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Abstract

Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a 

gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, 

even opposing, functions. With the recognition that alternative splicing occurs in nearly all human 

genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In 

this review, we summarize recent findings that have implicated the critical role of alternative 

splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated 

alternative splicing in cancer cells.

Introduction

Alternative splicing is a tightly regulated RNA processing event that contributes to protein 

diversity in mammals. It has been estimated that up to 95% of human multi-exon genes are 

alternatively spliced1, 2, adding yet another layer of complexity to our understanding of the 

human genome. Splicing involves the recognition of exons and introns followed by exons 

being joined together and introns being removed. Figure 1 illustrates different types of 

alternative splicing. These include exon skipping (or cassette exon), mutually exclusive exon 

splicing, alternative 3’ or 5’ splice site usage, and intron retention. Among these different 

modes of alternative splicing, exon skipping is most common, accounting for 40% of the 

entire alternative splicing events3–5. This mode of alternative splicing produces different 

messenger RNAs that translate into protein isoforms with distinct coding sequences.

Splicing occurs through the concerted actions of multi-subunit complexes. Splice sites are 

recognized by the spliceosome, a catalytic splicing machine comprised of five small nuclear 

ribonucleoprotiens (snRNPs) and over 100 individual proteins6–9. The recognition of exons 

is determined by consensus sequences at the 5’ and 3’ exon boundary and a polypyrimidine 

track located 20 – 40 nucleotides upstream of the 3’ splice site (Figure 2). Alternatively 

spliced exons often contain weak splice sites that diverge from the consensus sequence and 

are poorly recognized by the spliceosome. The recognition of these weak exons and hence 

alternative splicing is facilitated by trans-acting splicing regulators bound on cis-acting pre-

mRNA sequences. The cis-acting elements can be located in the variable exons and adjacent 

introns and, depending on their functions, these regulatory elements are categorized as 

Exonic Splicing Enhancers (ESEs), Exonic Splicing Silencers (ESSs), or Intronic Splicing 
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Enhancers and Silencers (ISEs and ISSs). The most well-characterized classes of splicing 

regulators are the families of SR proteins (serine/arginine-rich proteins) and hnRNPs 

(heterogeneous nuclear ribonuceoproteins). These two classes of splicing regulators are 

ubiquitously expressed, although their relative abundance can vary among different 

tissues10. SR proteins are characterized by the presence of at least one Serine/Arginine-rich 

domain, termed an RS domain at the carboxy terminal. The SR proteins are generally 

thought to promote alternative splicing by binding to ESE-sequences located in the variable 

exons and interacting with components of spliceosome, thereby promoting variable exon 

inclusion10–13. hnRNPs, on the other hand, generally bind to ESS- or ISS-elements, 

resulting in inhibition of variable exon inclusion by interfering the contact between the 

spliceosome and weak splice sites10, 14, 15. However, accumulating evidence has also 

suggested that both SR proteins and hnRNPs can function reciprocally to repress and 

activate variable exons, respectively16–21. The precise function of these splicing factors can 

be influenced by the location and sequence context of cis-elements that recruit them22–27. In 

many cases, these splicing factors exert a combinatorial effect of positive and negative 

regulations for the control of alternative splicing28–33.

In addition to the ubiquitously expressed splicing factors, several tissue-specific RNA-

binding proteins have been characterized. Examples include the neuronal-specific protein 

NOVA, nPTB, the brain- and muscle-specific FOX1 and FOX2, and the epithelial-specific 

ESRP1 and ESRP234–40. Aided by advanced RNA-sequencing technology, splicing targets 

of many of these tissue-specific factors have been identified, providing explanations of 

tissue-specific alternative splicing events 41–46. These findings suggest that the extent of 

alternative splicing is tightly controlled in a spatial- and temporal-dependent manner.

Given that the majority of our genes are alternatively spliced, it is inevitable that among 

them there will be a large number that have well-established roles in cancer. Indeed, tumor 

suppressor genes, such as p53 and BRCA1, and oncogenes, such as Ras and EGFR, have all 

been shown to undergo regulated alternative splicing47–51. Recently, a number of studies 

suggested that dysregulation of alternative splicing plays a pathogenic role in cancer52–55. 

Furthermore, alternatively spliced genes may be useful biomarkers for diagnosis and 

prognosis and their protein products may represent specific therapeutic targets in 

malignancy56–59. Below, we will describe functional impacts of alternatively spliced 

isoforms in cancer. We will then summarize our understanding on mechanisms by which 

alternative splicing is regulated in cancer cells.

Functional impacts of splice isoforms in cancer

Cancer is a complex disease that is associated with a variety of genetic and epigenetic 

aberrations. As summarized by Hanahan and Weinberg60, in order for cancer to develop, 

cells acquire eight common traits. These include sustaining proliferative signaling, 

resistance to cell death, evasion of growth suppressors, acquisition of the ability to invade 

normal tissues and metastasize, enabling replicative immortality, induction of angiogenesis, 

reprogramming of energy metabolism, and avoidance of immune destruction. Many of these 

traits can be directly linked to aberrant gene regulation resulting from dysregulation of 

alternative splicing during cancer progression (Figure 3).
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Sustaining proliferative signaling

A critical feature of tumorigenesis is uncontrolled cell proliferation, including the ability to 

grow in the absence of external growth stimuli61–63. Homeostasis of growth control in 

cancer is often disrupted by constitutive activation of the Ras/MAPK signaling pathway. 

