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Abstract

In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in 

regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to 

maintain proper functions, hemodynamic control is crucial. In this review, we describe 

representative mathematical models that have been developed to better understand the kidney's 

autoregulatory processes. We consider mathematical models that simulate glomerular filtration, 

and renal blood flow regulation by means of the myogenic response and tubuloglomerular 

feedback. We discuss the extent to which these modeling efforts have expanded the understanding 

of renal functions in health and disease.
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1. Introduction

As part of the excretory system, the kidney's functions are to remove waste products from 

the bloodstream, to maintain the balance of body water and electrolytes, and to control blood 

volume and blood pressure. Renal dysfunction is often associated with serious health 

conditions such as diabetes, hypertension, and congestive heart failure.

Despite their small size, the kidneys receive a substantial fraction of the cardiac output [1]. 

Blood enters kidney's circulation through the renal artery and, following successive 

branching, reaches the arcuate arteries [2]. The arcuate arteries traverse through the 

boundary between the cortex and the medulla and branch into interlobular arteries that give 

rise to the afferent arterioles that supply the glomeruli (see Fig. 1, left panel).
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The glomeruli feed into the nephrons, which are the functional units of the kidney. A kidney 

contains a large number of nephrons, ranging from 30,000–40,000 in rats to ~1 million in 

humans. A nephron is a long tubular structure made up of a single layer of epithelial cells; it 

is divided into four distinct segments: a glomerulus, a proximal tubule, a loop of Henle, and 

a distal tubule (Fig. 1, right panel). At the proximal end, nephrons are separated from the 

vasculature by a semi-permeable membrane that allows plasma filtrate to pass from the 

bloodstream. As the filtrate flows through the nephron segments, its composition changes 

through reabsorption and secretion of fluid and solutes by the tubular epithelia. The 

nephron's distal end is connected to the collecting duct system, which delivers the remaining 

tubular fluid to the ureter. The composition of the final urine is adjusted so that daily intake 

equals urinary excretion.

2. Glomerular filtration

Each nephron consists of an initial filtering component called the glomerulus. The 

glomerulus is formed by a network of capillaries enclosed by a capsule that is connected to 

the nephron's proximal tubule. The capillaries of a glomerulus are supplied by a single 

afferent arteriole and drained by a single efferent arteriole.

In the glomerulus, urine formation begins with the filtration of blood plasma across the 

capillary walls. The capillary walls permit the filtration of large amounts of fluid and small 

solutes while preventing the passage of large proteins and blood cells. The filtrate is 

collected by the enclosing capsule and delivered to the proximal tubule. The volume of 

plasma filtered per unit time is referred to as single-nephron glomerular filtration rate 

(SNGFR), which is a key determinant of nephron and, more generally, kidney function.

The first quantitative analysis of glomerular function is attributed to Starling, who in 1899 

showed that the forces governing fluid transport across capillary walls could explain the 

formation of the glomerular filtrate [6]. Many decades later, in the early 1970s, progress in 

experimental techniques (e.g., micropuncture) gave rise to a wave of glomerular modeling 

efforts [7, 8, 9]. The principal objective of mathematical modeling of glomerular function is 

to better understand the relationship between renal hemodynamics (i.e., blood pressure and 

flow) and SNGFR, both in health and disease.

In mathematical models of glomerular filtration, the network of capillaries are commonly 

idealized as a number of identical tubes connected in parallel, in spite of their actual 

tortuosity. A schematic diagram is shown in Fig. 2. Along each tubule, filtration is driven by 

the Starling forces developed between the capillary's lumen and the surrounding space.

To derive model equations for glomerular filtration, consider a capillary network of n 

parallel tubes. Given the sufficiently fast glomerular transit time (~0.1 s), model equations 

are formulated for quasi-steady state. Let x denote the position along the tube, where x = 0 

and x = LGL mark the connections with afferent and efferent arterioles, respectively. 

Conservation of plasma and protein is given by
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(1)

(2)

where Qp and Cp denote plasma flow and protein concentration, respectively. The 

parameters S and k are tube's surface area and water permeability, respectively. The Starling 

forces are given by the hydrostatic pressure in the capillary lumen and the surrounding space 

(denoted by PGL and PT, respectively), and by the colloid osmotic pressure π in the capillary 

lumen.

SNGFR is given by the total plasma flux across the network of capillaries

(3)

Equation (3) can be simplified by assuming uniform pressure and protein concentration 

profiles, which yields

(4)

In Eq. (4), Kf = nSk is the ultrafiltration coefficient, which is determined by total network 

surface area and permeability.

In a stand-alone glomerular filtration model, e.g. [8], Qp(0), PGL(x), PT are assumed known 

a priori. When a glomerular filtration model is incorporated into a more comprehensive 

model of renal hemodynamics, e.g., [10, 11, 12, 13], Qp(0) and PGL(x) are typically 

determined by the vascular component, whereas PT is determined by the tubular component, 

which takes into account tubular flow and tubular compliance.

