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Abstract

The aim of this study was to systematically review clinical studies examining biofluid biomarkers of brain injury for

concussion in athletes. Data sources included PubMed�, MEDLINE�, and the Cochrane Database from 1966 to October

2013. Studies were included if they recruited athletes participating in organized sports who experienced concussion or

head injury during a sports-related activity and had brain injury biomarkers measured. Acceptable research designs

included experimental, observational, and case-control studies. Review articles, opinion papers, and editorials were

excluded. After title and abstract screening of potential articles, full texts were independently reviewed to identify articles

that met inclusion criteria. A composite evidentiary table was then constructed and documented the study title, design,

population, methods, sample size, outcome measures, and results. The search identified 52 publications, of which 13 were

selected and critically reviewed. All of the included studies were prospective and were published either in or after the year

2000. Sports included boxing (six studies), soccer (five studies), running/jogging (two studies), hockey (one study),

basketball (one study), cycling (one study), and swimming (one study). The majority of studies (92%) had fewer than 100

patients. Three studies (23%) evaluated biomarkers in cerebrospinal fluid (CSF), one in both serum and CSF, and 10

(77%) in serum exclusively. There were 11 different biomarkers assessed, including S100b, glial fibrillary acidic protein,

neuron-specific enolase, tau, neurofilament light protein, amyloid beta, brain-derived neurotrophic factor, creatine kinase

and heart-type fatty acid binding protein, prolactin, cortisol, and albumin. A handful of biomarkers showed a correlation

with number of hits to the head (soccer), acceleration/deceleration forces (jumps, collisions, and falls), postconcussive

symptoms, trauma to the body versus the head, and dynamics of different sports. Although there are no validated

biomarkers for concussion as yet, there is potential for biomarkers to provide diagnostic, prognostic, and monitoring

information postinjury. They could also be combined with neuroimaging to assess injury evolution and recovery.
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Introduction

Concussion is also known as mild traumatic brain injury

(TBI) and is an unfortunately common occurrence in athletes.

Diagnosis of concussion acutely depends on a variety of measures,

including neurological examination, neuropsychological evaluation,

and neuroimaging. Neuroimaging techniques, such as computed to-

mographic scanning (CT scan) and magnetic resonance imaging

(MRI) are used to provide objective information. However, CT

scanning has low sensitivity to diffuse brain damage and confers

exposure to radiation. MRI can provide information on the extent of

diffuse injuries, but its widespread application is restricted by cost,

availability, and its yet undefined role in management of mild TBI

(mTBI).1,2 Moreover, conventional neuroimaging techniques and

neuropsychological tests often fail to adequately detect injury, in

particular, the recognition of diffuse axonal injury, also known as

traumatic axonal injury.3 There are promising new neuroimaging

techniques being examined that include functional MRI, diffusion

tensor imaging, magnetic resonance spectroscopy, and positron

emission tomography.4–15 However, the role of these techniques in

the clinical management of concussion has not yet been established.16

Research in the field of TBI biomarkers has increased expo-

nentially over the last 20 years,17,18 with most of the publications on

the topic of TBI biomarkers occurring in the last 10 years.18–20

Accordingly, studies assessing biomarkers in TBI have looked at a

number of potential markers that could lend diagnostic, prognostic,

as well as monitoring information. Early and tailored management

of athletes after a concussion would provide them with the best
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opportunity to avoid further injury. Early detection of concussion

would be invaluable given that individuals with concussion are

acutely at risk for bleeding and axonal injury21,22 and long term can

suffer impairment of physical, cognitive, and psychosocial func-

tioning.23–27 Repeated episodes of mTBI can lead to chronic trau-

matic encephalopathy (CTE), a term used to describe clinical

changes in cognition, mood, personality, behavior, and/or move-

ment occurring years after concussion.28,29 With the growing in-

cidence of CTE among athletes, strategies that reduce the risk of

becoming injured need to be developed and diagnostic tools that

could identify injuries earlier need to be explored.

This systematic review will review the current literature on

biofluid biomarkers of brain injury in athletes after sports-related

concussion and discuss their potential role.

