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Abstract

Objectives—To evaluate the performance of T2 mapping in discriminating prostate cancer from 

normal prostate tissue in the peripheral zone using a practical reduced field-of-view MRI sequence 

requiring less than 3 minutes of scan time.

Materials and Methods—Thirty-six patients with biopsy-proven peripheral zone prostate 

cancer without prior treatment underwent routine multiparametric MRI at 3.0T with an endorectal 

coil. An Inner-Volume Carr-Purcell-Meiboom-Gill imaging sequence that required 2.8 minutes to 

obtain data for quantitative T2 mapping covering the entire prostate gland was added to the routine 

multiparametric protocol. Suspected cancer (SC) and suspected healthy (SH) tissue in the 

peripheral zone were identified in consensus by three radiologists and were correlated with 

available biopsy results. Differences in mean T2 values in SC and SH ROIs were tested for 

significance using unpaired Student’s two-tailed t test. The area under the receiver operating 

characteristic curve was used to assess the optimal threshold T2 value for cancer discrimination.

Results—ROI analyses revealed significantly (p<0.0001) shorter T2 values in SC (85.4 ± 12.3 

ms) compared to SH (169.6 ± 38.7 ms). An estimated T2 threshold of 99 ms yielded a sensitivity 

of 92% and a specificity of 97% for prostate cancer discrimination.
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Conclusions—Quantitative values derived from this clinically practical T2-mapping sequence 

allow high precision discrimination between healthy and cancerous peripheral zone in the prostate.
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1. Introduction

Prostate cancer is the leading cause of non-cutaneous cancer diagnosed among men in the 

US and is the second most common cause of cancer death, exceeded only by lung cancer 

[1]. Despite extensive research in the field, many uncertainties remain about this disease, 

including screening strategies, non-invasive assessment of aggressiveness and treatment 

options for different grades of cancer. In this setting, prostate MRI has been the focus of 

extensive research to help improve accuracy in not only ruling out significant disease, but 

also characterizing and grading tumors, vital information for disease management and 

treatment stratification.

MRI has been successfully used to stage prostate cancer since the late-1980s, primarily with 

T2-weighted (T2W) and T1-weighted (T1W) imaging sequences. There has been continual 

improvement in hardware, including the incorporation of endorectal coils, and in software 

development of pulse sequences suitable for diffusion weighted imaging (DWI), 

spectroscopy and dynamic contrast enhanced (DCE) studies [2]. Given recent interest in 

focal therapies and active surveillance as viable options for prostate cancer treatment and the 

addition of multiparametric imaging capabilities with the technical advances, there is a 

shifting emphasis towards non-invasive detection, localization and characterization of the 

disease in addition to staging with MRI.

It is widely appreciated that peripheral zone prostate cancer often has low signal on T2 

weighted images [3], making T2W imaging a key, if subjective, assessment for cancer 

detection. Quantitative measurement of T2 and the generation of T2 maps for prostate cancer 

detection has been previously reported [4–9] but is not routinely used clinically nor is as 

ubiquitous as mapping of the apparent diffusion coefficient (ADC) value, a quantitative 

technique used routinely in prostate cancer staging and detection, in conjunction with visual 

impressions from the raw diffusion weighted images [2].

The decrease of signal on T2W images within the peripheral zone that accompanies focal 

cancer indicates a shortening of the T2-decay and so it seems somewhat surprising that the 

use of quantitative T2 values to discriminate prostate cancer from normal peripheral zone 

has not been exploited to a greater degree. This may in part be attributed to the prolonged 

scan times associated with acquiring multiple echo time (TE) data sets required for T2 

evaluation. Our goal in this work was to evaluate the performance of T2 mapping for 

discriminating areas of suspected prostate cancer from suspected normal glandular tissue in 

the peripheral zone when using a practical Inner-Volume Carr-Purcell-Meiboom-Gill (IV-

CPMG) imaging sequence.
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2. Materials and Methods

2.1. Patient population

Patients with newly diagnosed biopsy-proven adenocarcinoma of the prostate without prior 

treatment undergo routine multiparametric 3 Tesla MRI at our institution for the purposes of 

treatment staging or active surveillance. Between November 2012 and February 2013, 45 

consecutive of these patients (median age 60 years; range 50–72 years) had an additional 

sequence for T2 mapping added to their MRI protocol. The study was performed under an 

Institutional Review Board-approved protocol and informed consent was obtained prior to 

MRI and signed by each patient and a study coordinator.