Approximately 25% of human tumors contain Ras mutations that cause constitutive 

activation of the MAPK pathway64. Alternatively, aberrant Ras activity may occur by 

disruption of negative feedback loops that limit Ras or MAP kinase activity or by the 

establishment of aberrant positive feedback loops that augment Ras signaling. We 

previously demonstrated that alternative splicing of the CD44 gene serves as a critical 

mechanism for a feed-forward loop regulation that sustains Ras/MAPK activation65 (Figure 

4). The CD44 gene undergoes extensive alternative splicing and generates CD44 variants 

(CD44v) that contain one or more of a set of variable exons. When the variable exons are 

excluded, the CD44 standard isoform (CD44s) is produced. Interestingly, CD44v promotes 

cell growth by forming co-receptor complexes with receptor tyrosine kinases (RTKs) and 

activating Ras/MAPK signaling66. By contrast, CD44s mediates cell contact inhibition67. 

Upon mitogenic activation, Ras/MAPK pathway promotes alternative splicing of CD44, 

generating a variable exon 6 containing CD44v6 isoform65, 68–70. The newly synthesized 

CD44v6 isoform augments the action of RTKs, including Met and EGFR, and further 

promotes Ras/MAPK signaling. These actions constitute a positive feedback circuit that 

amplifies Ras/MAPK signaling, stimulating cell proliferation by controlling G1-S 

transition65. When utilized by tumor cells, this CD44 alternative splicing-mediated positive 

feedback loop could cause uncontrolled tumor cell proliferation and oncogenic 

transformation. The mechanisms by which Ras/MAPK stimulates CD44 alternative splicing 

have been studied. Ras/MAPK signaling facilitates the activity of splicing factors Sam68 

and SRm160, most likely via phosphorylation of these splicing factors, to stimulate CD44 

variable exon inclusion.70, 71 Moreover, using a mouse model of Kras-induced lung 

adenocarcinoma, we found that CD44v expression is preferentially upregulated in lung 

adenocarcinomas. Ablation of the CD44 gene attenuates lung tumor formation and prolongs 

the survival of these mice.72 These observations suggest that an aberrant set point of 

alternative splicing could alter intracellular signaling, engage cell proliferation, and 

influence tumor progression.

The critical role of alternative splicing in promoting sustained proliferation signals in cancer 

is further demonstrated by Cyclin D1. Cyclin D1 controls cell cycle progression by 

regulating cyclin-dependent kinase activities. Alternative splicing of Cyclin D1 generates 

Cyclin D1a and D1b73. Cyclin D1b is produced by intron 4 retention, which contains a 

premature stop codon, resulting in production of a C-terminal truncated version of Cyclin 

D1. Cyclin D1b is upregulated in several types of cancer. Its constitutive localization in 

nucleus is likely to contribute to Cyclin D1b’s function in allowing anchorage-independent 

growth in tumor cells74–76. Notably, Cyclin D1b production is stimulated by splicing factors 

Sam68 and SRSF177, 78, and its expression correlates with the levels of these splicing 

factors in clinical prostate cancer specimens77, 78, emphasizing the importance of Cyclin D1 

alternative splicing in cancer development.
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Evading growth suppressors

In addition to abnormally activating proliferative signals, cancer cells must also overcome or 

even eliminate tumor suppressor programs that negatively regulate cell proliferation such as 

the p53 pathway that plays an indispensible role in maintaining genome stability. The 

production of p53 mRNA is controlled by alternative promoter usage and alternative 

splicing. There are three types of alternative splicing events occurring at the C-terminal 

region of p53, resulting in p53α, β, and γ isoforms. p53β in particular is upregulated during 

replicative cellular senescence, and when overexpressed, p53β induces senescence79, 80. 

While the mechanism by which p53β promotes senescence is not fully understood, the 

production of p53β is inhibited by SRSF3 (SRp20), a member of highly conserved family of 

splicing factors79. SRSF3 binds to p53 exon i9 and prevents inclusion of the p53β-unique 

exon, resulting in inhibition of cellular senescence. Notably, SRSF3 is highly elevated in 

various cancers81, 82, suggesting a mechanism by which cancer cells eliminate p53β-

mediated senescence through alternative splicing regulation. Furthermore, two p53-related 

proteins, p63 and p73, are also extensively regulated by alternative splicing83. While p63 

and p73 mutations are rare, aberrant expression of their splice isoforms was frequently 

observed in human cancers84, however, the functional consequences of this are not yet well 

studied.

Resisting cell death

Apoptosis is a programmed cell death that serves as a natural barrier to cancer cells. 

However, as tumors progress, cancer cells become insensitive to apoptotic signals, 

eventually leading to advanced malignancy and chemo-resistance85, 86. The apoptotic 

pathway consists of both upstream regulators and downstream effectors. The death receptor 

FAS is an upstream regulator that receives extracellular death signals induced by the Fas 

ligand and processes the signals to the intrinsic apoptotic pathway that carries out the final 

execution. One of the initial executioners of apoptosis is Caspase-9. Activation of Caspase-9 

initiates a cascade of proteolysis leading to consumption and clearance of the cell. 

Importantly, both Fas and Caspase-9 are regulated by alternative splicing. Splice isoforms of 

these proteins can have opposing functions to either stimulate or inhibit apoptosis87, 88.

In the case of the death receptor Fas, inclusion of variable exon 6 results in the production of 

the membrane-bound Fas that promotes apoptosis, whereas skipping of variable exon 6 

produces a soluble form of Fas that inhibits apoptosis89, 90(Figure 5). The splicing factors 

TIA-1 (T-cell intracellular antigen 1) and TIAR (TIA-1-related) promote the inclusion of 

exon 6 by facilitating the U1 snRNP-mediated 5’ splice site recognition and the binding of 

U2AF to the upstream 3’ splice site, resulting in generation of the pro-apoptotic FAS 

isoform91. In contrast to these activities, several splicing factors were found to promote the 

skipping of exon 6. PTB (polypyrimiding tract-binding protein) binds to an ESS of exon 6 

and promotes exon 6 skipping by inhibiting the binding of U2AF and U2 snRNP to the 

upstream 3’ splice site91. More recently, HuR, hnRNPC1/C2, and RBM5 were shown to 

inhibit exon 6 inclusion by antagonizing the function of TIAR and preventing the 

spliceosome assembly, resulting in the production of the anti-apoptotic Fas isoform92–94. 

