-1.46, P=0.02). To further investigate the relationship between P-selectin and DR, we examined the association between P-selectin genotype and DR. Minor allele homozygotes for the variant rs6128 were less likely to develop DR (P after Bonferroni correction = 0.03).

Conclusions—Both serologic and genetic data show an association between P-selectin and DR in the Jackson Heart Study. If confirmed in other studies, this association may provide insight into the pathogenesis of retinopathy.

Introduction

Diabetes is the leading cause of blindness among working-age adults in the United States.¹ There is evidence that diabetic retinopathy (DR) is more prevalent in African Americans than non-Hispanic whites.^{2, 3} Epidemiologic and clinical studies have provided information regarding DR in African Americans with type 2 diabetes.²⁻¹⁰ Some of these studies were performed over 20 years ago when diabetes treatment options were limited and patients had poorer glycemic control. Many of these studies only used one or two photographic fields to ascertain DR. Limited field photography can lead to inaccurate DR grading as compared with dilated seven field fundus photography.¹¹ Non-mydriatic limited field photographs are also more likely to be ungradable.^{12, 13} Studies have shown that subjects with ungradable photographs are more likely to have characteristics consistent with increased retinopathy risk and be African Americans.^{6, 7} Therefore, retinopathy may be underascertained in African Americans, particularly when a limited number of fields are photographed without pharmacologic pupil dilation.¹⁴

Longer diabetes duration, hyperglycemia and hypertension are consistent risk factors for DR,¹⁰ and there are other putative risk factors for DR. Hyperlipidemia and obesity impact DR in some, but not all, studies.¹⁵⁻¹⁹ Increased urinary albumin has been associated with retinopathy in some populations.^{20, 21} C-reactive protein has not been a biomarker for DR in most studies,^{22, 23} but a recent prospective investigation found an association with macular edema.²⁴ P-selectin and E-selectin are molecules involved in leukocyte recruitment and rolling and platelet adhesion. A genetic association between variants in the P-selectin gene, *SELP*, and DR has been reported in Caucasians.²⁵

Impaired fasting glucose is defined as a fasting plasma glucose between 100 and 125 mg/dl. Retinopathy develops in 7-10% of impaired fasting glucose patients,²⁶⁻²⁹ and blood pressure and body mass index have been identified as risk factors for retinopathy in Europeans with impaired fasting glucose.²⁶ There is limited information regarding retinopathy prevalence and risk factors in African Americans with impaired fasting glucose.²⁷

The purpose of our study was to estimate the prevalence of and identify risk factors for retinopathy ascertained with seven-field, dilated fundus photography in African Americans with impaired fasting glucose and type 2 diabetes from the Jackson Heart Study. In

particular, we were interested in whether there was an association between P-selectin plasma levels and genotype and retinopathy.

Methods

All aspects of this cross-sectional observational study were prospectively approved by the Institutional Review Boards at the University of Mississippi Medical Center and Massachusetts Eye and Ear Infirmary. All participants provided written informed consent. The study was compliant with the regulations of the Health Insurance Portability and Accountability Act.

The Jackson Heart Study is a community-based observational study of cardiovascular disease among African Americans living in Mississippi.³⁰ Standardized phenotyping protocols have measured physical characteristics at the 2004 baseline exam and subsequent exams (Exam 2 in 2005-08 and Exam 3 in 2009-12).³¹ We established an ancillary retinopathy study which ran concurrently with Exam 3. Jackson Heart Study participants with type 2 diabetes or impaired fasting glucose were invited to participate in the ancillary study. Diabetes was defined as (a) taking anti-diabetic medication or (b) meeting the hemoglobin A1c or fasting plasma glucose criteria for diabetes diagnosis.³² Type 2 diabetes was defined as age at diabetes diagnosis 30 years. Impaired fasting glucose was defined as specified above.

Enrolled participants had one study visit at the University of Mississippi Medical Center Department of Ophthalmology. A short questionnaire about ocular history and diabetes diagnosis was administered. Bilateral, dilated, seven-standard field fundus photographs including macular stereoscopic pairs were obtained with a TRC-50DX camera (Topcon, Tokyo, Japan). The photographs were scored contemporaneously by two independent, masked ophthalmologist-investigators with the Early Treatment Diabetic Retinopathy Study (ETDRS) scale.³³ Clinically significant macular edema was deemed present if ETDRS criteria were met and/or if focal laser treatment scars were present.³³ Disagreements were arbitrated by a third masked ophthalmologist-investigators. Participants were excluded only if they had another ocular disease that precluded photograph grading.

Quality metrics for contemporaneous and temporal reproducibility were assessed. Intergrader agreement was measured in terms of percentage agreement and weighted kappa. The contemporaneous intergrader exact agreement percentages for ETDRS grade and presence of clinically significant macular edema were 96.3% and 96.8%, respectively. The associated weighted kappas were 0.76 and 0.52, respectively. One hundred photographs graded in the first year were randomly selected and regraded at the study's end with readers masked to original grade assigned. For these regraded photographs, the percentages of exact agreement between the grades assigned in the first year and last year of the study were 95.5% and 94.0%, respectively, for ETDRS grade and presence of clinically significant macular edema. The corresponding weighted kappas were 0.84 and 0.48, respectively. These metrics suggest there was no systematic temporal drift in evaluating ETDRS grade and presence of clinically significant macular edema.

