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Abstract

It has been hypothesized that one of the functions of the hippocampus is to enable the learning of 

relationships between different stimuli experienced in the environment. These relationships might 

be spatial (“the bathroom is about 5 m down the hall from the bedroom”) or temporal (“the coffee 

is ready about 3 minutes after the button was pressed”). Critically, these spatial and temporal 

relationships may exist on a variety of scales from, say a few hundred milliseconds up to minutes. 

In order to learn consistent relationships between stimuli separated by a variety of spatial and 

temporal scales using synaptic plasticity that has a fixed temporal window extending at most a few 

hundred milliseconds, information about the spatial and temporal relationships of distant stimuli 

must be available to the hippocampus in the present. Hippocampal place cells and time cells seem 

well-suited to represent the spatial and temporal locations of distant stimuli in order to support 

learning of these relationships. We review a recent computational hypothesis that can be used to 

construct both spatial and temporal relationships. We suggest that there is a deep computational 

connection between spatial and temporal coding in the hippocampus and that both serve the 

overarching function of learning relationships between stimuli—constructing a “memory space.”

1. Introduction

The modern era of research on hippocampal function began with Scoville and Milner’s 

(1957) identification of the hippocampus as critical to memory in humans. Subsequent 

pioneering studies that sought the basis of hippocampal memory function in the firing 

properties of hippocampal neurons revealed the existence of “place cells”, neurons that fire 

when a rat occupies a particular location in its environment (O’Keefe & Dostrovsky, 1971). 

This observation, plus studies showing selective deficits in spatial learning following 

hippocampal damage, inspired the notion that the hippocampus supports memory by 

creating a cognitive map of the physical environment into which memories are encoded 

(O’Keefe & Nadel, 1978). Decades of research since then have sought to characterize the 

organization of the cognitive map. Recent research in this direction has focused on how the 

hippocampus and neighboring interconnected structures supports navigation through space 

(McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; Moser, Kropff, & Moser, 2008), 
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indicating this line of research is losing sight of the well established more general role of the 

hippocampal system in memory (Eichenbaum & Cohen, in press). Here we will review some 

of the key features of hippocampal place cells and suggest that they reflect a more general 

mechanism of temporal as well as spatial organization of events, and that this broader 

function is the basis of hippocampal function in memory.

1.1. Coding across space and time in the hippocampus

The hippocampal place code provides an exquisitely detailed representation of the animal’s 

location in allocentric coordinate system at multiple spatial scales (Wilson & McNaughton, 

1993; Solstad, Boccara, Kropff, Moser, & Moser, 2008). Eichenbaum (2001) hypothesized 

that the spatial map in the hippocampus is a special case of a more general function in 

representing relationships among all of the task-relevant stimuli, including both spatial and 

non-spatial variables (see also Eichenbaum, Dudchenko, Wood, Shapiro, & Tanila, 1999). If 

the hippocampus captures relationships among stimuli separated by macroscopic quantities 

of space and time, and if plasticity depends on simultaneous activation within a fixed 

temporal window, there must be some way to bridge these gaps. Put another way, if the 

hippocampus is to facilitate learning of a relationship such as, “these nuts are stored 20 cm 

from the big oak tree” or “the shock will come 5 s after the tone” then it must have some 

facility to represent these relationships. At the location where the nuts are being stored, the 

hippocampus must have some ability to describe the distant location of the oak tree; at the 

time the shock arrives the hippocampus must have some way to represent that a tone was 

experienced a certain time in the past. Once the relationship of the distant stimulus is 

represented, it is relatively straightforward to associate that representation to the other 

stimulus—the nut in the spatial example or the shock in the temporal example. In this way, 

the spatial and temporal representations can be used to cue the response. For instance, when 

the animal is 15 cm from the oak tree, the similarity between the current spatial 

representation and the stored representation can cause activation of the representation for the 

nuts. Similarly, if one is looking for nuts, nuts may be used as a cue to recover the spatial 

representation coding for “20 cm from the oak tree.”