These findings suggest that splicing factor-regulated of alternative splicing of the Fas gene 

may directly control the degree of cell apoptosis.
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Caspase-9 serves as yet another example by which alternative splicing controls cell 

apoptosis. Alternative splicing of Caspase-9 produces Caspase-9a and Caspase-9b that differ 

by inclusion or exclusion of a 4-exon cassette (exons 3,4,5, and 6), respectively95, 96. 

Inclusion of the 4-exon cassette results in production of the pro-apoptotic Caspase-9a, 

whereas exclusion of this cassette generates the anti-apoptotic Caspase-9b. It has been 

reported that the ratio of Caspase-9a to Caspase-9b is greatly decreased in non-small cell 

lung cancer (NSCLC)97, 98. Ectopic expression of Caspase-9b caused an increase in 

anchorage-independent growth and tumorigenic capacity of NSCLC cells, while depletion of 

Caspase-9b resulted in decreased tumorigenicity. Examination of the mechanisms regulating 

Caspase-9 alternative splicing led to the identification of the heterogeneous nuclear 

ribonucleoprotein L (hnRNP L). hnRNP L binds to an purine-rich ESS in exon 3 of 

Caspase-9 and facilitates skipping of the 4-exon cassette. This favors the production of 

Caspase-9b in NSCLC cells, thereby contributing to tumorigenesis98. By contrast, SRSF1 

(SF2/ASF) promotes Caspase-9 exon inclusion, thus generating the Caspase-9a isoform and 

increasing chemosensitivity of NSCLC cells97, 99.

Many other apoptotic-associated genes are also subjected to alternative splicing regulation. 

For example, the Bcl-x gene is alternatively spliced to produce the pro-survival Bcl-x(L) and 

the pro-apoptotic Bcl-x(s)86, 100, 101. Caspase-8 alternative splicing generates the pro-

apoptotic factor Caspase-8a and its antagonizer Caspase-8L102. In both cases, the pro-

survival isoforms, Bcl-x(L) and Caspase-8L are upregulated in cancer103–106. Collectively, 

these data emphasize the prevalence of alternative splicing dysregulation in apoptotic genes 

in cancer and suggest that the manipulation of alternative splicing favoring an apoptotic 

direction of these genes could be used as a unique therapeutic strategy to induce cancer-

specific cell death.

Enabling replicative immortality

Unlike normal cells, cancer cells are capable of unlimited replication and division that allow 

them to bypass senescence and cell death, and eventually grow into macroscopic tumors. 

One of the key features that enable tumor cells to overcome senescence and cell death is 

telomere maintenance, which is the result of expression of telomerase107. The protein 

component of telomerase, human telomerase reverse transcriptase (hTERT), catalyzes the 

synthesis of telomere and is found highly expressed in normal stem cells as well as 

cancerous cells108–110. There are seven alternative splice sites within the hTERT transcript, 

which theoretically can generate multiple alternative transcripts111, 112. Several splice 

variants of hTERT were demonstrated to regulate telomerase activity and their expression is 

associated with certain types of cancers113–116. For instance, the hTERTα splice isoform 

contains an in-frame deletion of 36 nucleotides that lies within the reverse transcriptase 

domain. This isoform acts as a dominant negative inhibitor of endogenous telomerase 

activity and causes telomere shortening and chromosome end-to-end fusions, resulting in 

cell death or senescence116. The hTERTβ splice isoform, which skips exons 7 and 8, creats a 

premature stop codon that is subjected to nonsense-mediated decay (NMD), an RNA 

surveillance pathway by which premature termination codons trigger mRNA degradation117. 

Very recently, cis-elements located in introns 6 and 8 were reported to modulate the 

production of hTERTβ by alternative splicing118. Interestingly, utilizing an antisense-
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oligonucleotide complementary to the intron 8 cis-element increases the production of this 

non-functional hTERTβ, suggesting a strategy for cancer therapeutics by manipulating 

hTERT alternative splicing118.

Inducing angiogenesis

Angiogenesis is the physiological process involving the growth of new blood vessels from 

pre-existing ones. The tumor-associated neovasculature, generated by the process of 

angiogenesis, gives tumors the access to blood circulation and facilitates tumors to grow 

beyond just a few millimeters in size119. In contrast to physiological processes, such as 

wound healing and female reproductive cycling, in which angiogenesis is only turned on 

transiently, tumors remain activated angiogenesis, enabling sustained growth of new vessels 

and neoplastic tissues. The best studied and probably most important growth factor that 

promotes angiogenesis is the vascular endothelial growth factor-A (VEGF or VEGF-A). 

Accumulating evidence has shown that VEGF is regulated by alternative splicing120, 121. 

The VEGF gene is comprised of eight exons. Exon 8 contains a proximal 3’ splice site and a 

distal 3’ splice site122(Figure 6). When the proximal splice site is used, cells generate VEGF 

mRNAs that encode pro-angiogenesis VEGF proteins. By contrast, the usage of the distal 3’ 

splice site of exon 8 results in the production of the VEGFb isoforms that exhibit anti-

angiogenic activities123. For example, VEGF165 and VEGF165b are two isoforms that 

differ in the C-terminal region as a result of exon 8 alternative splicing. Although both 

isoforms bind to VEGFR, binding of VEGF165b to VEGFR induces differential 

phosphorylation and intracellular trafficking as compared to VEGF165, resulting in 

angiogenesis blockage123–125. Additionally, exons 6 and 7 can be alternatively spliced, 

increasing the numbers of VEGF isoforms, and thus, the functional diversity of VEGF120. 