Covariate Data

Covariates were chosen because of association in other populations and data availability from Jackson Heart Study Exams.³⁰ The risk factors considered were: age, gender, hemoglobin A1c, diabetes duration, body mass index, waist circumference, systolic blood pressure, diastolic blood pressure, total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, C-reactive protein, urine albumin, smoking status, diabetic medication use, E-selectin and P-selectin.

Covariate data was selected from the Jackson Heart Study Exam closest to the retinopathy study visit for which the participant had available data. Diabetes duration was calculated from the onset date to the retinopathy exam date. Seated blood pressure was measured three times and the mean was used in the analyses. Smoking status was defined as ever having smoked (current or past smoker) vs. never having smoked. Urine albumin was obtained from a spot urine specimen. Diabetic medication use was defined as taking any diabetic medication. Plasma E-selectin and P-selectin were quantified by enzyme-linked immunosorbent assay (R&D Systems, Minneapolis, MN). The interassay coefficients of variation for the E-selectin and P-selectin detection methods were 9.78% and 5.14%, respectively. A subset of patients in the Jackson Heart Study had been genotyped as part of a larger consortium for several vascular disease candidate genes as previously described.³⁴ This list of candidate genes included three single nucleotide polymorphisms in *SELP*: rs6128, rs6133, and rs3917779.

Statistical Methods

Retinopathy status was based on the eye with the higher ETDRS level. Absence of retinopathy was defined as ETDRS level < 14. We examined three different outcomes: any retinopathy (ETDRS level 14), proliferative DR (ETDRS level 60), and clinically significant macular edema. Clinically significant macular edema was deemed present if at least one eye demonstrated clinically significant macular edema and/or focal laser scars. If one eye was ungradable, the scores for the other eye were used to define these outcomes.

We estimated the prevalence of any retinopathy in impaired fasting glucose participants and of any retinopathy, proliferative diabetic retinopathy (PDR) and clinically significant macular edema in type 2 diabetes participants. We examined risk factors in participants in our ancillary study compared with those who did not participate. Univariate analyses comparing participants with and without any retinopathy were performed separately for impaired fasting glucose and type 2 diabetes participants. For type 2 diabetes participants, univariate analyses comparing participants (1) with PDR (ETDRS level 60) and without PDR (ETDRS level < 60) and (2) with and without clinically significant macular edema were also performed. Differences in means and proportions were tested by the t-test and chi-square test, respectively. We used the subset of participants with complete information for the covariate of interest in that particular analysis to maximize generalizability and power.

To examine the association between risk factors and retinopathy, we constructed multivariate models using backward stepwise logistic regression to determine the odds ratios and 95% confidence intervals. All models were adjusted for age and gender. A P value <

0.05 was considered statistically significant. For the genetic analyses of the association between single nucleotide polymorphisms in *SELP* and retinopathy, the chi-square test was used to compare the frequency of minor allele homozygotes between cases and controls. The Bonferroni method was used to correct for multiple hypothesis testing. All analyses were performed using Stata/IC version 12.1(Stata, College Station, TX).

Results

From Jackson Heart Study Exams 1 and 2, we identified 1303 type 2 diabetes participants and 689 impaired fasting glucose participants. 629 type 2 diabetes and 266 impaired fasting glucose participants enrolled in the retinopathy study. Table 1 compares known DR risk factors between enrolled and nonenrolled participants. Enrolled impaired fasting glucose participants had a higher mean age and lower mean diastolic blood pressure. On average, enrolled type 2 diabetes participants had shorter diabetes duration, lower hemoglobin A1c, and lower systolic blood pressure.

The distribution of retinopathy grades is shown in Table 2. The prevalences of any retinopathy in impaired fasting glucose and type 2 diabetes participants were 9.4% and 32.4%, respectively. No impaired fasting glucose participants had clinically significant macular edema. Among type 2 diabetes participants, 48 (7.8%) had clinically significant macular edema and 28 (4.5%) had PDR. In impaired fasting glucose participants, none of the examined covariates were associated with retinopathy in univariate or multivariate analyses.

In type 2 diabetes participants, longer diabetes duration, higher hemoglobin A1c, higher systolic blood pressure, greater waist circumference, higher urine albumin, diabetic medication use and higher plasma P-selectin levels were associated with retinopathy in univariate analyses (Table 3). In the multivariate model (Table 4), P-selectin levels remained significantly associated with presence of any retinopathy when controlling for other risk factors including C-reactive protein, another inflammatory biomarker. The odds of having retinopathy were 71% higher for every additional 5 years of diabetes ($P=5.7\times10^{-13}$), 25% higher for each percentage point increase in hemoglobin A1c (P=0.002), 13% higher for every 10 mmHg increase in systolic blood pressure (P=0.03), two-fold higher for those using a diabetic medication (P=0.04) and 11% higher for each 5 ng/ml increase in plasma Pselectin (P=0.02). Because higher P-selectin levels have been associated with cardiovascular events in other populations,³⁵ we examined whether inclusion of history of a cardiovascular event (defined as coronary heart disease, stroke or heart failure) to the model would alter the association of P-selectin levels with presence of retinopathy, but this did not alter the results with higher Pselectin levels remaining significantly associated with retinopathy despite adjusting for cardiovascular events (P=0.01).