1.1.1. Spatial coding reflects spatial relationships to distant stimuli—These 

considerations suggest that the neural activity in the hippocampus at a particular time is not 

solely, nor even predominantly, caused by the stimuli available in the environment at that 

moment. For instance consider the experiment performed by Gothard and colleagues 

(Gothard, Skaggs, & McNaughton, 1996). They trained a rat to run back and forth on a 

linear track. Each of the journeys along the track started from a goal box. Across journeys 

the location of the box was moved relative to the track and the room coordinates. On 

journeys away from the box, place cells fired at a constant distance from the start box, 

moving across journeys relative to the room frame. Consider a place cell that fires 50 cm 

from the start box. Because the location of its firing is controlled by the box, this means that 

a stimulus that was experienced perhaps several seconds in the past—the box—controls 

firing of the cell in the present. Moreover, because the phenomenon also holds in the dark 

(Gothard, Hoffman, Battaglia, & McNaughton, 2001), we can be certain that the firing in 

this experiment is not dependent on the animal being able to see the goal box from its 

current location. Burgess and O’Keefe (1996) observed similar control of firing in a two-
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dimensional environment; as the shape of the enclosure changed, place fields in the center of 

the environment changed location to maintain their relationship to one or more of the walls 

of the environment (see also Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000; Barry et 

al., 2006; Lever, Burton, Jeewajee, O’Keefe, & Burgess, 2009).

These place cells are apparently not coding for a place per se but a spatial relationship 

relative to a landmark, or set of landmarks. That is, a place cell in the Gothard et al. (1996) 

experiment is not coding for a location, but rather something more like “50 cm from the goal 

box”—a spatial relationship. Note that without establishing stimulus control, simply 

observing that a place cell fires in a particular location within an environment provides no 

information about the stimulus and relationship (or relationships) that it is being used to 

represent (Figure 1).

1.2. Temporal coding may reflect temporal relationships of temporally remote stimuli over 
long time scales

The principle that currently-available stimuli do not control hippocampal firing should also 

inform non-spatial firing as well. A large body of evidence suggests that the hippocampus 

constructs temporal and sequential relationships in addition to spatial relationships (e.g., 

Bunsey & Eichenbaum, 1996; Clark & Squire, 1998; Westmacott & Moscovitch, 2001). It is 

clear that neural activity supporting memory changes gradually over long periods of time. 

Although there are examples of some cells in the MTL that respond to non-spatial stimuli 

currently being perceived, such as the celebrated “Jennifer Aniston” cells (Quiroga, Reddy, 

Kreiman, Koch, & Fried, 2005), these cells coexist with other cells that show very slowly-

changing activity. Figure 2 illustrates this phenomenon in recordings from human epileptic 

patients during performance of an item recognition experiment using pictures of faces and 

scenes (Howard, Viskontas, Shankar, & Fried, 2012; Viskontas, Knowlton, Steinmetz, & 

Fried, 2006). Note that the cells fire at an elevated level over periods of time much longer 

than the time any individual stimulus is presented. These cells are from human MTL; 

autocorrelated signals have been obtained from animal studies in a variety of brain regions 

(Manns, Howard, & Eichenbaum, 2007; Mankin et al., 2012; Hyman, Ma, Balaguer-

Ballester, Durstewitz, & Seamans, 2012; Kim, Ghim, Lee, & Jung, 2013). While 

autocorrelation itself may result from any number of causes, including recording artifacts 

and stochastic noise, additional evidence suggests that gradually-changing firing could 

reflect, at least in part, memory for temporally remote events.

1.2.1. Time cells code for when an event took place—If the hippocampal ensemble 

changes gradually over long periods of time, this creates the possibility that the stimulus that 

caused the cell to begin firing was experienced far in the past, in much the same way that the 

place code can reflect stimuli experienced remotely in time. Time cells provide an excellent 

illustration of this phenomenon. Pastalkova, Itskov, Amarasingham, and Buzsaki (2008) 

trained rodents to navigate around a maze, stopping on each lap to run for a period of time in 

a running wheel. As expected, some hippocampal neurons fired in a circumscribed set of 

locations along the maze. They also observed that while running on the wheel, some 

hippocampal neurons fired during circumscribed periods of time. Similar results have been 

observed when the animal is not running at all (MacDonald, Lepage, Eden, & Eichenbaum, 
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2011; MacDonald, Carrow, Place, & Eichenbaum, 2013) and when the animal is running on 

a treadmill with controlled velocity (Kraus, Robinson, White, Eichenbaum, & Hasselmo, 

2013).