Mechanistic studies on the alternative splicing of VEGF demonstrated that splicing 

regulators SRSF1 and SRSF5 (SRp40) promote the usage of VEGF exon 8 proximal 3’ 

splice site, thus favoring the production of VEGF126. Insulin-like growth factor (IGF-1) 

promotes the activity of SRSF1 by activating PKC signaling, which stimulates SRPK1, SR 

Protein-Specific Kinase 1, that phosphorylates SRSF1
127

. By contrast, SRSF6 (SRp55) and 

SRSF2 (SC35) facilitate the selection of the distal 3’ splice site, resulting in VEGFb 

production126. These results suggest that signaling-mediated VEGF alternative splicing 

controls the balance of pro-angiogenic VEGF and anti-angiogenic VEGFb. This view was 

further supported by a recent finding showing that mutations in WT1, the Wilm’s tumor 

suppressor gene, suppress the production of VEGF165b, causing abnormal activity of 

angiogenesis and Wilms’ tumors128. WT1 represses the transcription of SRPK1 by directly 

binding to its promoter. SRPK1 phosphorylates SRSF1 that enhances the ability of SRSF1 

to promote the production of VEGF. Thus, in WT1 mutant cells SRPK1 is highly expressed, 

resulting in hyperphosphorylation of SRSF1, which in turn favors the production of VEGF 

and renders the WT1 mutant cells proangiogenic128.

Currently, the available anti-VEGF cancer therapeutics, such as the anti-VEGF antibody 

Bevacizumab, does not distinguish between different spliced isoforms of VEGF129. This 

poses a dilemma in clinics as VEGF165b competes with VEGF165 for binding to 

Bevacizumab, resulting in drug resistance and side effects129. Therefore, understanding the 
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mechanisms to manipulate the production of VEGFb may lead to a novel therapeutic 

strategy for reduction of tumor angiogenesis.

Activating invasion and metastasis

As tumors progress to higher pathological grades of malignancy, cancer cells typically begin 

to develop alterations in cell shapes and the ability to attach to other cells and to 

extracellular matrix (ECM). These series of discrete changes prepare cancer cells for local 

invasion and distal metastasis130. Recent studies have shown that a developmental process 

epithelial-mesenchymal transition (EMT) is hijacked by cancer cells to disseminate to 

distant organs131–134. When EMT occurs, the tightly packed epithelial cells become loosely 

connected and transit to spindle-shaped mesenchymal cells that show high degree of 

migratory ability. It was recently shown that alternative splicing represents a novel 

mechanism that causally controls EMT135. Work from our group has demonstrated that 

alternative splicing of the CD44 gene is dynamically regulated during EMT135(Figure 7). In 

epithelial cells, the variable exon-containing CD44v is predominant. When cells undergo 

EMT, there is a gradual loss of CD44v and gain of the short CD44s isoform, resulting in a 

nearly complete switch in expression to CD44s in mesenchymal cells. Importantly, this 

CD44 isoform switching is required for cells to undergo EMT and for the formation of 

breast tumors that display EMT characteristics in mice. Analysis of breast cancer patient 

specimens showed that CD44s is up-regulated in high-grade breast tumor tissues and 

positively correlates with the mesenchymal status of these tumors135. This study 

demonstrated that cells utilize alternative splicing as a means to regulate EMT by producing 

a specific CD44 isoform that acts as a key mediator of EMT. Studies on the role of CD44s 

revealed that CD44s potentiates Akt signaling and promotes cell survival153, an activity that 

differs from the proliferative advantage mediated by CD44v shown in Figure 4. These data 

reflect the plasticity of alternative splicing that could allow tumor cells to generate distinct 

splice isoforms in response to the need for cell proliferation or survival at different stages of 

tumor progression.

The insight into the regulation of alternative splicing during EMT has been advanced by the 

identification of the Epithelial Splicing Regulatory Protein 1 and 2 (ESRP1/ESRP2)40. 

ESRP1/2, reflected by their names, are highly expressed in epithelial cells. We and others 

have shown that downregulation of ESRP1 is necessary in order for cells to transit to a 

mesenchymal phenotype45, 135. When ESRP1 is ectopically expressed, cells lose their ability 

to undergo EMT in response to EMT stimuli, such as Twist, Snail, or TGFβ. Strikingly, 

ESRP1 prevents EMT by inhibiting the production of the CD44s splice isoform135, 136, 

again reinforcing the importance of splice isoform specificity in modulating EMT. 

Moreover, aided by large-scale RNA sequencing analysis, a subset of alternative splicing 

events has been identified to associate with the EMT phenotype44, 45, 137, and a functional 

role of these specific splice isoforms in EMT and tumor metastasis awaits further 

investigation.