3. Renal autoregulation

Normal renal function requires that the fluid flow through the nephron be kept within a 

narrow range. When tubular flow rate falls outside of that range, the ability of the nephron to 

operate may be compromised. Tubular flow rate depends, in large part, on SNGFR, which is 

stabilized by the autoregulatory mechanisms discussed below.

Blood flow is commonly modeled by the Poiseuille's law [14]

(5)

where ΔP denotes pressure drop along the vessel, and Q denotes volumetric flow. Due to the 

analogy with Ohm's law (e.g., ΔV = IR), the factor R in Eq. (5) is termed vascular 

resistance. Resistance is related to the vessel's luminal radius r by an inverse 4-th power law
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(6)

where L is the vessel's length, and μ is blood viscosity.

In the renal vasculature, nearly all of the pressure drop between the renal artery PA and renal 

vein PV occurs along the afferent and efferent arterioles. As a first approximation, one may 

assume that pressure drop along the preafferent arteriole, glomerulus, and post-efferent 

arteriole segments, as well as fluid loss due to filtration, are negligible; see Fig. 3. In other 

words, SNGFR, which is typically ~10% of blood flow, is assumed negligible in this 

approximation. This yields

(7)

(8)

where Q and PGL denote blood flow and glomerular capillary pressure, respectively, and 

RAA and REA denote the afferent and efferent arteriolar resistance.

Due to heart beat, breathing, movement, excitement, etc., PA is constantly under 

perturbations. If these perturbations were transmitted to PGL and Q without attenuation, 

glomerular capillaries would be susceptible to barotrauma and SNGFR would be 

destabilized, thereby negatively impacting proper nephron and kidney functions. To buffer 

these perturbations, the afferent arteriole responds by adjusting its radius rAA (and 

consequently arteriolar resistance RAA) to compensate for changes in PA, thereby shielding 

Q and PGL from fluctuations in PA. This phenomenon is known as renal autoregulation and 

is mediated primarily by two mechanisms: myogenic response and tubuloglomerular 

feedback (TGF). The events underlying renal autoregulation are summarized in Fig. 4.

The myogenic response and tubuloglomerular feedback respond to different signals and 

exhibit their own frequency characteristics [15, 16, 17]. In rat, the myogenic response is 

activated by local blood pressure perturbations and buffers fluctuations up to ~200 mHz. 

Tubuloglomerular feedback is activated by variations in chloride concentration of the fluid 

reaching the distal nephron, and buffers fluctuations up to ~30 mHz. Both mechanisms share 

a common effector: the smooth muscles of the afferent arteriole, [15, 16, 17, 18].

Over the past decades, a series of mathematical models have been developed to study the 

functions and interactions of autoregulatory mechanisms. Below we focus on comprehensive 

models that provide dynamic representations. Earlier studies that account only for steady 

state, e.g., models in Refs. [19, 20, 21, 22, 23, 24, 25], are not discussed.

4. Myogenic response

The smooth muscles that form the afferent arteriole walls respond to pressure elevation by 

vasoconstriction and to pressure drop by vasodilation. The phenomenon, known as the 
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myogenic response, is found in nearly all terminal vessels of the body. Two characteristics 

distinguish the myogenic response of the renal afferent arteriole from that of most other 

vascular beds: its ability to buffer large pressure perturbation (up to 80 mmHg), and its short 

response times (as low as 10 s).

Based on the observed kinetics and steady-state characteristics of afferent arteriole 

vasoresponse, Loutzenhiser et al. formulated models of the renal myogenic response [27, 28] 

that utilize pressure–radius relations. Effectively, at any t, a target vascular radius  is 

determined by arterial pressure at an earlier time t − τm, where τm represents the response 

delay. Arteriolar radius rAA(t) follows  by an exponential decay

(9)

The vasoresponse time courses have been reported to be asymmetric. Loutzenhiser et al. 

reported faster vasoconstriction activation times and kinetics in the hydronephrotic rat 

kidney [27]. In contrast, Just and Arendshorst observed stronger and faster dilator response 

than constrictor response [29] in rats. To represent the asymmetries of myogenic response, 

one may set τm and km in Eq. (9) to be pressure rate sensitive, i.e., different τm and km values 

can be specified for responses triggered by pressure increases and decreases. When a faster 

vasoconstrictive response is assumed [27, 28], models predict sustained vasoconstriction at 

sufficiently fast pressure fluctuations (see Fig. 5), owing to the cumulative effect of the 

faster contractile response. As a result, in these models, arteriolar radius is sensitive to peak 

rather than mean blood pressure.