These “time cells” carry information about the timing of past events. Figure 3a shows the 

firing of a set of time cells during the delay interval of an object memory task. The set of 

cells that fire early in the interval are different than the set of cells that fire during the middle 

of the interval which are, in turn, different than the set of cells that fire near the end of the 

interval. The ensemble of neurons carries information about the time since the beginning of 

the delay interval. The delay interval in this experiment began with a discrete event—the 

closing of a door to the enclosure where the animal waited during the delay. In these 

recordings, the accuracy of the timing information decreases as the delay interval proceeds 

(Howard et al., 2014). This can be seen by the spread in the “time fields” later in the delay 

interval. Kraus et al. (2013) observed a similar spreading. In addition, they were able to 

show that the distribution of peaks was not uniform across the delay interval. In addition, 

time cells can show history-dependence in which they fire differentially based on preceding 

events (Gill, Mizumori, & Smith, 2011; Pastalkova et al., 2008).

1.2.2. Hippocampal coding for the identity of temporally distant stimuli—Time 

cells may also be able to code for the time since specific non-spatial stimuli were 

experienced. A few of the time cells in the MacDonald et al. (2011) experiment coded for 

the identity of the object presented during the delay. MacDonald et al. (2013) observed 

different sequences of cells firing during the delay after an odor was presented in a 

recognition task, although the overall firing rates were quite low. Although it is not yet 

completely clear to what extent time cells carry information about preceding stimuli, there is 

abundant evidence that firing in the MTL carries information about non-spatial stimuli that 

occurred many seconds in the past. Figure 3b shows a non-spatial “splitter cell” observed by 

(Ginther, Walsh, & Ramus, 2011). In this experiment, the rat was presented one of two 

series’ of odors with an overlapping subsequence. Let us denote sequence 1 as M N A B C 

O P and sequence 2 as W X A B C Y Z, with odors A B C being common to the two 

sequences. During the time when the overlapping odors are presented, the locally available 

information is identical; only the past history of odor presentation distinguishes the two 

sequences from one another. Some hippocampal neurons fired differentially during the 

overlapping sequence (e.g., Fig. 3b), reflecting a sensitivity to previous stimuli. Hsieh, 

Gruber, Jenkins, and Ranganath (2014) observed analogous findings from humans using 

fMRI. In addition, Yakovlev, Fusi, Berman, and Zohary (1998) observed gradually-decaying 

stimulus-specific firing that persisted across the intertrial interval of a DNMS task in 

monkey perirhinal cortex. In humans, (Howard et al., 2012) showed that the gradually-

changing representation in the MTL (Figure 2) was indeed caused by the stimulus presented 

to the patient. This rules out the possibility that the autcorrelation is purely a recording 

artifact or stochastic noise; the gradually-changing representation is at least in part a signal 

that carries information about stimuli that were experienced in the past.

While the significance of slowly-changing firing, as shown in Figure 2 is not yet clear, these 

findings raise the intriguing possibility that the representation carries information about the 

time of past events. Representations in the MTL change gradually over at least many 
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minutes (Manns et al., 2007; Hyman et al., 2012; Mankin et al., 2012; Howard et al., 2012). 

Thus far, time cells have not been observed firing over more than a few seconds. However, 

human and animal memory shows similar properties at a variety of time scales (Balsam & 

Gallistel, 2009; Glenberg et al., 1980; Howard, Youker, & Venkatadass, 2008; Lejeune & 

Wearden, 2006; Wearden & Lejeune, 2008; Lewis & Miall, 2009), suggesting that the slow 

changes in the neural representation could reflect a gradually-changing representation of 

history that supports behavior over a range of time scales (Howard & Eichenbaum, 2013; 

Howard, Shankar, Aue, & Criss, in press).

2. A computational approach to spatiotemporal context in the hippocampus

In order for the hippocampus to learn consistent spatial and temporal relationships, it must 

have the ability to represent temporal and spatial position of distant stimuli. Howard et al. 