Of the 45 patients who underwent the additional imaging, four were later excluded from the 

study either because it was found that there was an absence of a suspicious lesion in the 

peripheral zone or there was a suspicious lesion but it was in the central gland or anterior 

fibro-muscular stroma (e.g. based on clinical T2-weighted and diffusion-weighted images). 

Five other patients were excluded because there was significant motion artifact on the T2 

mapping sequence used for the study.

Image data from 36 patients (out of the initial 45 patients that had T2 mapping) were 

included in the final study. Of the patients whose data was included, nine had low-risk, 21 

had intermediate-risk and six had high-risk prostate cancer (D’Amico’s risk criteria [10]). At 

the time of enrollment, the mean serum prostate-specific antigen (PSA) level was 8.5 ng/mL 

(range 3.6–21.8 ng/mL). Indications for MRI were mainly for staging (n=28), but also 

included active surveillance (n=8). The time of biopsy prior to the MRI ranged from 7 to 

551 days with a median and standard deviation of 51 and 127 days respectively. Several 

patients had multiple biopsies.

2.2. Imaging sequences and parameters

All patients included in this study underwent multiparametric MRI under a standard protocol 

that is used at our institution for the assessment of intra and extra-glandular prostate disease. 

Imaging was performed using a 3T Signa HDxt scanner (General Electric Medical Systems) 

operating under software version 15.0. The MRI protocol, which included the use of an air-

filled endorectal coil (Medrad Inc. Indianola, PA, USA) combined with an eight-element 

flexible torso phased-array coil, has been described previously [2]. Briefly, T1-weighted 

spoiled gradient echo (SPGR) imaging in the axial plane, T2-weighted Fast Spin Echo (FSE) 

imaging in all three planes, as well as axial DWI and DCE imaging were performed.

The unique component of this study was the inclusion of an IV-CPMG imaging sequence 

for T2 mapping. The manufacturer’s clinical FSE sequence includes a CPMG option 

whereby individual spin echoes in the echo train can be used to obtain images with different 

TE’s in a single acquisition. This sequence was modified in-house to obtain the IV-CPMG 

sequence used in the study. In the modified sequence, the excitation and refocusing pulses 

were tilted with respect to each other, as discussed by Rangwala and Zhou [11] and shown 

schematically in Fig. 1. This tilting has the effect not only of selectively exciting spins in the 

slice direction but also of restricting the volume of spins excited along the phase encode 

direction through selective refocusing. The images in Fig. 1 demonstrate the ability of the 
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sequence to select a reduced field-of-view without significant aliasing in the phase-encode 

direction.

The preferred image orientation for prostate T2W prostate imaging is axial and the R-L 

direction is normally selected as the phase-encoding direction to avoid having motion 

artifacts from the rectal wall obscure the prostate. The same axial orientation and selection 

of phase and frequency directions was adopted for T2 mapping. Without restricting the 

selected volume in the phase direction, a FOV of over 300 mm would be required. However, 

the IV-CPMG sequence allowed us to greatly reduce the phase FOV (and, thus, the number 

of phase encoding steps) while avoiding aliasing artifact.

For a tilt angle of ϕ (assuming it is less than about 40°) the restricted volume in the phase 

direction equals two times the slice thickness multiplied by tangent(90°-ϕ). In this study, we 

used tilts of approximately 4° to select an 85 mm section in the phase direction for a slice 

thickness of 3 mm. The FOV in the frequency direction was 140 mm and the selected matrix 

size was 192 × 160 in frequency and phase directions respectively. With the phase-encoding 

FOV set to 62% and with the half-Fourier option added, the actual number of phase encodes 

was reduced to approximately 50, which included a slight oversampling for the half-FT 

phase correction. Thus, even with a relatively long TR, the scan times were only 2.8 minutes 

compared to almost 9 minutes scans that would be required for a full-FOV, full-Fourier 

acquisition. A total of 8 spin echoes per slice were acquired at TE’s from 18 to 144 ms at 

intervals of 18 ms. With a TR of 3300 ms, 20 slices could be acquired in one acquisition, 

allowing for full gland coverage in the axial plane (slice thickness: 3 mm, slice gap: 1 mm). 

The resultant in-plane resolution was approximately 1 × 1.5 mm2.