The above models [27, 28] are formulated phenomenologically and do not represent 

intracellular dynamics. Gonzalez-Fernandez and Ermentrout developed a mathematical 

model of the myogenic mechanism of the cerebral arteriole that captures cellular processes 

[30]. That model represents muscle membrane potential, Ca2+ and K+ transmembrane 

fluxes, and cytosolic [Ca2+] handling. Below we summarize key model equations.

The rate of change of cytosolic [Ca2+], denoted Cai, depends on the influx from the 

extracellular space ICa and is given by

(10)

where α is a constant converting charge to mass flux; kCa is a first-order rate constant for 

cytosolic calcium extrusion; Kd is the ratio of the forward and backward reaction rates of the 

calcium-buffer system; and BT is the total buffer concentration. Calcium influx is provided 

by voltage gated membrane channels

(11)

where gCa is the maximum whole-cell membrane conductance for the calcium current, and 

m∞ is the equilibrium distribution of open calcium channel states which is a function of 

membrane potential (v)
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(12)

where v1 is the voltage at which half of the channels are open, and v2 determines the spread 

of the distribution.

The opening of potassium channels induces a transmembrane K+ efflux. To represent the K+ 

flux, one may describe the rate of change of the fraction of K+ channel open states, denoted 

n, by first-order kinetics

(13)

where n∞ denotes the equilibrium distribution of open K+ channel states, given by

(14)

where v3 is a function of Cai, and v4 is a measure of the spread of the distributions of n∞.

The opening of the Ca2+ and K+ channels depends on the membrane potential v (Eqs. (12) 

and (14)). The rate of change of v is the sum of the transmembrane currents

(15)

where Cap denotes the capacitance of the cell membrane. The transmembrane leak, 

potassium, and calcium currents are denoted IL, IK, and ICa, respectively.

Cytosolic [Ca2+] determines the formation of crossbridges, which in turn determines the 

muscle tone. Muscle tone, together with luminal pressure, gives rise to hoop forces, the 

balance of which determines the luminal radius.

The model [30] predicts that the smooth muscle cell exhibits periodic oscillations in luminal 

radius even in the absence of external stimuli, i.e., spontaneous vasomotion. Those 

oscillations, shown in Fig. 6, are triggered by a limit cycle developed between membrane 

potential and ion channels. The inward-directed Ca2+ current depolarizes the cell, which 

results in an increase in v that triggers the opening of K+ channels. The subsequent outward-

directed K+ current re-polarizes the cell, i.e., v decreases. The fluctuations in ICa drive 

cytosolic calcium, which in turn drives muscle tone.

The model of Ref. [30] has been adapted to represent the renal myogenic mechanism by 

Marsh and co-workers [32, 10, 33, 34, 35] and by Layton and co-workers [31, 36, 12]. The 

latter of these models represents the afferent arteriole's myogenic response based on the 

hypothesis that changes in hydro-static pressure induce changes in the activity of non-

selective cation channels [36, 12]. Such changes are modeled by a modification of Eq. (15)
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(16)

where Iions represents the currents induced by transmembrane ionic fluxes (e.g., potassium, 

calcium, leak currents), and IMR is the current mediating the myogenic response; e.g., IMR 

induces depolarization at elevated pressures and polarization at lower pressures. The 

resulting changes in membrane potential affect Ca2+ influx through the voltage-gated Ca2+ 

channels, thereby inducing appropriate myogenic vasoresponses. More specifically, 

vasoconstriction is initiated by membrane depolarization, which stimulates the opening of 

voltage-gated Ca2+ channels (Eq. (12)), leading to elevations in cytosolic [Ca2+], muscle 

tone, and vasoconstriction. Membrane polarization has the opposite effects and yields 

vasodilation. The events leading to myogenic vasoresponse are summarized in Fig. 7.

The models in [30, 31] were originally developed for a single smooth muscle cell. To study 

renal autoregulation at the vascular level, one may develop a vessel model using an 

ensemble of single-cell models, as done by Sgouralis and Layton [36, 12] and by Marsh and 

co-workers [32, 10, 33, 34, 35]. Such an extension requires the representation of 

intercellular communication provided by gap-junctions [37]. For example, in [36, 12] gap-

junctional coupling is provided directly through the muscle layer as well as indirectly 

through an endothelium layer; see Fig. 8. Let the cell models of the ensemble be indexed by 

i. The membrane potential of the i-th smooth muscle and the associated endothelium 

(denoted by subscripts ‘m’ and ‘e’, respectively) are given by

(17)

(18)

The four terms scaled by g's represent gap-junctional coupling, which allows for spreading 

of local (de)polarizations.