Deregulating cellular energies

Warburg first observed an unusual characteristic of cancer cell energy metabolism in 1930: 

most cancer cells predominantly produce energy by a high rate of glycolysis even in the 
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presence of oxygen, leading to a state that has been termed ‘aerobic glycolysis’138. It was 

later shown that less efficient energy-producing metabolism of aerobic glycolysis in tumor 

cells favors various biosynthetic pathways, which in turn facilitates biosynthesis of 

macromolecules for rapid proliferation139, 140. This metabolic switch exhibited in tumor 

cells is partially governed by alternative splicing of pyruvate kinase (PK), an enzyme that 

catalyzes the conversion from phosphoenolpyruvate (PEP) to pyruvate141. PKM1 and 

PKM2 are two isozymes of PK in mammals, which are generated by alternative splicing of 

the PKM gene (Figure 8). PKM1 and PKM2 differ in a 56-amino acid stretch by including 

mutually exclusive exons, exon 9 for PKM1 and exon 10 for PKM2142–144. The PKM1 

isoform promotes oxidative phosphorylation and is expressed in most adult tissues, 

especially in brain and muscle that require a large amount of energy production through the 

TCA cycle. The PKM2 isoform, on the other hand, is expressed in embryonic cells and 

tumor cells and promotes aerobic glycolysis and lactate production allowing for high rate of 

biosynthesis145–147. PKM2 converts PEP to pyruvate less efficiently than PKM1148. As a 

result, tumor cells that have high levels of PKM2 accumulate glycolytic metabolites from 

anabolic metabolism148. PKM2 level is elevated in glioblastomas142. When PKM2 was 

replaced by PKM1 in lung tumor cells, there was a significant reduction in lactate 

production and increase in oxygen consumption, which was correlated with impaired tumor 

formation in mouse xenografts141.

It was later shown that a group of hnRNP proteins, hnRNPA1, hnRNPA2, and PTB, control 

PKM alternative splicing144. These hnRNP proteins directly bind to sequences flanking 

PKM exon 9 and repress exon 9 inclusion, resulting in exon 10 inclusion and PKM2 

production142, 144. Knockdown of these hnRNP proteins resulted in an increase in PKM1, 

concomitant with a decrease in lactate production. Interestingly, the oncogenic transcription 

factor cMyc upregulates the expression of these hnRNPs, ensuring high production of 

PKM2 in tumor cells142, 144. These findings provide convincing evidence illustrating the 

importance of alternative splicing in regulating tumor metabolism.

Avoiding immune destruction

Immune system could be a double-edged sword in tumor initiation and progression60. On 

one hand, immune escape is a critical gateway for malignancy. The immune surveillance 

theory proposes that cells and tissues are constantly monitored by immune system to 

eliminate cancer cells149. On the other hand, a compelling body of evidence suggests that 

tumor-associated inflammation caused by infiltration of immune cells, especially those from 

innate immune system, enhances tumorigenesis. These infiltrating immune cells secret 

growth factors and cytokines to foster incipient neoplasia150–152. In both cases, our host 

bodies often initiate activation of T and B lymphocytes in response to the growth of cancer 

cells.

It is interesting to note that one of the mechanisms for T cell activation is by regulating 

alternative splicing of the CD45 gene. CD45 is a transmembrane tyrosine phosphatase that 

mediates T Cell receptor signaling153, 154. Dimerization of CD45 leads to inhibition of its 

phosphatase activity, possibly due to steric hindrance of the catalytic site155. CD45 is 

expressed in all nucleated hematopoietic cells and can be alternatively spliced by inclusion 
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of variable exons 4, 5, and 6, also called variable exons A, B, and C156, 157. Naïve T cells 

express high levels of CD45 isoforms that include at least one of the variable exons 4–6, 

such as CD45RA, whereas activated T cells express predominately the smaller CD45RO 

isoform, which excludes all of the variable exons. The CD45RO isoform shows a high 

tendency of dimerization and dampens signaling for T cell activation in response to 

extracellular stimuli. Thus, an increase in CD45RO production will eventually lead to a 

termination of T cell response following T cell activation158. Evidence from Lynch and 

colleagues showed that hnRNP L represses exon 4 inclusion by binding to an ESS element 

in this exon and subsequent recruitment of hnRNPA1159, 160. hnRNPA1 traps U1 snRNP at 

the 5’ splicing site and prevents U6 snRNA from binding to the 5’ splicing site, thus 

blocking proper spliceosome assembly and subsequent splicing events159. CD45 alternative 

splicing is also regulated by signaling cues. The PTB-associated splicing factor (PSF) binds 

to exon 4 and represses its inclusion32. In resting T cells, PSF is phosphorylated by GSK3. 

This allows for a complex formation between PSF and TRAP150, sequestering PSF from 

binding to exon 4 and thus leading to exon 4 inclusion161. Upon T cell activation, GSK3 

activity is reduced, thus PSF is no longer phosphorylated, releasing PSF from TRAP150 and 

allowing PSF to repress exon 4 inclusion161. The net result of this is to stimulate the 

production of the CD45RO isoform. Apart from regulating protein phosphorylation, 

signaling-stimulated T cell activation also elicits an upregulation of hnRNP LL expression, a 

homolog of hnRNP L, that plays a critical role in mediating signal-induced increase of 

CD45 exon skipping in both cell-culture and mice 162–164. Furthermore, a mechanism of 

epigenetic regulation of CD45 splicing is emerging. A recent study showed that DNA 

methylation directly inhibits the binding of the CTCF DNA-binding protein to the CD45 

variable exon 5, which in turn impairs CTCF-mediated local RNA polymerase II pausing, 

resulting in inhibition of CD45 variable exon inclusion165. Hence, these data demonstrate 

that alternative splicing of CD45 is tightly regulated at multiple levels in order to precisely 

control T cell activation.

Chronic inflammation and infiltration of T lymphocytes are common in the tumor 

microenvironment. One of the main questions to investigate is whether these T cells inhibit 

or promote cancer progression. It was recently reported that, in a mouse model of pancreatic 

cancer, inflammation promotes EMT and tumor cell dissemination to distant organs. 

Intriguingly, suppression of antigen-specific T cell response is required for cancer-

associated inflammation and tumor formation in mice166, 167. It will be particularly 

interesting to investigate the role of CD45 alternative splicing in regulating T cell response 

during cancer progression.