Results for the univariate analyses for PDR are shown in Table 3. Older age, longer diabetes duration, higher hemoglobin A1c, higher body mass index, larger waist circumference, lower diastolic blood pressure, lower total cholesterol, lower low-density lipoprotein cholesterol, higher urine albumin, diabetic medication use and higher Pselectin were associated with PDR. In the multivariate model, P-selectin remained significantly associated

with PDR (Table 5). The odds of having PDR were more than 2-fold higher for every 5 year increase in duration of diabetes ($P=3.8\times10^{-8}$), 26% higher for every 10 mmHg increase in systolic blood pressure (P=0.03), 23% higher for each 5 ng/ml increase in plasma P-selectin (P=0.02) and 2% lower for every mg/dl increase in total cholesterol (P=0.01). Again the association between P-selectin and retinopathy remained significant after controlling for history of cardiovascular events.

Longer diabetes duration, higher hemoglobin A1c, lower diastolic blood pressure, higher urine albumin, and diabetic medication use were associated with clinically significant macular edema in univariate analyses (Table 3). In the multivariate regression model, diabetes duration and hemoglobin A1c remained significantly associated. The odds of having clinically significant macular edema were 68% higher for each 5 year increase in duration of diabetes (odds ratio=1.68, 95% confidence interval= $1.42-2.00, P=1.3\times10^{-9}$) and 37% higher for every hemoglobin A1c percentage point (odds ratio=1.37, 95% confidence interval=1.15-1.63, P=0.001).

To further explore the association of P-selectin with DR, we examined the association between the three variants in the SELP gene and the presence of DR. Table 6 shows the results of association testing between SELP genotypes and DR. Participants without retinopathy were more likely to be minor allele homozygotes (TT) for rs6128 than those with retinopathy (P=0.03). To investigate whether this result might be influenced by differences in the genotype distribution in the overall Jackson Heart Study participant population by glycemic status (no diabetes vs. impaired fasting glucose vs. type 2 diabetes) we examined rs6128 genotype among these three groups using the chi-square test. There was no significant difference among these groups in rs6128 genotype distribution (P=0.84). There was also no significant difference in rs6128 genotype distribution between type 2 diabetes participants who chose to enroll in the retinopathy ancillary study vs. those who did not (P=0.42). We also examined the association between P-selectin levels and SELP genotypes for these three variants. Minor allele homozygotes at rs6128 had lower mean Pselectin levels than major allele carriers (25.8 ng/ml vs. 34.5 ng/ml, P=0.046). There were no significant associations between P-selectin plasma levels and SELP genotypes for rs6133 and rs3917779.

Discussion

Our ancillary study of DR in the Jackson Heart Study provides information about retinopathy and its risk factors in African Americans with impaired fasting glucose and type 2 diabetes using gold standard seven-field fundus photography in the era of enhanced options for glycemic control. We confirmed the well-established risk factors for DR - increased duration of diabetes, poor glycemic control and hypertension – in the Jackson Heart Study. In addition, we have found a novel association between Pselectin plasma levels and DR in this African American cohort and as well as an association between P-selectin genotype and presence of retinopathy.

When we compare our study's 9.4% retinopathy prevalence in African Americans with impaired fasting glucose with that reported for other ethnic groups with impaired fasting

glucose, we find the results to be consistent. Studies of Caucasians and Asians with impaired fasting glucose have found retinopathy prevalences of 10% and 10.3%, respectively.^{26, 28} One study of participants with impaired fasting glucose and/or impaired glucose tolerance, another pre-diabetic state, found a 6.7% retinopathy prevalence.²⁹ The Diabetes Prevention Program which included multiple ethnicities found a 7.9% retinopathy prevalence among participants with impaired fasting glucose and/or impaired glucose tolerance.²⁷ Our data reinforces that retinopathy can develop in some patients before the onset of overt type 2 diabetes.

We did not find any traditional DR risk factors, P-selectin or E-selectin to be associated with retinopathy in impaired fasting glucose participants. One study found increased blood pressure and body mass index to be risk factors for retinopathy in Europeans with impaired fasting glucose,²⁶ but this has not seen by other investigators.²⁹ The lack of an association with blood pressure, body mass index and other risk factors could explained by the limited number of impaired fasting glucose participants with retinopathy (n=25) or by varying risk factors profiles in different populations.

When we compare the 32.4% retinopathy prevalence in type 2 diabetic participants in this study with that reported in African Americans in other relatively recent studies, the results are also consistent. In the Veterans Affairs Diabetes Trial published in 2005, the retinopathy prevalence was 29% among African Americans.³⁶ In the Multi-Ethnic Study of Atherosclerosis published in 2006, African Americans had a retinopathy prevalence of 37%.⁸ In the National Health and Nutrition Examination Survey 2005-2008 study, the crude DR prevalence was 38.8% among non-Hispanic blacks.² Of note, the participants who enrolled in our ancillary study were more likely to have better glycemic control, shorter diabetes duration, and lower systolic blood pressure than those who did not enroll. Since these are significant retinopathy risk factors in our cohort, it is likely that the DR prevalence in the entire group of Jackson Heart Study type 2 diabetes participants is higher. The prevalences of PDR and clinically significant macular edema in the Jackson Heart Study are also in line with those observed in other populations.⁸, 10

The presence of any DR in the type 2 diabetes participants was associated with longer diabetes duration, poorer glycemic control and higher systolic blood pressure. This is consistent with other studies of DR in type 2 diabetes.^{2, 5-8, 10} Longer duration of diabetes and higher systolic blood pressure were associated with PDR but hemoglobin A1c was not. This same lack of association between hemoglobin A1c and PDR has been found in a Latino population.¹⁹ The association between hemoglobin A1c and DR may weaken with more advanced forms of retinopathy. One explanation for this phenomenon is that the diagnosis of PDR can be the impetus for tighter blood sugar control. Patients with PDR may be motivated to achieve better hemoglobin A1c levels after receiving this diagnosis and their hemoglobin A1c after PDR diagnosis may be not be reflective of their glycemic control for the majority of the duration of their diabetes.