SNGFR is known to remain relatively stable over a wide range of arterial pressure values, 

e.g., Ref. [15]. The model in Ref. [12] was used to determine the extent to which the 

myogenic response alone can provide such stability. The model, which does not represent 

the tubuloglomerular feedback, predicts a hemodynamic “plateau” for arterial pressure 

ranging from 80 to 180 mmHg, within which glomerular blood pressure, blood flow, and 

SNGFR remain close to baseline values; see Fig. 9. For arterial pressures outside of that 

range, arteriolar diameter fails to adjust sufficiently. As a result, some of the pressure 

perturbation is transmitted downstream. Because the model afferent arteriole fails to 

adequately compensate, outflow delivery deviates noticeably from the baseline value. When 

the myogenic response is disabled, the model predicts a steady increase in vascular and 

tubular fluid pressure and flow as arterial pressure is increased.

Recently, Edwards and Layton developed a highly detailed model of the intracellular Ca2+ 

signaling of the afferent arteriole smooth muscle cells to study the mechanisms underlying 
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the myogenic response [38]. In addition to detailed transmembrane ionic transport, the 

model also represents intra-cellular Ca2+ dynamics, including Ca2+ trafficking between the 

cytosol and the sarcoplasmic reticulum, which involves the release of Ca2+ by ryanodine 

receptors (RyR) and the inositol triphosphate receptors (IP3R). Figure 10 summarizes the 

channels and currents represented in the model. A large number of model equations are used 

to represent these processes; interested readers are referred to Ref. [38]. The model 

represents the kinetics of myosin light chain (MLC) phosphorylation and the mechanical 

behavior of the cell. The contractile force (myogenic tone) depends on the fraction of MLC 

that are phosphorylated. An increase in luminal pressure generates an influx of cations in to 

the cytosol via pressure-induced changes in channel opening probability. The subsequent 

increase in cytosolic Ca2+ levels enhances the formation of the MLCK.CaM.Ca4 complex, 

i.e., the active form of myosin light chain kinase. As a result, the contractile force increases, 

leading to vasoconstriction.

The model in Ref. [38] reveals new details that explain the emergence of spontaneous 

vasomotion. Model results suggest that the time-periodic oscillations stem from the dynamic 

exchange of Ca2+ between the cytosol and the sarcoplasmic reticulum, coupled to the 

stimulation of Ca2+-activated potassium and chloride channels, and the modulation of 

voltage-activated L-type channels. Blocking sarco/endoplasmic reticulum Ca2+ pumps, 

RyR, Ca2+-activated potassium and chloride channels, or L-type channels abolishes these 

oscillations. These details were not seen in less comprehensive models, e.g., [30, 31].

5. Tubuloglomerular feedback

Tubuloglomerular feedback (TGF) is a negative feedback system, specific to the kidney, in 

which SNGFR is adjusted according to the chloride concentration of the fluid reaching the 

distal nephron [15]. Distal chloride concentration is sensed by a specialized cluster of cells, 

known as the macula densa, that are located in the tubular wall in the region where it comes 

in contact with the terminal part of the afferent arteriole that feeds the stemming glomerulus. 

Anatomically, the macula densa marks the end of the loop of Henle and the beginning of the 

distal tubule.

An important tubular segment for TGF function is the thick ascending limb of the loop of 

Henle. The epithelial cells of the thick ascending limb vigorously pump NaCl from the 

tubular fluid into the surrounding interstitium by means of active transport. Because the 

thick ascending limb walls are water impermeable, water does not follow. As a result, the 

active reabsorption of NaCl dilutes the tubular fluid.

If SNGFR increases above its normal, baseline rate, then tubular fluid flow in the thick 

ascending limb increases. The resulting shorter transit time of a given fluid packet along the 

thick ascending limb implies that a smaller fraction of filtered NaCl is reabsorbed. As a 

result, the chloride concentration in the tubular fluid alongside the macula densa is increased 

above its target value. This concentration increase, through a sequence of signaling events, 

results in a constriction of the afferent arteriole and a corresponding reduction in glomerular 

blood pressure and thus a reduction in SNGFR. Conversely, if SNGFR decreases below its 

base-line rate, the chloride concentration in tubular fluid alongside the macula densa is 
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decreased below its target value, and TGF acts to increase SNGFR by signaling the afferent 

arteriole to relax. The resulting higher flow rate reduces transit time along the thick 

ascending limb and raises tubular fluid chloride concentration.

Some of the earliest dynamical models of TGF were developed by Holstein-Rathlou and co-

workers [11, 39, 40, 41]. A common feature of these models is the representation of the 

afferent arteriole by a damped linear oscillator upon which TGF acts as external forcing. For 

example, in Ref. [11] afferent arteriole resistance RAA is given by

(19)

where ωn denotes the natural frequency of the oscillator and ξ the damping coefficient. For 

all time, RAA is used to evaluate blood flow and glomerular capillary pressure. SNGFR is 

obtained by imposing conservation of plasma across the glomerulus as in Eq. (3). SNGFR 

then passes to a tubular component which accounts for a simplified representation of water 

transport along the proximal tubule and loop of Henle. TGF is represented by the forcing 

term Φ(FiH) in Eq. (19), which has a sigmoidal dependence on Henle's loop flow, FiH. For 

physiologically relevant parameter values, this model predicts one equilibrium point 

(SNGFR* , RAA* , FiH*), the stability of which depends on its position on the Φ(FiH) curve. 