Collectively, studies described in this section demonstrate that aberrant alternative splicing 

is observed in each of the hallmarks of cancer and their splice isoforms play critical roles in 

promoting tumorigenesis. Encouraged by these observations, increasing considerations have 

been shown for the use of a cancer-specific splice isoform as a prognostic marker for 

detection and diagnosis of certain types of cancer 59, 168–170 . An example of such is the p53 

inhibitor HDMX. The ratio between HDMX short and full-length isoforms was 

demonstrated as a more effective biomarker than the status of p53 for poor prognosis of 

sarcomas in patients168. Efforts have also been made for targeting splice isoforms or 
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redirecting splicing events including the aforementioned VEGF alternative splicing to 

VEGFb, as a therapeutic strategy56, 57, 121, 129, 171–173. Research in these areas will 

undoubtedly advance our knowledge in the diagnosis and treatment of cancer.

Of note, the above-described alternative splicing events are just exemplars from an 

incomplete list of genes for which alternatively spliced products promote cancer-associated 

pathways. With advances in large-scale RNA sequencing and isoform-specific gain-and-loss 

of functional approaches, it is tempting to speculate that an increasing number of 

alternatively spliced events of tumor suppressor genes and oncogenes will be identified to 

serve as an essential mechanism for the regulation of cancer hallmarks.

Regulatory mechanisms of aberrant alternative splicing in cancer cells

As described above, dysregulated alternative splicing in cancer cells produces cancer-

promoting splice isoforms. We also showed examples on how splicing factors impact on the 

choice of splice sites resulting in production of different protein isoforms that elicit distinct 

biological consequences. In this section, we focus on discussing various layers of regulation 

that lead to aberrant alternative splicing in cancer cells. For the mechanisms that affect 

splice site recognition and spliceosome assembly in alternative splicing, the reader is 

referred to references cited in the Introduction section of this review.

Regulation of alternative splicing through mutations in cis-elements

Mutations in cis-acting splicing elements can disrupt or create splicing regulatory elements, 

such as splicing enhancers and silencers, causing aberrant alternative splicing. Additionally, 

genomic mutations can generate a cryptic splice site along with disruption of a canonical 

one. These mutations, which lead to production of aberrant splice isoforms, could have a 

profound impact on tumor development and progression.

The Kruppel-like factor 6 (KLF6) gene encodes a Zn-finger transcription factor and 

functions as a tumor suppressor. Interestingly, a germline single nucleotide (G/A) 

polymorphism in intron 1 of the KLF6 gene is associated with high risk of prostate 

cancer174. This point mutation generates a binding site for the SR protein SRSF5 (SRp40), 

resulting in preferential usage of cryptic splicing sites in KLF6 exon 2174. Consequently, the 

produced splice variants, KLF-SVs, antagonize wild-type KLF6, promoting prostate cancer 

progression174, 175. Moreover, ectopic expression of the KLF6-SV1 splice isoform promotes 

an EMT phenotype and breast cancer metastasis, and its expression correlates with poor 

survival of breast cancer patients176.

The germline mutation of BRCA1 can also cause aberrant alternative splicing in cancer. The 

tumor suppressor gene BRCA1 is involved in DNA damage repair by forming a BRCA1-

associated genome surveillance complex (BASC) through protein interactions177. 

Individuals with BRCA1 mutations show high risk of ovarian and breast cancers. An 

inherited G-to-T nonsense point mutation in BRCA1 exon 18 may disrupt an SRSF1-

binding site necessary for the inclusion of exon 18178–180. At the same time, this mutation 

creates a binding site for splicing inhibitors hnRNPA1/A2 and DAZAP1, resulting in exon 

skipping181. Exon 18 exclusion eliminates the first BRCT (BRCA1 C-terminus) domain, 
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through which BRCA1 interacts with various DNA damage proteins182, 183, thus generating 

a non-functional BRCA1 mutant protein. These observations illustrate that cis-element 

mutations can cause aberrant alternative splicing that affects the function of coding genes.

Regulation of alternative splicing through trans-acting factors

In addition to cis-acting element mutations, trans-acting regulators, i.e. splicing factors, can 

also be aberrantly regulated at multiple levels, including genomic mutation, transcriptional 

regulation, post-transcriptional regulation, and post-translational regulation.

Mutations in splicing factors—Exome sequencing has demonstrated great power in 

uncovering somatic mutations that are associated with diseases. Recent identifications of 

mutations in the SF3B1 and U2AF35 genes in hematopoietic malignancies and other solid 

tumors suggested a novel means of RNA splicing deregulation that could be a driver for the 

development of various types of tumors184–189. Especially in myelodysplastic syndromes 

and myelodysplasia, as many as 45–85% of patients have mutations in the RNA splicing 

machinery184. These mutations occur in a mutually exclusive manner, and the mutated genes 

are involved in the 3’-splice site recognition during splicing. Importantly, introducing the 

U2AF35 mutant found in patients into cancer cells resulted in enrichment in unspliced 

introns and increased expression of members of the NMD pathway184. It was suggested that 

these spliceosomal pathway mutations compete with normal splicing machinery, leading to 

pathogenesis. It will be interesting to investigate the functional connections between these 

mutations and disease phenotypes.

Transcriptional regulation—Splicing factors can also be transcriptionally regulated. As 

noted earlier, ESRP1 promotes an epithelial cellular state40, 45, 135. In response to EMT 

stimuli, ESRP1 level is markedly decreased, allowing cells to transit to a mesenchymal state. 

Interestingly, the transcription repressors and EMT inducers, Snail and Zeb1/2, can directly 

bind at the promoters of ESRP1 or ESRP1’s paralogous ESRP2 to suppress their 

expression136, 190. Given that ESRP1 inhibits EMT via preventing CD44 variable exon 

skipping136, these results illustrate a mechanism by which a transcription factor promotes 

EMT through transcriptional repression of a splicing factor that controls alternative splicing 

of key genes whose splice isoform is critical for EMT.