(2014) described a computational mechanism to do just this. We start by describing, in a 

qualitative manner, how the model is able to represent temporal information, then generalize 

this ability to spatial relationships. After this description, we present a simulation illustrating 

the computational model’s ability to describe the continuity between temporal and spatial 

variables by describing experimental results from Kraus et al. (2013).

2.1. A method for computing scale-invariant spatial and temporal relationships

The goal of the computational model introduced by Shankar and Howard (2012, 2013) is to, 

at each moment, estimate the history of stimuli leading up to the present. The history is 

encoded as a conjunctive representation of what stimulus happened at each time in the past. 

This timeline is encoded by a set of neurons each of which are activated when a particular 

stimulus was experienced a certain time in the past. Presenting a stimulus causes a sequence 

of neurons to be activated as the stimulus recedes further into the history (Fig. 3a). The 

“time fields” of the neurons are spread out over a range of times, with time fields 

representing times further in the past showing more spread, consistent with experimental 

findings (Howard et al., 2014; Kraus et al., 2013; MacDonald et al., 2013). As a 

consequence of this spread, the model represents distant events with less temporal accuracy. 

It turns out that, in the model, the decrease in accuracy is precisely scale-invariant (Shankar 

& Howard, 2012), a property that is very useful in explaining behavioral properties of 

learning and memory (Balsam & Gallistel, 2009; Chater & Brown, 2008; Gallistel & 

Gibbon, 2000; Howard et al., in press).

Constructing a representation of temporal history with these properties is computationally 

non-trivial (Shankar, 2014). The output of the model is generated from an intermediate state. 

The intermediate state in the temporal case is a set of leaky integrators. Each cell in the 

intermediate state accepts the input present in the environment at that moment and then 

decays gradually as time passes; each of the cells accepting input from the same stimulus 

decay at different rates. The model can be generalized from coding time to space by 

changing the rate of decay to depend on the animal’s velocity in a particular direction 

(Howard et al., 2014). In this case, the intermediate state is a path integrator. A variable α 

controls the behavior of each of the cells. If α is a constant over time, then that cell is a 

leaky integrator and the output constructed from that intermediate state will be a temporal 

history. Cells in this representation code for the time since a stimulus was encoded. If α is 
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set at each moment to be the velocity of the animal, then that cell is a path integrator and the 

output constructed from that intermediate state will be a spatial representation. Cells in the 

spatial representation code for the net distance traveled, along some direction, since a 

stimulus—here a landmark—was encountered in the environment. This framework can be 

extended further to also generate representations of sequential position as well as temporal 

and spatial relationships (Howard et al., 2014).

Because an animal moves around an environment in smooth trajectories, space and time are 

highly correlated with one another under normal circumstances. Consider a linear track. If 

an animal starts from one end and travels to the other with constant velocity, position along 

the track and time since the departure are perfectly confounded with one another. Observing 

a cell that fires during a circumscribed region of the track cannot determine whether that cell 

is a “place cell” or a “time cell.” In order to systematically dissociate position from time per 

se, it is necessary to establish experimental control of velocity.

2.2. Demonstration: The continuity between spatial and temporal coding

Kraus et al. (2013) established control over velocity by having animals run on a treadmill. 

They varied velocity across trials and examined firing as a function of both time and of 

distance traveled on the treadmill. They characterized the sensitivity of each cell to distance 

traveled compared to time since the treadmill started. Some cells responded predominantly 

to position; others predominantly to time. Critically, they found a continuity of sensitivity to 

these variables recording from the same population of cells; many cells showed some 

sensitivity to both time elapsed and distance traveled.

This continuity between spatial coding and temporal coding can be readily explained in the 

computational framework we have described. Figure 4 shows simulated results of the 

constant distance condition of the Kraus et al. (2013) experiment. We started the interval 

with an input, corresponding to the start of the treadmill. Then, the simulated animal ran on 

the treadmill at one of three speeds until a certain distance was traversed on the treadmill. 

The treadmill advanced at different speeds. The cells in the intermediate state were allowed 

to evolve with their value of α set according to α = a + b s, where s is just the speed on that 

trial. The activity of a representative cell in the output representation is shown at each 

moment of trials run at the three speeds as a function of time (left) or distance traveled along 

the treadmill (right).