In the univariate analyses, we found that higher plasma P-selectin levels were associated with DR and PDR. These associations remained significant in the multivariate models that controlled for both C-reactive protein, another measure of inflammation, and cardiovascular

events, which have been associated with higher Pselectin levels. P-selectin is a protein that functions as a cell adhesion molecule on the surface of activated endothelial cells and platelets. Previous studies have not found an independent association between P-selectin and DR.^{37, 38} but these studies were smaller than the current investigation. Other lines of evidence also suggest P-selectin could play a role in DR. P-selectin is found in fibrovascular membranes removed from patients with PDR.³⁹ An association between single nucleotide polymorphisms in the gene that encodes P-selectin, SELP, and DR was previously found in Caucasians although it has not been independently replicated.²⁵ In the current study we found an association between one of these single nucleotide polymorphisms, rs6128, and presence of any DR in African Americans. The direction of effect was the same as in Caucasians with the minor allele, T, conferring a decreased risk of DR. The previous study had looked at this SNP in African Americans from other cohorts, including a small subset of the participants from the Jackson Heart Study, and did not find the association.²⁵ Most of the African Americans in the cohorts used in the previous study were phenotyped with a limited number of non-dilated fields in each eye which may have contributed to the null findings. In the current study, we verified that there were no differences in the rs6128 genotype distribution in Jackson Heart Study participants by glycemic status nor in participants who enrolled in the retinopathy study vs. those who did not. This makes it less likely that there are skews in the genotype distribution in the larger or nonenrolled Jackson Heart Study population that would explain the observed association between rs6128 genotype and retinopathy.

We also found an association between *SELP* genotype and P-selectin levels with major allele carriers having higher plasma P-selectin levels. Higher P-selectin levels may indicate that patients with DR have greater activation of their endothelial cells and platelets than those without DR. More study is required to understand if the elevated Pselectin levels are an initiating event in DR pathogenesis or whether they are a downstream product of a higher propensity for microvascular damage in these patients. The association between *SELP* genotype, P-selectin levels and DR status suggest it is possible that P-selectin levels have an upstream effect on DR development.

The strengths of this study include the excellent phenotyping with dilated, seven-field retinal photography; the largest single sample of African Americans with type 2 diabetes and retinopathy data to date; and novel data on impaired fasting glucose and retinopathy in African Americans. There are also limitations to our study. Mydriatic retinal photography is the most effective DR detection strategy with a higher sensitivity than ophthalmoscopy.⁴⁰ However, ideally, photography could be supplemented with ophthalmoscopy for cases where photographs are ungradable,⁴⁰ but we did not have ophthalmoscopic data available. A reading center was not used for photograph grading, but readers were ophthalmologists and quality metrics indicated high intergrader agreement and no significant temporal drift in severity grading. Focal laser scars were used as a criterion to ascertain clinically significant macular edema and might have falsely increased clinically significant macular edema cases as focal laser could have been performed, depending on the physician's discretion, for microaneurysms threatening the fovea but not actually causing clinically significant macular edema. Because of the varied Jackson Heart Study recruitment methods, the sample is not

statistically representative of the population and therefore results are not directly generalizable to all African Americans. Although we had very high rates of completeness for covariate data, this data was not always available from the Jackson Heart Study Main Exam that was contemporaneous with our ancillary study, and this could introduce some imprecision for detecting associations. The cross-sectional design limits our ability to judge the causal relationships of the associations found. Finally, for the genotype associations, only a subset of participants had consented to genotyping so the power to detect modest genetic effects was limited.

In summary, we present new data on the retinopathy frequency in African Americans with impaired fasting glucose and updated data on DR prevalence in African Americans with type 2 diabetes in the modern era of increased options for glycemic control. We confirm the associations of DR with longer diabetes duration, hyperglycemia and increased systolic blood pressure. We also report a novel association of DR with plasma P-selectin levels which remained significant after adjustment for other known risk factors, as well as an association between *SELP* rs6128 genotype and presence of DR. Further investigation of these associations in other DR cohorts is required to confirm the potential relationship between P-selectin and retinopathy.

Acknowledgments

Funding/Support: National Eye Institute K12-EY16335, Bethesda, MD; Research to Prevent Blindness Career Development Award and William & Mary Greve Special Scholar Award, New York City, NY; Harvard Catalyst | The Harvard Clinical and Translations Science Center Faculty Fellowship, Boston, MA, Massachusetts Lions Eye Research Fund, Abington, MA; Eleanor and Miles Shore Fellowship, Boston, MA; Sara Elizabeth O'Brien Trust, Boston, MA. The Jackson Heart Study is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, and HHSN268201300050C from the National Heart, Lung and Blood Institute and the National Institute on Minority Health and Health Disparities, Bethesda, MD.