Specifically, equilibria falling on the flat parts of Φ(FiH) are stable (Fig. 11), and therefore a 

transient perturbation of the TGF system results in a steady state. In contrast, equilibria 

falling on the steep part of Φ(FiH) are unstable, therefore a transient perturbation results in 

sustained oscillations.

The model in [11] contains a simplified representation of nephron tubular flow. Motivated 

by the observation that tubular fluid [Cl−], the key signal for TGF, changes most 

substantially along the thick ascending limb of the loop of Henle, Layton and co-workers 

developed a family of TGF models that represent tubular transport in more detail [42, 43, 

44, 45, 46, 47, 48, 49]. This class of models explicitly represent tubular fluid and solute 

reasborption along the thick ascending limb; more recently these models have been extended 

to include the representation of the descending limb and proximal tubule [50, 51, 52]. 

Conservation of Cl− along the thick ascending limb is given by

(20)

where CT is tubular fluid [Cl−], Cext is interstitial fluid [Cl−], QT is volume flow, rT is 

tubular radius, and rss is the steady-state tubular radius. Chlo-ride transport involves active 

transport, characterized by Michaelis-Menten kinetics with parameters Vmax and KM, and 

passive diffusion, characterized by chloride permeability κ. Because the thick ascending 

limb is water impermeable, fluid flow QT (t) varies in time but not in space. TGF activation 

is provided by [Cl−] at the site of macula densa, CT (LT , t), where LT denotes the length of 

the thick ascending limb. Specifically, TGF is incorporated by assuming a sigmoidal 

relationship between QT (t) and CT (LT , t) of the form
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(21)

The TGF delay τ represents the response time of the afferent arteriole; Cop denotes the 

macula densa [Cl−] at the operating point; K1 and K2 determine the maximum range of flow 

that is affected by TGF and the feedback loop gain γ. The feedback loop gain γ is a measure 

of the response strength: for a given macula densa [Cl−] deviation, low/higher γ values lead 

to weak/strong SNGFR adjustment.

Stability of the model TGF system depends on a number of parameters, including feedback 

gain γ, feedback delay τ, and the thick ascending limb cross-sectional area (which impacts 

tubular transit time) denoted η. Figure 12 shows a bifurcation diagram, obtained via 

numerical solution of the model equations (20)–(21), which indicates the stability of the 

TGF system in the γ –1/ plane. For sufficiently small feedback gain γ and sufficiently long 

transit time (equivalently small 1/η ), the system is in a stable equilibrium. Thus, for any 

initial conditions, or for any transient perturbation of a steady-state solution, the model 

solutions closely approximate the time-independent steady-state. See Fig. 13, panels B1 and 

B2.

In the region marked “1-f LCO,” which corresponds to larger values of γ and 1/η , the only 

stable solution is a regular oscillation that converge to a limit cycle with a frequency f. The 

limit-cycle solution for SNGFR, obtained using parameters at the point labeled “C,” and the 

corresponding power spectrum, are shown in Fig. 13, panels C1 and C2. In the parameter 

region marked “2-f LCO,” the solutions are stable limit-cycle oscillations that have a 

frequency approximately twice that of the 1-f LCO. Simulations also revealed a region 

where LCO with frequency f and ~ 2f are potentially both stable; this region is marked “1,2-f 

LCO.” Simulated oscillations in SNGFR, obtained using parameters corresponding to point 

D, and the resulting power spectrum are shown in Fig. 13, panels D1 and D2.

The model described above, (20) and (21), assumes that the renal tubule is rigid. If the 

tubular walls were compliant, increases in fluid pressure would expand the tubule, thereby 

slowing the flow and increasing transit time. Thus, tubular wall compliance is expected to 

have a significant impact on the response time and dynamic behaviors of TGF. TGF models 

that represent compliant tubular walls have been developed [49, 54]. Model results suggest 

that tubular compliance reduces the stability of the TGF system.

Coupled nephrons

As previously noted, the mammalian kidney contains a large number of nephrons. These 

nephrons do not act autonomously. Electrotonic conduction and hemodynamics along the 

pre-glomerular vasculature provide coupling of the TGF systems of nearby nephrons [15, 

17]. A system of coupled oscillators can yield complex dynamic behaviors, including 

synchronization and a heightened tendency to oscillate. TGF models previously discussed 

have been extended to networks of two or more nephrons, e.g., Refs. [54, 55, 47, 33, 34, 35].