Figure 4a shows the results for a cell whose intermediate representation was dominated by 

temporal information, with a set close to 1 and b set close to zero. The firing of this cell is 

controlled by the time since the treadmill running started and does not depend directly on the 

distance traveled. It is fair to call the cell in Figure 4a a time cell. In contrast, the cell in 

Figure 4c is dominated by spatial information, with a set close to zero and b set close to 1. 

This cell fires at different times depending on the speed of the trial (left) but its firing is well 

controlled by the distance traveled on that trial (right). Interestingly, the model a b also 

admits hybrid cells that are partially modulated by temporal information and partially 

modulated by spatial information. The cell in Figure 4b shows a cell with a = b = 0.5. This 

cell is neither a pure time cell nor a pure distance cell, but is intermediate between the two. 

By choosing different values of a and b we can generate a cell with any degree of relative 
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sensitivity to temporal and spatial information. The continuity between temporal and spatial 

information observed by Kraus et al. (2013) amounts to being able to set a and b to a wide 

variety of values.

2.3 Exploiting spatial and temporal representations to behaviorally express relationships 
among stimuli

The computational framework described here is able to construct representations of distant 

stimuli. Here we discuss how one can use this spatiotemporal representation to build 

relationships between different stimuli that can be expressed behaviorally. This approach 

uses two forms of association which we refer to context-to-item binding and item-to-context 

binding. Each of these associations are assumed to depend on synaptic plasticity although 

the mechanisms for the two forms of association may be quite different.

Association is a longstanding theme in computational models of memory performance (e.g., 

Murdock, 1982; Raaijmakers & Shiffrin, 1980; Humphreys, Bain, & Pike, 1989). The idea is 

that a relationship between two stimuli, say A and B, is stored as a pattern of synaptic 

weights joining the representations of the two stimuli. The synapses joining the active units 

of A and the active units of B are strengthened during learning. When A is repeated as a 

probe, the active units in the representation of A cause the pattern in B to be reinstated via 

the synapses that were strengthened during learning. In the brain, associations could be 

instantiated by much more complex relationships than simple Hebbian association and the 

pathways supporting association may be much more detailed than a single set of weights 

that direction connect two sets of neurons. Nonetheless, this associationist framework 

provides a simple model to understand how a representation of spatiotemporal context could 

be used to express behavioral relationships between different stimuli.

Context-to-item bindings provide one way that behavioral associations can be supported by 

synaptic plasticity. Suppose that associations can be formed between a representation of 

spatiotemporal context and the currently-available stimulus—an item. To be more concrete, 

let the task be to learn that A predicts B not immediately, but at a delay of 10 s, as might be 

required in trace conditioning. Note that a simple association between the representations of 

A and B is insufficient to describe this temporal relationship. However, note that a temporal 

representation that codes for information about the time of occurrence of A could be used to 

support trace conditioning. During study, a series of stimulus-specific time cells is activated 

by presentation of A. When B is presented 10 s later, only the currently-active cells can be 

associated to the representation of B. When A is repeated, the same sequence of cells is 

activated. The cells firing 1 or 2 s after A have not been associated with the representation of 

B. As time passes, approaching 10 s, the overlap between the state of the temporal 

representation and the set of cells associated to B grows, resulting in increased activation of 

B at the appropriate time (see also Shankar & Howard, 2012; Howard & Eichenbaum, 

2013).

In addition to the behavioral effects of a representation of spatiotemporal context on the 

activation of item representations, we can also consider the possibility that item 

representations can reinstate previous states of spatiotemporal context. The ability of items 

to recover previously encoded states of context is a common feature of several quantitative 
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models of memory performance (Dennis & Humphreys, 2001; Howard & Kahana, 2002). 

This provides a concrete definition of the “jump back in time” used to describe the 

phenomenological experience of episodic memory (e.g., Tulving, 1983). Although not yet 

definitive, a growing body of evidence from human single unit recordings, ECoG data and 

fMRI suggest that memory retrieval is accompanied by the reinstatement of a gradually-

changing neural representation (DuBrow & Davachi, 2014; Howard et al., 2012; Manning, 

Polyn, Litt, Baltuch, & Kahana, 2011; Zeithamova, Dominick, & Preston, 2012), a 

qualitative prediction of these models. The mechanism by which contextual reinstatement is 

accomplished is not typically specified by mathematical models that describe behavior and 

may be quite complex (Howard, Fotedar, Datey, & Hasselmo, 2005).