None

References

- National Institute of Diabetes and Digestive and Kidney Diseases. National Diabetes Statistics. Bethesda, MD: US Department of Health and Human Services, National Institute of Health; 2011. Publication No 11-3892
- 2. Zhang X, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010; 304(6):649–656. [PubMed: 20699456]
- 3. Varma R, Bressler NM, Doan QV, et al. Prevalence of and risk factors for diabetic macular edema in the United States. JAMA Ophthalmol. 2014; 132(11):1334–1340. [PubMed: 25125075]
- Munoz B, West SK, Rubin GS, et al. Causes of blindness and visual impairment in a population of older Americans: The Salisbury Eye Evaluation Study. Arch Ophthalmol. 2000; 118(6):819–825. [PubMed: 10865321]
- Klein R, Klein BE, Moss SE, Linton KL. The Beaver Dam Eye Study. Retinopathy in adults with newly discovered and previously diagnosed diabetes mellitus. Ophthalmology. 1992; 99(1):58–62. [PubMed: 1741141]
- Klein R, Marino EK, Kuller LH, et al. The relation of atherosclerotic cardiovascular disease to retinopathy in people with diabetes in the Cardiovascular Health Study. Br J Ophthalmol. 2002; 86(1):84–90. [PubMed: 11801510]
- Klein R, Sharrett AR, Klein BE, et al. The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes: the Atherosclerosis Risk in Communities Study. Ophthalmology. 2002; 109(7):1225–1234. [PubMed: 12093643]

- Wong TY, Klein R, Islam FM, et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am J Ophthalmol. 2006; 141(3):446–455. [PubMed: 16490489]
- Davis MD, Fisher MR, Gangnon RE, et al. Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: Early Treatment Diabetic Retinopathy Study Report #18. Invest Ophthalmol Vis Sci. 1998; 39(2):233–252. [PubMed: 9477980]
- Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012; 35(3):556–564. [PubMed: 22301125]
- Vujosevic S, Benetti E, Massignan F, et al. Screening for diabetic retinopathy: 1 and 3 nonmydriatic 45-degree digital fundus photographs vs 7 standard early treatment diabetic retinopathy study fields. Am J Ophthalmol. 2009; 148(1):111–118. [PubMed: 19406376]
- Pugh JA, Jacobson JM, Van Heuven WA, et al. Screening for diabetic retinopathy. The wide-angle retinal camera. Diabetes Care. 1993; 16(6):889–895. [PubMed: 8100761]
- Williams GA, Scott IU, Haller JA, et al. Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology. Ophthalmology. 2004; 111(5): 1055–1062. [PubMed: 15121388]
- Baker RS. Diabetic retinopathy in African Americans: vision impairment, prevalence, incidence, and risk factors. Int Ophthalmol Clin. 2003; 43(4):105–122. [PubMed: 14574205]
- Klein BE, Moss SE, Klein R, Surawicz TS. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology. 1991; 98(8):1261–1265. [PubMed: 1923364]
- Chew EY, Klein ML, Ferris FL 3rd, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol. 1996; 114(9):1079–1084. [PubMed: 8790092]
- Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia. 2001; 44(2):156–163. [PubMed: 11270671]
- van Leiden HA, Dekker JM, Moll AC, et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch Ophthalmol. 2003; 121(2):245–251. [PubMed: 12583792]
- 19. Nittala MG, Keane PA, Zhang K, Sadda SR. Risk factors for proliferative diabetic retinopathy in a Latino American population. Retina. 2014; 34(8):1594–1599. [PubMed: 24662751]
- Lee WJ, Sobrin L, Lee MJ, et al. The relationship between diabetic retinopathy and diabetic nephropathy in a population-based study in Korea (KNHANES V-2, 3). Invest Ophthalmol Vis Sci. 2014; 55(10):6547–6553. [PubMed: 25205863]
- 21. Lunetta M, Infantone L, Calogero AE, Infantone E. Increased urinary albumin excretion is a marker of risk for retinopathy and coronary heart disease in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 1998; 40(1):45–51. [PubMed: 9699090]
- 22. Laursen JV, Hoffmann SS, Green A, et al. Associations between diabetic retinopathy and plasma levels of high-sensitive C-reactive protein or von Willebrand factor in long-term type 1 diabetic patients. Curr Eye Res. 2013; 38(1):174–179. [PubMed: 22906118]
- 23. Lim LS, Tai ES, Mitchell P, et al. C-reactive protein, body mass index, and diabetic retinopathy. Invest Ophthalmol Vis Sci. 2010; 51(9):4458–4463. [PubMed: 20805569]
- Muni RH, Kohly RP, Lee EQ, et al. Prospective study of inflammatory biomarkers and risk of diabetic retinopathy in the diabetes control and complications trial. JAMA Ophthalmol. 2013; 131(4):514–521. [PubMed: 23392399]
- Sobrin L, Green T, Sim X, et al. Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: the Candidate gene Association Resource (CARe). Invest Ophthalmol Vis Sci. 2011; 52(10):7593–7602. [PubMed: 21873659]
- 26. Tyrberg M, Melander A, Lovestam-Adrian M, Lindblad U. Retinopathy in subjects with impaired fasting glucose: the NANSY-Eye baseline report. Diabetes Obes Metab. 2008; 10(8):646–651. [PubMed: 17645554]
- 27. The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the Diabetes Prevention Program. Diabet Med. 2007; 24(2):137–144. [PubMed: 17257275]