An undesired side effect due to tilting the spatially selective excitation with respect to 

refocusing is that the flip angle of the refocusing pulses becomes dependent on the position 

of the spins not just along the slice direction, as in slice selective CPMG imaging, but also 

along the phase-encode direction. That is, in standard slice selective CPMG imaging, the 

variability of the refocusing flip angles within the slice-selection profiles results in 

contributions from stimulated echoes and a departure of the resulting signal decays with 

echo time from pure T2 decays. A noticeable feature of this effect is a surprisingly lower 

signal on first echo images and calculated T2 values longer than expected due to T1 

contributions. Thus, the estimated T2 is more aptly referred to as the ‘apparent’ T2. In the 

IV-CPMG sequence used in this study, we expected such effects to be exacerbated due to 

the additional flip angle variation along the phase-encode direction. This is demonstrated in 

Fig. 2, which shows T2 estimates using the standard full-FOV CPMG sequence compared 

with the T2 estimates in a doped water phantom (T2 ~60ms) obtained using the IV-CPMG 

sequence. Near the center of the reduced FOV the two methods are in close agreement in 

terms of the estimated T2, however, near the edges the difference increases significantly. In 

the studies reported here, the gland was positioned at the center of the reduced FOV to 

minimize such effects though they certainly contribute to inaccuracies in T2 values, which 

are understood to be “apparent” T2 values.
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2.3. Image Analysis

Two radiologists (FIY and TP), aware of all clinical information (indication for the exam, 

clinical stage, PSA values and biopsy results), reviewed multiparametric MRI data sets 

(including DWI and DCE images) and identified one suspected cancer (SC) lesion per 

patient in consensus. When consensus was not reached, a third senior radiologist (FMF) was 

consulted. Regions-of-Interest (ROIs) corresponding to SC were then mapped to the T2 

maps generated from the IV-CPMG sequence. When consensus was reached, another ROI 

corresponding to suspected healthy (SH) tissue in the peripheral zone was used for 

comparative analysis. This ROI was placed in a region of homogeneously high signal 

intensity, containing as much normal appearing glandular tissue as possible. For three of the 

patients, no consensus was reached on an acceptable SH ROI, thus, the analysis included 

results from 36 SC ROIs but only 33 SH ROIs.

The detailed prostate pathology report for each patient was available to the radiologists at 

the time of ROI selection. All information available from the pathology report was used to 

confirm that the suspected cancer ROIs were placed in the location of the pathology-proven 

cancer. While correlation with whole-mount pathology would be preferable, this was not 

feasible for the study as not all patients went to prostatectomy (only 9 of 36).

Quantitative T2 maps were generated from the IV-CPMG data by assuming a 

monoexponential T2 decay. The first echo was not used in the analysis because it is typically 

found to have less signal intensity than the 2nd echo, as noted previously with the use of 

slice selective CPMG sequences in the prostate [7]. Furthermore, signals from later echoes 

were discarded prior to fitting if the signal was within 3 standard deviations of baseline 

noise values as measured in air containing-ROIs placed in the rectum. The T2-mapping 

analysis was performed using a custom processing routine implemented within 3D Slicer 

(http://www.slicer.org), an open source image guided therapy and image analysis platform 

[12]. Differences in mean T2 values in SC and SH ROIs were tested for significance using 

an unpaired Student’s two-tailed t-test with statistical significance assumed at p<0.05. 

Normality of the T2 data was confirmed via the Shapiro-Wilks test. The area under the 

receiver operating characteristic curve (AUC) was used to assess the optimal threshold T2 

value for cancer discrimination. Statistical analyses were performed using MedCalc for 

Windows, version 12.5 (MedCalc Software, Ostend, Belgium).

3. Results

A single slice image with corresponding results of T2 analysis from the IV-CPMG 

acquisition of one of the patients is shown in Fig. 3. The image for the fourth echo with a TE 

of 72 ms is shown (Fig. 3a) along with ROIs in the peripheral zone corresponding to 

suspected cancer and suspected healthy tissue. Figure 3b shows signal values on a 

logarithmic scale along with the least-square fits for the multi-echo data. Note that the data 

from the first echo was not used when fitting data to estimate the apparent T2 for reasons 

discussed above. The T2 map estimated from the IV-CPMG data is also shown (Fig. 3c).

In all 36 eligible patients, a single ROI for the suspected index cancer lesion was identified. 