Post-transcriptional regulation—Splicing regulators are subject to many types of post-

transcriptional regulations. One of such regulation is NMD. The splicing regulators SRSF2 

and PTB autoregulate their expression by NMD191, 192. It was later found that highly 

conserved stop codon-containing exons frequently exist in genes that encode splicing 

regulators193, 194. Interestingly, genes encoding splicing activators such as SR proteins 

undergo splicing activation-triggered NMD. By contrast, splicing inhibitors including 

hnRNPs are regulated by NMD through a splicing repression event. Such observations 

suggest that cells utilize NMD regulation to control the homeostasis of splicing 

regulators194, 195.

Studies of the SRSF1 splicing factor revealed that SRSF1 is tightly controlled by 

autoregulation195. SRSF1 produces several splice isoforms, including the full length 
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functional SRSF1 and other isoforms that are either retained in the nucleus or degraded by 

NMD. More interestingly, SRSF1 autoregulation also occurs at the translational level. 

SRSF1 inhibits its translation by reducing the polysome association of its own mRNA, 

possibly mediated by micro-RNAs195. Given the oncogenic role that SRSF1 plays196–199, it 

is conceivable to speculate that cancer cells must have disrupted SRSF1 autoregulation to 

account for its overexpression observed in many types of cancers198.

Post-translational regulation—Post-translational regulation of splicing factors, such as 

protein phosphorylation, acts as a critical mechanism for controlling splicing factor activity, 

and thus alternative splicing. Splicing factor phosphorylation has been shown to control their 

binding affinity to RNA cis-elements, the interaction with other protein components, and 

their sublocalization200–202. Splicing factor phosphorylation is often stimulated by 

extracellular cues via signaling cascades, bridging extracellular environmental signaling to 

alternative splicing regulation203. An excellent example was illustrated by work from Fu and 

colleagues204. They recently demonstrated that SR-protein specific kinases, SRPKs, mediate 

SR protein phosphorylation in response to EGF stimulation204. By systemically dissecting 

EGF-induced global changes in alternative splicing, they found that the Akt signaling 

pathway plays a major role in activating SRPKs through inducing SRPK auto-

phosphorylation, resulting in switched binding of SRPK from HSP70- to HSP90-containing 

complexes. Hsp90/SRPK interaction allows SRPK translocation to the nucleus, thus 

enhancing SR protein phosphorylation and SR protein-regulated alternative splicing204. In 

addition to the EGF-Akt-SRPK-SR axis, previous work also suggested other signaling 

cascades that impinge on alternative splicing. As described earlier, EGF- and HGF-

stimulated Ras/MAPK signaling promotes CD44 alternative splicing through 

phosphorylation of splicing regulators65, 69–71. Furthermore, Akt promotes Fibronectin EDA 

inclusion by phosphorylating SRSF1205, 206. These findings revealed that signaling-

controlled alternative splicing is mediated by phosphorylation of splicing factors.

In addition to phosphorylation, splicing factors are subjected to other types of protein 

modification, such as protein methylation and SUMOylation. SRSF1 methylation was 

shown to be essential for its localization in nucleus207. Mutations that block SRSF1 

methylation lead to its accumulation in the cytoplasm, preventing its function as a splicing 

regulator. Furthermore, recent large-scale proteomic studies identified several hnRNPs to be 

modified by SUMOylation208, 209, emphasizing the potential importance of post-

translational modification of splicing factors in controlling RNA-processing events.

Other emerging regulatory mechanisms of alternative splicing

Splicing factors can also be regulated by microRNAs. MicroRNAs are a large class of 

noncoding RNAs present in diverse organisms. MicroRNAs target the 3’UTR of mRNAs 

that leads to inhibition of translation and ultimate degradation of the mRNA210–213. Several 

splicing factors have been reported to be targets of microRNAs. For example, miR-133 

downregulates nPTB level during muscle differentiation214, and miR-1 induces tumor cell 

apoptosis by direct inhibition of SRSF9 (SRp30c)215.
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Accumulating evidence has also suggested that transcription and splicing are intimately 

coupled216–221. Alternative exon usage is modulated by different transcriptional rates of 

RNA polymerase II and the status of chromatin structure and modification (for recent 

comprehensive reviews, see references 222–225). For example, fast-moving RNA 

polymerase II favors the deposit of spliceosome to the strong 3’ splice site located 

downstream of a weak splice site, resulting in exon skipping218, 220, 221. On the contrary, 

slow-paced RNA polymerase II allows for the recruitment of spliceosome and splicing 

regulators to enhance the upstream weak exon splice site recognition, facilitating exon 

inclusion221, 226. Thus, malfunction of transcriptional regulation, resulting from epigenetic 

alterations in cancer cells, may lead to aberrant alternative splicing, resulting in production 

of cancer-promoting splice isoforms.

Conclusions

This review article summarizes provocative evidence demonstrating that dysregulation of 

alternative splicing influences all aspects of cancer hallmarks. The production of splice 

isoforms that exert distinct and sometimes opposing functions also suggests that the function 

of a gene is not a fixed property of a cell, but is dynamically regulated by alternative 

splicing in a spatial and temporal manner. The complexity provided by alternative splicing 

will allow cells to rapidly convert to or adapt a specific cellular phenotype in response to 

environmental cues.