- Kawasaki R, Wang JJ, Wong TY, Kayama T, Yamashita H. Impaired glucose tolerance, but not impaired fasting glucose, is associated with retinopathy in Japanese population: the Funagata study. Diabetes Obes Metab. 2008; 10(6):514–515. [PubMed: 18462198]
- 29. Wong TY, Barr EL, Tapp RJ, et al. Retinopathy in persons with impaired glucose metabolism: the Australian Diabetes Obesity and Lifestyle (AusDiab) study. Am J Ophthalmol. 2005; 140(6): 1157–1159. [PubMed: 16376677]
- Taylor HA Jr, Wilson JG, Jones DW, et al. Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. Ethn Dis. 2005; 15(4 Suppl 6):S6–4. 17.
- Wilson JG, Rotimi CN, Ekunwe L, et al. Study design for genetic analysis in the Jackson Heart Study. Ethn Dis. 2005; 15(4 Suppl 6):S6–30. 37.
- 32. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003; 26(Suppl 1):S5–20. [PubMed: 12502614]
- 33. Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991; 98(5 Suppl):786–806. [PubMed: 2062513]
- 34. Musunuru K, Lettre G, Young T, et al. Candidate gene association resource (CARe): design, methods, and proof of concept. Circ Cardiovasc Genet. 2010; 3(3):267–275. [PubMed: 20400780]
- 35. Ridker PM, Buring JE, Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation. 2001; 103(4):491–495. [PubMed: 11157711]
- Emanuele N, Sacks J, Klein R, et al. Ethnicity, race, and baseline retinopathy correlates in the veterans affairs diabetes trial. Diabetes Care. 2005; 28(8):1954–1958. [PubMed: 16043738]
- Gustavsson C, Agardh E, Bengtsson B, Agardh CD. TNF-alpha is an independent serum marker for proliferative retinopathy in type 1 diabetic patients. J Diabetes Complications. 2008; 22(5): 309–316. [PubMed: 18413212]
- Lip PL, Jones AF, Price N, et al. Do intraocular angiotensin II levels, plasma prothrombotic factors and endothelial dysfunction contribute to proliferative diabetic retinopathy? Acta Ophthalmol Scand. 1998; 76(5):533–536. [PubMed: 9826034]
- Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC. Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol. 1996; 80(2):168–173. [PubMed: 8814750]
- Hutchinson A, McIntosh A, Peters J, et al. Effectiveness of screening and monitoring tests for diabetic retinopathy--a systematic review. Diabet Med. 2000; 17(7):495–506. [PubMed: 10972578]

Biographies

Dr. Penman is a Professor in the Center of Biostatistics and Bioinformatics and the Department of Medicine at the University of Mississippi Medical Center, Jackson, Mississippi. He is the medical statistician for the Jackson field site of the Atherosclerosis Risk in Communities Study, and directs and teaches courses in biostatistics, epidemiology, public health, and disease prevention. He is a listed author on more than 60 peer-reviewed publications.

Dr. Lucia Sobrin is an Associate Professor of Ophthalmology at Harvard Medical School and a member of the Retina and Uveitis Services of the Massachusetts Eye and Ear Infirmary. Her primary research interest is in the epidemiology and genetics of diabetic retinopathy, particularly in African American populations. Her primary clinical interests are diabetic retinopathy and posterior uveitis, and she performs clinical outcomes research in uveitis.

Table 1

Risk factors in Jackson Hear Study participants who enrolled vs. did not enroll in the diabetic retinopathy study.

Waddha	Enroll	ed in Retinopathy Study	Not Enr	olled in Retinopathy Study	
v ariable	z	% or Mean (SD)	Z	% or Mean (SD)	r value
Impaired Fasting Glucose	Particip	ants			
Age, years	266	65.7 (9.6)	423	63.0 (12.4)	0.003
Percent Females	266	59.8%	423	52.7%	0.07
Hemoglobin A _{1C} , %	266	5.9 (0.38)	422	5.9 (0.58)	0.34
Body Mass Index, kg/m ²	266	31.3 (6.0)	422	32.3 (7.0)	0.06
Waist circumference, cm	266	102.6 (13.6)	423	104.1 (16.0)	0.20
Systolic BP, mmHg	266	128.5 (16.6)	423	130.8 (18.9)	0.11
Diastolic BP, mmHg	266	74.6 (9.9)	423	76.8 (11.1)	0.01
Total Cholesterol, mg/dl	266	199.3 (37.3)	423	202.1 (39.8)	0.36
Triglycerides, mg/dl	266	103.4 (65.7)	423	102.5 (58.3)	0.86
LDL Cholesterol, mg/dl	266	121.1 (34.4)	422	125.9 (37.3)	0.09
HDL Cholesterol, mg/dl	266	57.6 (17.5)	423	55.8 (16.5)	0.16
C-reactive Protein, mg/L	266	4.4 (5.3)	423	5.5(11.0)	0.12
Urine albumin, mg/L	259	33.7 (119.3)	391	39.0 (152.5)	0.64
Ever smoked, %	266	26.6%	423	29.3%	0.35
<u>Type 2 Diabetes Participa</u>	nts				
Age, years	629	66.5 (10.1)	674	66.4 (11.0)	0.95
Percent Females	629	66.1%	674	66.3%	0.94
Diabetes duration, years	629	9.6 (9.0)	655	12.0 (9.8)	$7.4 imes 10^{-6}$
Hemoglobin A _{1C} , %	623	7.2 (1.6)	668	7.5 (1.8)	0.002
Body Mass Index, kg/m ²	627	34.1 (6.9)	674	34.0 (7.5)	0.89
Waist circumference, cm	627	109.0 (15.2)	673	109.1 (16.2)	0.94
Systolic BP, mmHg	627	130.0 (20.2)	674	132.9(21.1)	0.01
Diastolic BP, mmHg	627	73.6 (11.1)	674	74.1 (11.7)	0.44
Total Cholesterol, mg/dl	612	188.9 (44.6)	642	190.3 (46.2)	0.58
Triglycerides, mg/dl	612	112.2 (65.4)	642	123.5 (145.2)	0.07
LDL Cholesterol, mg/dl	612	111.7 (39.6)	632	113.6 (40.7)	0.42