If it exists, this hypothesized contextual retrieval mechanism provides a mechanism for 

learning behavioral associations between stimuli that are not presented close together in 

time. Consider a learning task in which subjects learn pairs of stimuli that include 

overlapping items, for instance the pairs A–B and B–C (e.g., Bunsey & Eichenbaum, 1996; 

Howard, Jing, Rao, Provyn, & Datey, 2009; Primoff, 1938; Slamecka, 1976; Zeithamova et 

al., 2012). In a representative experiment, many pairs are learned in a random order so that 

there is no consistent temporal relationship between, say, A and C. Nonetheless they share a 

higher-order relationship by virture of having both been experienced in proximity to B. 

Contextual retrieval makes this possible. Suppose that A–B is learned and then, much later 

B–C is studied. If during study of B–C, the stimulus B can reinstate its previous context, 

which includes information about the time of presentation of A, then the context in which C 

is studied includes information about A. If A is later repeated as a cue, this will tend to 

activate C resulting in an association between A and C. Because the representation of 

spatiotemporal context discussed here can capture spatial and temporal relationships, the 

mechanism of contextual reinstatement can account for the results of temporal mapping 

experiments in which subjects not only learn that A and C go together, but incorporate 

specific temporal relationships (Arcediano, Escobar, & Miller, 2003; Cole, Barnet, & Miller, 

1995; Savastano & Miller, 1998). For instance, if the subject initially learns that A predicts a 

shock at a delay of 5 s and that A predicts B at a delay of four seconds, the subject will 

behave as if B predicts the shock at a delay of 1 s.

To summarize, reinstatement of a spatiotemporal context representation coupled with simple 

associations between the contextual representation and item representations could endow the 

hippocampal memory system with the ability to flexibly express a rich set of relationships 

between stimuli. Even though the elementary operations are simple, if contextual 

reinstatement is under strategic control, then a broad variety of task-appropriate 

relationships could be retrieved.

3. Discussion

This paper has reviewed an integrated computational hypothesis for spatial and temporal 

coding in the hippocampus. This approach is a quantitative implementation of longstanding 

ideas about hippocampal coding. Depending on the inputs to the model and the form of 

modulation, the method can construct both temporal and spatial representations. These 

representations can be used to store spatial and temporal relationships among stimuli 
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manifest in behavior. A model of flexible behavioral expression of relationships, requires 

that this representation representation is augmented with mechanisms for storing context-to-

item associations and for reinstating prior states of spatiotemporal context. In this way, 

relationships between stimuli separated in space and time could be extracted to flexibly 

inform behavior.

3.1 Spatial and temporal input streams to the hippocampus

Information about experiences arrives in the hippocampus via two main cortical pathways 

(Van Essen, Felleman, DeYoe, Olavarria, & Knierim, 1990; Eichenbaum, Yonelinas, & 

Ranganath, 2007). The origins of these pathways are the well described “what” and “where” 

streams of sensory processing that represent, respectively, the identity and spatial location of 

perceptual objects (Mishkin & Ungerleider, 1982). These streams are best described in the 

visual system but also incorporate information from all of the other sensory modalities 

(Felleman & Van Essen, 1991; Burwell & Amaral, 1998; Suzuki & Amaral, 1994). These 

anatomical observations strongly suggest that a major function of the hippocampus is to 

integrate information about the nature of events and the spatial context in which they occur 

(Davachi, 2006; Eichenbaum et al., 2007). Several studies have now identified major end 

points of the what stream in the perirhinal cortex and lateral entorhinal cortex, and of the 

where stream in the parahippocampal cortex and medial entorhinal cortex, as specialized for 

processing event and spatial information (Eichenbaum et al., 2007). In addition, many 

studies have now shown that hippocampal networks integrate event and spatial contextual 

information (e.g., Komorowski, Manns, & Eichenbaum, 2009; McKenzie et al., 2014, 

reviewed in Davachi, 2006; Eichenbaum et al., 2007). Since there is now a wealth of 

evidence that the hippocampus also plays a key role in the temporal organization of events 

in memory (Eichenbaum, 2013), a fundamental question is how temporal coding is 

generated from information provided by the what and where streams (Eichenbaum, in 

press).