Notably, current knowledge on the regulation and function of alternative splicing in cancer 

is only a tip of the iceberg. Especially, our understanding on the functional consequences 

and mechanisms of alternatively spliced isoforms in cancer progression is very limited from 

studies of a handful of genes. Thus, the field of alternative splicing in cancer is wide open 

for rigorous investigation. In addition to using a specific gene model to investigate 

alternative splicing regulation and consequences in cancer, a systematic approach aided by 

high-throughput sequencing is becoming a powerful tool for understanding alternative 

splicing in cancer at a global setting. Considering the high frequency of alternative splicing 

in humans, it is anticipated that a large number of cancer-associated alternative splicing 

events and new regulatory mechanisms will be identified.

In summary, alternative splicing is a prevalent and tightly regulated process that occurs in 

nearly all human genes. Given the pivotal role of alternative splicing in modulating all 

aspects of cancer processes, alternative RNA splicing adds a new mode of fundamental 

mechanism in gene regulation that controls cancer phenotypes.
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Figure 1. Schematics of different modes of alternative splicing
Exons are denoted as boxes and introns are depicted as thin lines in black.
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Figure 2. A schematic representation of alternative splicing regulation
Three core splicing sequences are recognized by components of the spliceosomes: U1 binds 

to a 5’ splice site (5’ss) that contains a GU dinucleotide. U2AF binds to a 3’ splice site (3’ss) 

that contains an AG dinucleotide. U2 snRNP binds to a branch site, where adenosine is 

indicated. ESE and ESS denote exonic splicing enhancer and silencer, respectively. ISE and 

ISS represent intronic splicing enhancer and silencer. Splicing activators and repressors bind 

to these cis-acting elements for alternative splicing regulation.
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Figure 3. Alternative splicing occurs in every category of cancer hallmarks
Examples of genes whose alternative splicing controls a cancer phenotype are shown next to 

their corresponding hallmarks.
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Figure 4. A positive feedback loop couples CD44 alternative splicing and Ras/MAPK activation
A schematic of the CD44 pre-mRNA is shown with constitutive and variable exons depicted 

as gray and magenta boxes, respectively. Introns are shown as thin lines. Inclusion of one or 

more of the variable exons produces CD44v. A human CD44 variant containing variable 

exons v3 to v10 is frequently detected in CD44v–expressing cells and is shown to represent 

CD44v. Variable exon v6-containing CD44v activates Ras/MAPK signaling by forming a 

co-receptor complex with RTK. Activation of the Ras/MAPK signaling cascade in turn 

stimulates the production of CD44v isoforms through splicing factors, Sam68 and SRM160. 

These actions form a positive feedback loop that sustains Ras/MAPK signaling, critical for 

tumor cell proliferation. By contrast, the CD44s isoform that is devoid of all variable exons 

promotes cell contact inhibition.
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Figure 5. Alternative splicing of the death receptor FAS controls the degree of apoptosis
Usage of the FAS variable exon 6, shown in yellow, is controlled by splicing factors as 

shown. Inclusion of exon 6 results in a membrane-bound form of FAS that promotes 

apoptosis. This inclusion event is mediated by TIA-1 and TIAR binding at an ESE motif 

downstream of exon 6 that facilitates U1 snRNP recognition to the 5’ splice site and U2AF 

binding to the upstream 3’ splice site. In contrast to the membrane-bound form, exon 6 

exclusion produces a soluble form of FAS that inhibits apoptosis. PTB, RBM5, 

hnRNPC1/C3, and HuR prevent exon 6 inclusion through binding to exon 6 cis-elements or 

preventing the spliceosome assembly. An ESS of exon 6 that recruits PTB is shown in red.
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Figure 6. VEGF alternative splicing regulates angiogenesis in tumor cells
VEGF exon 8 contains a proximal 3’ splicing site (PSS) and a distal 3’ splicing site (DSS). 

Splicing factors SRSF1 and SRSF5 promote the usage of 3’ PSS, generating wild-type and 

functional VEGF. By contrast, SRSF2 and SRSF6 facilitate the selection of 3’ DSS, 

resulting in production of the VEGFb isoform that is anti-angiogenic. The activity of SRSF1 

is regulated by SRPK1 through phosphorylation. IGF-1 promotes SRPK1-mediated SRSF1 

activity and WT1 inhibits the transcription of SRPK1, thus usage of 3’ PSS and the 

production of VEGF.
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Figure 7. CD44 splice isoform switching is critical for EMT and breast cancer progression
Top panel shows a schematic of EMT that involves the change from a cobble-stone-like 

epithelial phenotype to a spindle-shaped morphology of mesenchymal cells. EMT can be 

induced by transcription factors Twist, Snail, or the cytokine TGFβ. Middle panel illustrates 

that CD44 isoform switching from CD44v in epithelial cells to CD44s in mesenchymal cells 

occurs during EMT. The switched expression to CD44s, which is inhibited by ESRP1, is 

critical for cells to undergo EMT and form a more aggressive breast cancer phenotype. The 

CD44 variable exon-coding region is shown in magenta.
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Figure 8. The PKM2 splice isoform is aberrantly upregulated in tumor cells for a metabolic 
switch favoring biosynthesis
Mutually exclusive exon splicing of exon 9 (yellow) and exon 10 (magenta) of the PKM 

pre-mRNA gives rise to two protein isoforms PKM1 and PKM2, respectively. PKM1 is 

highly efficient in converting PEP to pyruvate, allowing cells for maximal energy 

production through the TCA cycle. PKM2, on the other hand, has low efficiency in PEP-

Pyruvate conversion. Cells that express high levels of PKM2 undergo aerobic glycolysis, 

fulfilling the need of biosynthesis in embryonic or tumor cells. Splicing factors PTB and 

hnRNP A1/A2 repress exon 9 inclusion by binding to ISS-elements (red) that flank exon 9, 

thus promoting the production of PKM2. The cMyc oncogene upregulates the expression of 

hnRNP A1/A2 in tumor cells.
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