Author Manuscript

	Enrolle	d in Retinopathy Study	Not Enr	olled in Retinopathy Study	
V artable	z	% or Mean (SD)	z	% or Mean (SD)	r vaue
HDL Cholesterol, mg/dl	612	54.7 (14.8)	642	53.4 (14.9)	0.12
C-reactive Protein, mg/L	626	5.5 (7.9)	672	5.4 (9.1)	0.81
Urine albumin, mg/L	610	150.2 (621.5)	583	146.8 (526.5)	0.92
Ever smoked, %	625	33.0%	673	33.1%	0.95

SD=standard deviation, BP=blood pressure, LDL= low-density lipoprotein, HDL=high-density lipoprotein

0.28

80.7%

667

78.2%

624

Diabetic medication use

Table 2 Distribution of diabetic retinopathy grades among impaired fasting glucose and type 2 diabetes participants in the Jackson Heart Study

Worst Eye ETDRS Grade	Impaired Fasting Glucose Participants (mean age = 65.7 years)	Type 2 Diabetes Participants (mean age = 66.5 years)
Unable to grade	1	6
14	240	421
15	12	31
20	9	50
35	4	76
43	0	11
47	0	4
53	0	2
71	0	27
81	0	1
Total	266	629

ETDRS= Early Treatment Diabetic Retinopathy Study

ŝ
θ
q
<u>م</u>

Risk factors in type 2 diabetes Jackson Heart Study participants with and without any diabetic retinopathy, proliferative diabetic retinopathy and clinically significant macular edema (univariate analyses).

Penman et al.