Suspected healthy peripheral zone was identified in only 33 of the patients. In the remaining 
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three, no consensus could be reached for SH, as no area of homogeneous high T2W-signal 

region could be identified. The 36 ROIs identified as SC had an average size of 203 pixels 

(range 4–1124), whereas the 33 ROIs identified as SH had an average size of 72 pixels 

(range 24–240). Whenever possible, the same slice was used to identify both SC and SH 

ROIs (n=11). When not in the same slice, ROIs from SC and SH were one (n=4), two (n=9), 

four (n=7) and six (n=2) slices apart from each other.

The average T2 value (85.4 ± 12.3 ms) extracted from ROIs that were identified as SC was 

significantly shorter (p<0.0001) than the mean T2 value (169.6 ± 38.7 ms) extracted from 

ROIs identified as SH (see Fig. 4).

In the ROC analysis, differences in mean T2 values showed a discriminatory performance of 

AUC=0.985 (p<0.0001) (Fig. 5). Further analysis of the data showed that, by choosing a 

threshold of 99ms, a sensitivity of 91.7% and a specificity of 97.0% could be achieved.

4. Discussion

MRI-based detection, localization and characterization of lesions are extremely important in 

achieving efficacy with focal therapies as treatment alternatives to radical prostatectomy and 

radiation therapy [13,14] and several studies have shown the benefits of multiparametric 

prostate MRI in this context [15–17]. Quantitative imaging and analysis may have a special 

role to play considering the strong evidence of an inverse relationship between ADC values 

and Gleason grade [18–24] and the apparent correlation between pharmacokinetic 

parameters obtained in DCE studies of prostate cancer. A key advantage of quantitative 

imaging is that it provides greater objectivity in image analysis. It may also improve 

sensitivity and specificity in detecting and characterizing lesions when compared to 

qualitative-based approaches.

Although there has been a shift towards more quantitative analyses in the prostate imaging 

community, with an emphasis on ADC values [25] and pharmacokinetic parameters, 

quantitative T2 analyses has remained largely within the realm of research [2]. It is perhaps 

somewhat surprising that quantitative T2 analysis is not more prevalent considering that 

conventional T2-weighted imaging is very much in the front-line for visualization of prostate 

anatomy and identification of suspected regions of cancer. Signal intensity at a single TE is 

an amalgam of several effects, including not only the T2 value, but also receiver coil 

sensitivities, B1 inhomogeneities, and T1 and proton density effects. Thus, T2 mapping in 

addition to standard T2W imaging should be advantageous as it is insensitive to some of 

these confounding effects.

There are significant technical challenges in obtaining quantitative T2 maps in the clinical 

setting. First, the gold standard T2 mapping approach of performing multiple single spin-

echo acquisitions with a range of TE settings requires excessive scan times. More practical 

approaches have included the use of separate fast spin echo (FSE) acquisitions with different 

effective TEs. However, each scan still requires several minutes to cover the gland with 

adequate spatial resolution [5,6,26]. Wei et al exploited an accelerated imaging approach 

[9], however, the total acquisition time for T2 mapping was still almost 6 minutes and the 

whole prostate was not covered. Roebuck et al [7] utilized direct CPMG imaging, which 
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provides multiple TEs in a single acquisition, but the 12-minute scan time was not very 

practical for routine clinical use. In addition, the use of multiple slice-selective refocusing 

pulses introduces stimulated echo effects into T2-decay curves [27–29].

We sought to determine if a rapid and clinically practical CPMG technique could provide T2 

values that, although probably not “accurate” due to stimulated-echo effects, could still 

provide clinically significant discrimination between prostate cancer and healthy peripheral 

zone tissue. The values so obtained and analyzed in this work appear quite useful for cancer 

discrimination with, for example, a threshold T2 of 99 ms yielding a sensitivity of 92% and a 

specificity of 97% for discriminating cancer from healthy tissue. The actual T2 values 

obtained in this work are consistent with those previously found in prostate cancer and 

healthy peripheral zone using slower T2 mapping methods [5–7].

Potential additions to the approach used here could significantly improve the accuracy of the 

T2 estimates. For example, with some modification to the RF excitation profiles [30] it is 

possible to obtain much more uniform flip angle distributions over the selected volume to 

minimize spatially-dependent variation in T2 estimates. Also, combining the IV-CPMG 

sequence with a reconstruction approach such as that proposed by Ben-Eliezer et al [31] 

could be used to correct for the stimulated echo effects and provide more accurate T2 

estimates. Other methods for selecting the reduced FOV might also be considered, such as 

those methods discussed in [32].