3.2 Extracting temporal and spatial regularities to construct semantic “maps”

Given that the hippocampus has access to a code that spatial and temporal relationships 

between stimuli that were experienced at distant times and places, semantic relationships can 

be learned by extracting regularities between stimuli experienced with consistent spatial and 

temporal relationships. Cognitive science has generated specific computational models of 

semantic memory (e.g., Griffiths, Steyvers, & Tenenbaum, 2007; Howard, Shankar, & 

Jagadisan, 2011; Landauer & Dumais, 1997) that describe mechanisms by which the 

temporal contexts of isolated experience could be integrated to form efficient networks of 

semantic memories. Neuroimaging work (Schapiro, Kustner, & Turk-Browne, 2012, see 

also Miyashita, 1988) makes it clear that MTL representations of stimuli come to reflect 

their temporal contexts, even when there are no explicit task demands to learn the 

relationships (see also Bunsey & Eichenbaum, 1996).

Human subjects can learn semantic relationships between stimuli by simply observing the 

contexts in which they appear. Consider being exposed to the novel word FLOOB in the 

sentence “The baker reached into the oven and pulled out the FLOOB.” Knowledge about 

other words that fit into the context lets us know that FLOOB is more similar to “bread” or 
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“cake” than to “democracy” or “spaceship.” The idea of learning from contexts has been 

formalized in computational models of semantic learning. These models observe large 

amounts of naturally occuring text and then use statistical techniques of varying 

sophistication to construct representations of the words that capture their contextual 

relationships (e.g. Griffiths et al., 2007; Landauer & Dumais, 1997; Shankar, Jagadisan, & 

Howard, 2009).

Neural evidence shows that long-term memory representations of stimuli in the MTL also 

reflects the temporal context in which the stimuli were experienced. For instance, Miyashita 

(1988) found neurons in inferotemporal (IT) cortex that responded to sample stimuli in a 

working memory task in which the animal was required to remember a sample stimulus 

during a delay interval. The sample stimuli were presented in the same order on each of 

several recording sessions. Remarkably, a cell that responded to one sample stimulus was 

more likely to respond to other sample stimuli presented close in the list despite the fact that 

the stimuli were separated by dozens of seconds during learning. This tendency to code 

stimuli experienced close together in time was subsequently observed in perirhinal cortex 

(Naya, Yoshida, & Miyashita, 2001; Erickson & Desimone, 1999; Messinger, Squire, Zola, 

& Albright, 2001) and appears to depend on connections from MTL regions back to IT 

cortex (Higuchi & Miyashita, 1996; Miyashita, Kameyama, Hasegawa, & Fukushima, 1998; 

Naya et al., 2001).

Schapiro et al. (2012) showed that the neural representations of visual stimuli in the MTL, as 

measured by representational similarity analysis, came to reflect their temporal context. At 

the beginning of a session, subjects were presented with a set of fractal images. Then the 

subjects viewed the images during a training session while performing a cover task that 

required them to detecting a slight alteration in some of the images. During training, some 

pairs of non-target images were repeatedly presented in sequence. Critically, pairs were 

assigned randomly from the pool. After training, the images were presented in a random 

order. After training, the pattern of BOLD response across hippocampal voxels was more 

similar for members of the same pair than for images that were not paired. This effect held 

throughout the subregions of the hippocampus.

Schapiro, Rogers, Cordova, Turk-Browne, and Botvinick (2013) showed that the ability to 

learn stimulus representations from temporal context extends to more complex networks of 

relationships. They found that stimuli were presented sequentially during presentation and 

shared common neighbors became more similar to one another than stimuli that were simply 

paired during presentation but whose temporal neighbors did not overlap to the same extent. 