Sgouralis and Layton Page 10

Math Biosci. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A model of coupled TGF nephrons (Fig. 14) can be constructed by extending the model 

described by Eqs. (20)–(21). Consider N coupled nephrons (indexed by i = 1, . . . , N). 

Conservation of Cl− for the i-th nephron, analogous to Eq. (20), is given by

(22)

where we allow for different parameters among the nephrons. Coupling is represented by the 

flow Q̃T i(t), which incorporates inputs from nearby nephrons

(23)

(24)

Equation (23) expresses Q̃T i(t) as the sum of a nephron's own TGF mediated response QT 

i(t), given by Eq. (24) that is similar to the single nephron case (e.g., Eq. (21)), and a 

coupling term incorporating contributions from the nearby nephrons’ TGF responses. Each 

summand in the coupling term is a weighted difference between the nearby nephron's TGF 

response QT j(t) and the time-independent steady-state flow Q0. The coupling coefficient ϕij 

is a non-negative constant in [0, 1] that scales the influence of the j-th nephron on the i-th 

nephron.

TGF mediated oscillations of tubular fluid pressure and flow in spontaneously hypertensive 

rats can exhibit highly irregular oscillations similar to deterministic chaos [56, 57]. Layton et 

al. used a model of coupled nephrons to investigate potential sources of those irregular 

oscillations and the associated complex power spectra. Their results suggest that spectral 

complexity may be explained by the inherent complexity of TGF dynamics, which may 

include bifurcation, modest time-variation in TGF parameters, and coupling between small 

numbers of neighboring nephrons. Figure 15, panels A1–A3, shows oscillations in SNGFR 

for two coupled model nephrons having different parameters and distinct fundamental 

frequencies. Figure 15, panels B1–B3, shows oscillations for three coupled nephrons, also 

having distinct fundamental frequencies. Both configurations yield irregular oscillations in 

SNGFR and complexities in the corresponding power spectra, a result that suggests that the 

irregular oscillations observed in spontaneously hypertensive rats may be explained, in part, 

by internephron coupling.

Marsh et al. constructed a vascular tree consisting of 22 nephrons supplied with blood from 

a common cortical radial artery [58]. The model nephrons interact via hemodynamic and 

electrical coupling, both of which are mediated by vascular connections. For parameters that 

generate simple limit cycle dynamics in the pressure and flow regulation of single nephrons, 

the ensemble of coupled nephrons show stationary, quasiperiodic, or chaotic dynamics, 

depending on the coupling strengths and the arterial blood pressure. For oscillatory 

solutions, the nephrons may synchronize to form clusters, with each cluster characterized by 

a distinct frequency.
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6. Applications to health and disease

Mathematical models of renal hemodynamics have been used to investigate aspects of 

kidney functions, both in physiology and pathophysiology. Below we highlight some 

examples.

The renal autoregulatory mechanisms are believed to simultaneously insulate kidney 

function from variations in blood pressure and to protect the glomerular structure, which is a 

high-pressure capillary bed prone to physical injury. Models of renal afferent arteriole 

myogenic response [27, 31] have revealed the mechanisms by which autoregulation preserve 

the glomerular structure. Strong correlations have been identified between transmission of 

high systolic pressure to the glomerulus and renal injury [59]. Loutzenhiser et al. [27] 

suggested that, owing to the asymmetry in vasoconstriction/vasodilation myogenic response 

times and activations delays, the afferent arteriole may sense systolic pressure at heart-beat 

frequency and respond with a sustained vasoconstriction when systolic pressure is elevated. 

Model simulations have confirmed that hypothesis [27, 31]. This protective function of 

autoregulation differs from its other function, which is to regulate SNGFR that is determined 

primarily by mean arterial pressure, and not peak pressure. Under physiologic conditions, 

where mean and systolic blood pressures vary in tandem, a myogenic response determined 

by systolic pressure would also regulate renal blood flow and glomerular filtration rate.

However, under pathophysiologic conditions, where changes in systolic and mean blood 

pressures are decoupled, an elevation in systolic pressure could result in a myogenic 

vasoconstriction, even if mean perfusion pressure is unchanged or decreased (which is 

possible with a sufficient reduction in diastolic pressure). One implication is that 

pathophysiological processes that may alter the kinetics of the myogenic response, even in 

the absence of a significant impairment of steady-state autoregulatory responses, could 

result in an increased transmission of the systolic pressure transients to the glomerular 

capillaries and enhanced susceptibility to hypertension-induced renal damage. The validity 

of this hypothesis can be assessed using a model of the afferent arteriole that represents the 

kinetics of the myogenic response in sufficient details.