A recent prostate MR guideline stated the importance of quantitative measurements and 

structured reporting [33], as they can help not only to improve inter-observer agreement but 

also to develop computer-aided detection systems. There is a potential benefit of 

incorporating quantitative T2 values into computer-aided detection systems rather than 

visual interpretation of T2W alone, as has been shown in a recent report that utilized T2-

weighted signal intensity histogram (skewness) [34]. Whether the use of quantitative T2 

measurements can improve the specificity and/or sensitivity of prostate cancer detection 

over qualitative analysis still remains to be answered but appears, in light of this work and 

others, to be quite promising.

As a note of caution, it should be stated that there are disease entities associated with shorter 

T2 values (and lower T2W signal) in the peripheral zone other than prostatic 

adenocarcinoma. Post-prostate biopsy hemorrhage can leave foci of methaemoglobin 

scattered in the gland and lower the T2W signal. This complication can be avoided if one is 

able to rule out hemorrhage by assessing the same location on T1W images (as was done in 

this study) or by simply allowing sufficient time between biopsy and imaging. Further, 

benign conditions such as acute and chronic prostatitis can also lead to low T2W-signal 

areas within the PZ. In most cases, these can be distinguished from cancer by morphology, 

since prostatitis has a “band-like” or linear shape and cancer is typically a round focal mass.

Our study has some limitations. First, only a relatively small set of patients was examined. 

Second, we recognize that the pathological correlation of the suspected cancer lesion on 

MRI with the biopsy results has limitations and is not as accurate as radical prostatectomy. 

This is a persistent limitation of all biopsy correlation studies. Third, we assumed a normal 
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appearing peripheral zone without histopathologic correlation. However, we did make 

efforts to select the normal ROIs in homogeneous regions of high signal in the PZ on T2W 

images, in an attempt to minimize potential confounders such as prostatitis that are known to 

reduce peripheral zone T2 signal.

In conclusion, the IV-CPMG imaging sequence allowed for reasonably rapid estimates of 

quantitative T2 values. This quantification could increase the effectiveness of 

multiparametric MRI in the detection and staging of prostate cancer without adding 

significantly to the time required for image acquisition.
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Figure 1. 
Left: The schematic shows the spatial selection scheme used in the IV-CPMG sequence 

whereby the slice selection profile is tilted with respect to the refocusing profile. This has 

the effect of restricting the imaging volume in a second (phase-encoding) direction. Right 

Top: Full FOV phantom image. Right-Bottom: A reduced FOV image (1/3 FOV in both 

phase and frequency directions) of the same phantom. The image was produced using IV-

CPMG, which is an in-house-modified clinical fast-spin-echo sequence. The FSE sequence 

has an option whereby all spin echoes in the echo train are phase encoded identically 

allowing for T2-mapping.
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Figure 2. 
Top: T2 maps for one slice obtained using a doped water phantom (0.5 mM MnCl2 with 

relaxivity of 35 s−1/mM giving a T2 of ~60ms). The image on the left shows the T2 map for 

the full FOV obtained using a standard CPMG sequence. The image shows the T2 map for 

the same slice using the IV-CPMG sequence. Bottom: Plots of the estimated T2 values for 

one row in the images above. The location of the plotted data is indicated by the white line 

in the images.
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Figure 3. 
T2 mapping analysis. (a) A single slice image from the IV-CPMG acquisition of one patient. 

The image is for the fourth echo (TE = milliseconds). ROIs for regions in the peripheral 

zone of suspected cancer (white arrow) and suspected healthy (gray arrow) are overlaid. (b) 

The signal values and fits for all 8 echoes are shown for the suspected cancer (‘*’) and 

suspected healthy (‘o’) regions. The data from the first echo was not used when fitting data 

to estimate T2 (see text for discussion). The mean T2’s for the ROIs are 96 (cancer) and 208 

milliseconds (healthy). (c) The T2 map estimated from the IV-CPMG data is displayed along 

with the ROIs.
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Figure 4. 
Boxplots of mean T2 values in SH and SC regions. The mean T2 value (85.4 ± 12.3 ms) in 

SC regions was significantly (p<0.0001) shorter than the T2 (169.6 ± 38.7 ms) in SH 

regions.
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Figure 5. 
The ROC curve obtained by setting thresholds on T2 measures for the selected SC and SH 

regions. A 92% sensitivity and 97% specificity is achieved for a T2 threshold of 99 ms 

(AUC=0.985).
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