The fact that hippocampal representations reflect these relatively subtle aspects of the 

statistical structure of experience suggests that the hippocampus learns relational networks 

from temporally structured experience. Time cells could play an essential role in 

representing the temporal structure of experience so that it can be extracted into lasting 

stimulus representations that reflect temporal structure.
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Conclusions

We suggest that a general function of the hippocampus is to construct “memory spaces” that 

capture reliable spatial and temporal relationships between stimuli. In order to construct 

these networks within a fixed window of synaptic plasticity, the hippocampus must be able 

to, at each moment, have access to information about the location and temporal distance 

from stimuli that were experienced in the past. Place cells and time cells are ideally suited to 

provide this capacity. We briefly reviewed computational model that codes for spatial and 

temporal representations and showed that it describes a continuity between temporal and 

spatial representation, consistent with that observed experimentally (Kraus et al., 2013). This 

representation could be used to construct a learning model that encodes temporal and spatial 

relationships into a persistent semantic memory. This hypothesis is at least roughly 

consistent with neurophysiological studies of long-term memory representations and recent 

fMRI studies of learning of temporal contexts.
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Figure 1. 
Firing of hippocampal cells must be controlled by events distant in space and time. Left: A 

place cell fires in a location within an environment with four landmarks, A B C D. It is 

unclear whether the cell fires because it is SE of A, NE of B, SW of C, NW of D, or any 

conjunction of those variables. In order to determine this, it would be necessary to 

systematically move the landmarks and establish control over the cell’s firing. Right: A cell 

fires during a temporal sequence of events A B C D E. It is not clear whether the cell fires 

because D has just been presented, because it is one time step after C, or because it is two 

time steps after B. If the sequence is consistent and well-learned it is also possible that it is 

firing because E is predicted. In order to determine which of these relationships is 

responsible for the cell firing, it would be necessary to present the stimuli many times in 

many different orders to establish stimulus control of the firing.
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Figure 2. 
Examples of neural firing correlated over long periods of time. Each panel gives the spikes 

fired over a recording session. Each row gives a different trial of a continuous recognition 

task, aligned to the presentation of the stimulus (vertical line). At the bottom a PSTH is 

shown. On the right of each panel, the cell’s firing rate for each trial is shown. Note the 

robust autocorrelation—the firing of each cell changes gradually over many many trials. The 

entire experiment takes about 300 s. a. This cell shows autocorrelated firing over a few 

trials. Each trial is approximately 4 s, so this constitutes a change over about a dozen 

seconds. b. This cell shows autocorrelation over about 10 trials, corresponding to several 

dozen seconds. c. This cell shows autocorrelation over a few dozen trials, corresponding to a 

few minutes. After Howard, et al. (2012).
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Figure 3. 
A relational memory code in the hippocampus could rely on temporal memory 

representations. a. Neurons in the rodent hippocampus during the delay of an object memory 

task. The cells are sorted according to their peak of firing. Across cells, the time into the 

delay interval can be reconstructed. After MacDonald, et al., (2011). b. Non-spatial “splitter 

cells” retain information about past events. Rats were presented with sequences of odors 

with overlapping subsequences such as M N A B C O P and W X A B C Y Z. Some cells 

responded differentially to the odors in the subsequence depending on which sequence they 

were presented in. This cell fires more to B and C when they were preceded by the other 

odors of sequence 1 than when they were preceded by the other odors of sequence 2. After 

Ginther et al., (2011).
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Figure 4. 
A continuity between spatial and temporal coding. We simulated results from the Kraus et 

al., (2013) experiment using the computational framework introduced in Howard et al., 

(2014). In the simulated experiment, the rat ran on a treadmill at a constant speed (0.75, 1, or 

1.5) each trial. The trials continued for different durations until 30 units of distance had been 

traversed. In each panel we plot the activity of the cell as a function of time (left) and as a 

function of distance traveled (right). a. A “time cell” that codes for time since the treadmill 

started. We set a close to 1 and b close to zero (with a slight offset so the different lines 

would be visible). Note that the response of the cell is almost completely controlled by time 

(left) whereas the activity as a function of position varies greatly depending on the speed 

(right). b. A cell showing coding intermediate between a temporal and spatial coding. Here a 

= 0.5 and b = 0.5. c. A “distance cell” that codes for elapsed distance since the treadmill 

started. We set a close to 0 and b close to 1 (with a slight offset so the different lines would 

be visible). Note that the response of the cell is almost completely controlled by position 

(right) whereas the activity as a function of time varies greatly depending on the speed (left).
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