Together, the myogenic response and TGF maintain a generally stable SNGFR and protect 

the glomerular capillaries from excessive intravascular pressure and shear stress. To assess 

the individual contributions of the two mechanisms to SNGFR regulation, Sgouralis and 

Layton developed an integrated model of renal autoregulation [13] that represents both 

autoregulatory mechanisms, which, as previously noted, share a common effector in the 

afferent arteriole. The integrated model combines an afferent arteriole, a glomerulus, and a 

renal tubule; a schematic diagram is shown in Fig. 16. The model afferent arteriole consists 

of a linear ensemble of smooth muscle cells that react to stimulation by the myogenic 

response and TGF. The two mechanisms are modeled by applying to the smooth muscles 

transmembrane currents  and  that depend on local blood pressure and macula densa 

chloride concentration, respectively
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(25)

TGF is believed to be mediated predominantly via adenosine and A1-adenosine receptors, 

which induce the release of Ca2+ primarily from the sarcoplasmic reticulum [60]. The 

representation of the TGF signal as a current across the cell membrane is an approximation 

that increases intracellular [Ca2+] without requiring an explicit representation of the 

sarcoplasmic reticulum. The model predicts that a stable SNGFR is maintained within a 

physiological range of perfusion pressure (80–180 mmHg). The contribution of TGF to 

overall autoregulation is significant only within a narrow band of arterial pressure values 

(80–110 mmHg).

Simulations have been conducted to assess the extent to which structural changes and 

functional impairment observed in diabetic rats cause glomerular hyperfiltration. The model 

in Ref. [13] was adjusted to simulate: (i) functional impairment in afferent arteriole voltage-

gated Ca2+ channels, Eq. (12), which diminishes the vasoconstrictive response, (ii) proximal 

tubule hyper-trophy [61], (iii) TGF resetting [62, 63], i.e., changes in the macula densa 

operating point, Cop in Eq. (21), and (iv) increase in the ultrafiltration coefficient Kf, Eq. (4). 

With these modifications, the model predicts hyperfiltration in diabetes, with a SNGFR that 

is ~60% above baseline value. Each of these changes tends to elevate SNGFR, and from a 

clinical perspective, it is important to understand the relative contribution of each change. 

Model simulations suggest that functional impairment in the afferent arteriolar constrictive 

response is the most important contributing factor.

Most of the autoregulation models discussed above are single-nephron models. As 

previously noted, the nephrons do not function autonomously. Thus, a complete 

understanding of kidney function in health and disease may be better gleaned from 

autoregulation models that represent the heterogeneity among nephrons, as well as their 

interactions. Given that there are 30,000–40,000 nephrons in a rat kidneys, and ~1 million in 

a human kidney, how to accurately model a whole kidney while avoiding a prohibitive 

computational cost is a challenge, albeit a highly worthwhile one.
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Highlights

• Hemodynamic control is essential to the maintenance of proper kidney 

functions.

• We describe mathematical models developed to study renal autoregulation.

• Models have been applied to understand kidney functions in health and disease.
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Figure 1. 
Left: Structure of the pre-glomerular vasculature. Diagram shows an arcuate artery (main 

horizontal vessel), which splits into a cortical radial artery (main vertical vessel), from 

which afferent arterioles (smaller vessels) branch off either alone or in pairs. A glomerulus 

is located at the end of each afferent arteriole. Right: Two representative nephrons and part 

of the collecting duct system. 1: glomerulus; 2–3, proximal tubule; 4–7, loop of Henle; 8–9, 

distal tubule; 10–12, collecting duct. Figures reproduced from Refs. [3] and [4].
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Figure 2. 
Glomerular filtration model. Capillary bed is represented by a network of parallel, identical 

tubes. Blood enters through the afferent arteriole and exits through the efferent arteriole. 

Filtrate is collected by the surrounding capsule and delivered to the proximal tubule. Figure 

adapted from Ref. [5].
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Figure 3. 
Equivalent circuit of renal vasculature. PA, renal arterial pressure; PV, renal vein pressure. 

Pressure drop and fluid loss in the glomerulus are assumed negligible, so glomerular 

capillary pressure PGL equals both afferent arteriole outlet and efferent arteriole inlet 

pressures, and blood flow Q is the same in both vessels.
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Figure 4. 
Renal autoregulation. An increase in arterial blood pressure (black arrows) leads to increase 

of glomerular plasma flow and blood pressure, which elevates SNGFR. Activation of the 

autoregulatory mechanisms (dashed arrows) increases afferent arteriole resistance, which 

decreases glomerular plasma flow, blood pressure, and SNGFR (red arrows)
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Figure 5. 
Myogenic responses to a step pressure perturbation and to fast pressure oscillations. Afferent 

arteriole constricts at elevated arterial pressure. Due to the asymmetries in the activation 

times and rate constants induced by increasing/decreasing pressure, the afferent arteriole 

responds to rapid oscillations with sustained vasoconstriction with a radius that is 

determined by peak rather than mean pressure. Reproduced from [26].
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Figure 6. 
Afferent arteriole spontaneous vasomotion. A, oscillations in Ca2+ and K+ currents (denoted 