Any	7 Retin	opathy (ETDR	S grad	e 14)		Pro	liferative Diaber	tic Ret 6	inopathy (ETDF 0)	S grade		Clinically Sig	mifica	nt Macular Ede	ma
	No l	Retinopathy	×	etinopathy			No PDR		PDR			Vo CSME		CSME	
Variable	z	% or Mean (SD)	z	% or Mean (SD)	P value ^a	z	% or Mean (SD)	z	% or Mean (SD)	P value ^a	z	% or Mean (SD)	z	% or Mean (SD)	P value ^a
Age, years	421	66.6 (9.9)	202	65.8 (10.4)	0.31	595	66.2 (10.0)	28	70.2 (9.9)	0.04	571	66.2 (9.9)	48	67.5 (11.0)	0.38
Percent Females	421	64.6%	202	69.8%	0.20	595	65.9%	28	75.0%	0.32	571	66.5%	48	64.6%	0.78
Diabetes duration, years	421	6.8 (6.9)	202	15.3 (10.1)	$1.5 imes 10^{-31}$	595	8.8 (8.1)	28	26.7 (9.2)	$4.7 imes 10^{-27}$	571	8.6 (8.2)	48	20.5 (10.1)	$6.0 imes 10^{-20}$
Hemoglobin A _{1C} , %	415	6.9 (1.2)	202	7.9 (1.9)	3.5×10^{-14}	589	7.2 (1.6)	28	7.8 (1.7)	0.03	565	7.1 (1.5)	48	8.2 (2.0)	$2.4 imes 10^{-6}$
Body Mass Index, kg/m ²	419	33.8 (7.0)	202	34.6 (6.4)	0.17	593	34.0 (6.8)	28	36.7 (7.0)	0.04	569	34.0 (6.8)	48	34.6 (6.9)	0.56
Waist circumference, cm	419	108.2 (15.4)	202	111.0 (14.7)	0.03	593	108.7 (14.9)	28	117.4 (19.0)	0.003	569	108.8 (15.0)	48	112.4 (16.6)	0.11
Systolic Blood Pressure, mmHg	419	128.7 (18.4)	202	132.4 (23.4)	0.03	593	129.7 (19.8)	28	134.9 (28.3)	0.18	569	129.8 (20.1)	48	132.3 (22.2)	0.42
Diastolic Blood Pressure, mmHg	419	74.0 (10.3)	202	72.9 (12.5)	0.23	593	73.9 (10.9)	28	69.2 (13.1)	0.03	569	74.0 (10.9)	48	70.3 (12.4)	0.03
Total Cholesterol, mg/dl	412	190.0 (42.9)	194	186.5 (48.2)	0.37	579	189.6 (44.6)	27	171.8 (41.6)	0.04	556	189.0(44.0)	46	191.2 (51.6)	0.74
Triglycerides, mg/dl	412	110.2 (62.4)	194	116.6 (71.6)	0.27	579	112.0 (65.9)	27	117.7 (56.4)	0.66	556	112.6 (66.8)	46	106.8 (48.9)	0.57
LDL Cholesterol, mg/dl	412	112.9 (39.3)	194	109.2 (40.3)	0.29	579	112.5 (39.6)	27	95.3 (35.5)	0.03	556	111.9 (39.0)	46	113.1 (45.9)	0.85
HDL Cholesterol, mg/dl	412	55.0 (15.2)	194	54.1 (13.9)	0.46	579	54.8 (14.9)	27	53.0 (12.3)	0.54	556	54.6 (14.9)	46	56.8 (12.5)	0.33
C-reactive Protein, mg/L	418	5.9 (8.7)	202	4.9 (5.9)	0.13	592	5.5 (8.0)	28	6.4 (5.0)	0.55	568	5.6 (8.2)	48	4.8 (4.5)	0.47
Urine albumin, mg/L	412	88.0 (424.6)	193	283.3 (901.3)	0.0003	581	135.8 (595.8)	24	502.1(1064.8)	0.005	555	131.0 (579.3)	46	393.0 (1013)	0.006
Ever smoked	418	33.2%	201	31.0%	0.59	592	32.3%	27	37.0%	0.60	568	32.0%	47	38.3%	0.38
Diabetic medication use	416	70.2%	202	94.6%	6.2×10^{-12}	590	77.1%	28	100%	0.004	566	76.3%	48	97.9%	0.001
E-selectin, ng/ml	393	47.7 (23.8)	189	48.7 (24.5)	0.16	556	46.8 (24.2)	26	43.4 (19.9)	0.47	531	46.5 (24.5)	47	46.9 (18.5)	0.91
P-selectin, ng/ml	393	32.8 (12.2)	189	36.6 (13.2)	0.0007	556	33.8 (12.5)	26	38.9 (15.7)	0.04	531	33.7 (12.6)	47	37.3 (12.8)	0.06
SD=standard deviation, ETI HDL=high-density lipoprote	JRS= E sin	arly Treatment	Diabeti	ic Retinopathy Stu	ıdy, PDR= Pr	oliferat	ive Diabetic Ret	inopatl	hy, CSME=Clinic	ally Significa	nt Macı	ılar Edema, LDI	C=low-	density lipoprot	sin,

Am J Ophthalmol. Author manuscript; available in PMC 2016 June 01.

 $\boldsymbol{a}_{\mathrm{T}}$ -test for continuous variables, Chi-square test for dichotomous variables

Table 4

Risk factors for any diabetic retinopathy in type 2 diabetes participants in the Jackson Heart Study: results of multivariate analyses controlling for age and gender

Variable	OR (95% CI)	P value
Diabetes duration, years ^a	1.71 (1.48-1.98)	5.7×10^{13}
Hemoglobin A _{1C} , %	1.25 (1.08-1.44)	0.002
Systolic Blood Pressure, $mmHg^b$	1.13 (1.01-1.25)	0.03
Diabetic medication use	2.14 (1.04-4.38)	0.04
P-selectin, ng/ml ^C	1.11 (1.02-1.21)	0.02

OR= Odds Ratio, CI= Confidence Interval

 a Odds ratio calculated per 5 year increase in duration of diabetes

 $^b \mathrm{Odds}$ ratio calculated per 10 mmHg increase in systolic blood pressure

 C Odds ratio calculated per 5 ng/ml increase in P-selectin level

Table 5

Risk factors for proliferative diabetic retinopathy in type 2 diabetes participants in the Jackson Heart Study: significant results in multivariate analyses controlling for age and gender.

Variable	OR (95% CI)	P value
Diabetes duration ^a	2.19 (1.66-2.89)	$3.8 imes 10^{-8}$
Systolic Blood Pressure, mmHg b	1.26 (1.02-1.57)	0.03
P-selectin, ng/ml ^C	1.23 (1.03-1.46)	0.02
Total cholesterol, mg/dl	0.98 (0.969-0.996)	0.01

OR= Odds Ratio, CI= Confidence Interval

 a Odds ratio calculated per 5 year increase in duration of diabetes

 $^b\mathrm{Odds}$ ratio calculated per 10 mmHg increase in systolic blood pressure

^cOdds ratio calculated per 5 ng/ml increase in P-selectin level

Author Manuscript

Author Manuscript

Association between SELP genotype and presence of any diabetic retinopathy in the Jackson Heart Study

		No Keunopathy		Ketmopathy	
SELP SNP	Z	% Minor allele homozygotes	z	% Minor allele homozygotes	P value ^a
rs6128 (C/T)	174	5.7%	102	0%0	0.03
rs6133 (A/C)	135	19.3%	71	16.9%	0.68
rs3917779 (A/G)	135	24.4%	50	26.8%	0.72

SNP= Single nucleotide polymorphism

 \boldsymbol{a}^{d} corrected for multiple hypothesis testing by Bonferroni method