ICa and IK, respectively) and membrane potential v. B, oscillations in equilibrium 

distribution of open Ca2+ and K+ channel states (denoted m∞ and n∞, respectively). C and 

D, oscillations in intracellular free Ca2+ concentrations and arteriolar diameter. Reproduced 

from [31].
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Figure 7. 
A erent arteriole myogenic mechanism. Membrane depolarization leads to opening of Ca2+ 

channels and increase of cytosolic [Ca2+]. Increased [Ca2+] leads to crossbridge 

phosphorylation, increased muscle tone, and vasoconstriction. Membrane polarization, 

having the opposite effects, leads to vasodilation. The myogenic response (red arrows) 

senses blood pressure and adjusts membrane potential accordingly through the activity of 

non-selective cation channels.
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Figure 8. 
A erent arteriole segment model. Vascular wall consists of a linear ensemble of smooth 

muscle cells (SMC) augmented with an endothelial layer (Endo). Intercellular 

communication is mediated by three types of gap-junctional interfaces: SMC–SMC, SMC– 

Endo, Endo–Endo. In the diagram, afferent arteriole is shown with a reduced number of 

SMC. Figure modified from Ref. [36].
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Figure 9. 
Autoregulatory plateau. Autoregulatory mechanisms maintain a stable SNGFR for perfusion 

pressure between ~90–180 mmHg (blue solid curve). In the absence of autoregulation, 

SNGFR increases along with perfusion pressure (green dashed curve). Figure modified from 

Ref. [12].
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Figure 10. 
Detailed model of afferent arteriole intracellular dynamics [38]. The model distinguishes the 

sarcoplasmic reticulum Ca2+ store from the cytosolic Ca2+, and tracks the trafficking of 

Ca2+ between the two compartments. MLCP, myosin light chain phosphatase; CaM, 

calmodulin; PMCA, plasma membrane Ca2+ pump; NCX, Na+/Ca2+ exchanger, SERCA, 

sarco/endoplasmic Ca2+ pump; RyR, ryanodine receptor; IP3R, inositol triphosphate 

receptor. Figure adopted from Ref. [38].
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Figure 11. 
TGF-mediated oscillations. Driven by the forcing term Φ(FiH), afferent arteriole resistance 

develops a sigmoidal dependence upon Henle's loop flow FiH. Such sigmoidal dependence 

is transmitted to SNGFR. For a given set of parameter values, one equilibrium point is 

predicted. The stability of the equilibrium depends on its location on the response curve: flat 

parts stable (I and V), steep part unstable (cases II–IV). Reprinted from Ref. [11].
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Figure 12. 
TGF bifurcation analysis. Diagram indicates parameter regions that correspond to 

qualitatively different model solutions: (1) a region having one stable, time-independent 

steady-state solution (“Steady State”); (2) a region having one stable oscillatory solution 

only, with fundamental frequency f (“1-f LCO”); (3) a region having one stable oscillatory 

solution only, with fundamental frequency ~ 2f (“2-f LCO”); (4) a region having two 

possible stable oscillatory solutions, of frequencies ~ f and ~ 2f (“1,2-f LCO”). The λ's 

correspond to eigenvalues of the characteristic equation derived from a linear stability 

analysis of the model equation; that analysis is not discussed. Reprinted from Ref. [53].
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Figure 13. 
Observed behavior of stable solutions corresponding to the bifurcation diagram in Fig. 12. 

Response to perturbation (B1) and power spectrum (B2) for stable solution (a time-

independent steady state) corresponding to point B in Fig. 12. Stable single-frequency 

oscillation (C1) and corresponding power spectrum (C2) for point C in Fig. 12. Stable 

double-frequency oscillation and corresponding power spectrum (D2) for point D in Fig. 12. 

Reprinted from Ref. [53].
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Figure 14. 
Schematic diagram of two coupled nephrons, shown with the corresponding afferent 

arterioles, along which tubuloglomerular signals initiated in one of the nephrons is 

transmitted to the other. Reprinted from Ref. [54].
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Figure 15. 
Oscillations in SNGFR for two (A1) coupled nephrons and corresponding power spectra 

with linear (A2) and logarithmic (A3) ordinates. Oscillations in SNGFR for three (B1) 

coupled nephrons and corresponding power spectra with linear (B2) and logarithmic (B3) 

ordinates. Reprinted from Ref. [53].
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Figure 16. 
Integrated model of renal autoregulation. Model consists of a vascular (afferent arteriole), a 

filtering (glomerulus), and a tubular component (proximal tubule, descending limb, thick 

ascending limb). Afferent arteriole is shown with a reduced number of smooth muscles 

(SM). Red arrows indicate sensor and effector sites of the autoregulatory mechanisms. 

Figure adopted from Ref. [13].
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