Methods

A literature search of PubMed�, MEDLINE�, and the Cochrane
Database from 1966 to October 2013 was conducted using the
MESH search terms athletes, concussion, sports, sports-related,
traumatic brain injury, head injury, and biomarkers. Other terms
also searched included biochemical markers, neuronal/glial/axonal
injury, traumatic intracranial lesions, and expansions of these terms
to match synonyms, subterms, or derivatives. These terms were
searched in all fields of publication (e.g., title, abstract, and key-
word). The search was limited to the English-language articles,
clinical ‘‘human’’ studies, and studies that included athletes par-
ticipating in organized sports. Studies were included if they re-
cruited athletes participating in organized sports who experienced
concussion or head injury during a sports-related activity and had
brain injury biofluid biomarkers measured. Articles that did not
include athletes or did not measure brain-related biofluid biomark-
ers as a primary focus were excluded. In addition, the bibliographies
and reference lists of all articles and all review articles were eval-
uated for other potentially relevant articles. Acceptable study de-
signs included experimental studies, observational studies, and
case-control studies. Review articles, opinion papers, and editorials
were excluded. The abstracts of the publications were screened for
relevance, and in case of uncertainty regarding the inclusion, the
entire text of the article was read. Studies were defined as pro-
spective or retrospective according to whether the method of data
collection and the endpoints were defined before patient enrollment
began. The full texts of the articles were then pooled and reviewed
by two different authors to identify articles that met inclusion cri-
teria. Once the relevant articles were selected, they were reviewed
using a standard review form. The review forms allowed the re-
viewers to objectively assess the content of each article in a con-
sistent fashion. A composite evidentiary table was then constructed.
The evidentiary table included the internal identification number,
design type, study methods, focus of the article, sample size, TBI
severity, biofluid source, collection schedule, clinical variables as-
sessed, outcome measures, results, and conclusions.

Results

The search initially identified 52 articles. Nineteen publications

were then selected on the basis of the title and abstract screening.

Inclusion criteria were applied to the full text of 19 articles. A

review of the bibliographies and reference lists identified an addi-

tional four potential articles that had a full text review. In total, 23

(19 + 4) articles underwent a full text review and 13 of these met all

selection criteria and were included in the systematic review. De-

tails of the study selection process are outlined in Figure 1. Studies

that were screened, but not included in the review, can be found in

Appendix 1. Each of the 13 studies was critically reviewed by at

least two investigators using a standard review form. There were no

randomized, clinical control studies identified. All of the included

studies were prospective and were published either in or after the

year 2000. Eight (62%) of the studies utilized control populations.

The range in sample size was from 16 to 200. Over 92% of the

included studies had fewer than 100 patients. There were three

studies (23%) that evaluated biomarkers in cerebrospinal fluid

(CSF), one that evaluated both serum and CSF, and 10 (77%) that

evaluated serum exclusively.

The age range of subjects in the selected articles was 11–52

years. Seven studies included studies that included both adults and

children (defined as younger than 18 years); however, only two

studies included subjects younger than 17 years. The performance

of the biomarkers in the majority of these studies spanned across

ages and did not specifically reflect performance of the biomarker

in specific age groups. The evidentiary table (Table 1) summarizes

the methods from the included studies and describes the biomarkers

FIG. 1. Study selection process. The search initially identified
52 articles. Nineteen publications were then selected on the basis
of the title and abstract screening. A review of the bibliographies
and reference lists identified an additional four potential articles
that had a full text review. In total, 23 (19 + 4) articles underwent a
full text review and 13 of these met all selection criteria and were
included in the systematic review.
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that were evaluated in the athletes.30–42 Sports examined in these

studies included boxing (six studies), soccer (five studies), running/

jogging (two studies), hockey (one study), basketball (one study),

cycling (one study), and swimming (one study).

There were 11 distinct biomarkers measured in 13 studies, and

S100b was the most frequently assessed in 12 studies (92%). Glial

fibrillary acidic protein (GFAP) was evaluated in six studies, neu-

ron-specific enolase (NSE) in five studies, tau in four studies,

neurofilament light protein (NFL) in three studies, and amyloid

beta in three studies. Brain-derived neurotrophic factor (BDNF),

creatinine kinase (CK), and heart-type fatty acid binding protein (h-

FABP) were each measured in two studies, and prolactin, cortisol,

and albumin were each evaluated in one study. Nine studies as-

sessed biomarkers both before and after play or exercise (69%),

whereas four studies only evaluated biomarkers afterward (31%).

Blood samples were taken at different times postinjury, but all were

taken within 3 months postplay or exercise. Time points included

baseline levels (11 studies), within 15 min (five studies), 15–60 min

(three studies), between 1–24 h (five studies), 24 h to 2 weeks (six

studies), and 2–3 months (three studies). Multiple postplay/exercise

time points were taken in four different studies. Besides comparing

biomarker concentrations pre- and postplay or exercise, other

outcome measures included comparison of levels between different

sports, comparison of body trauma to head trauma in boxing, results

of the Rivermead Post-Concussion Symptom Questionnaire

(RPSQ), effect of headers in soccer, comparison to trauma patients,

effect of acceleration/deceleration events, and effect of other

traumatic events, such as jumps, collisions, and falls. A summary of

the results from each of the studies is included in Table 2.

The association between headers in soccer players and bio-

markers were assessed in five studies.30,32,35,36,41 In the article by

Otto and colleagues, 12 soccer players performed 20 controlled

headers and showed no rise in S100b protein levels. Similarly,

controlled headers in studies by Mussack and Zetterberg produced

insignificant elevations in S100b.32,41 However, these headers were

performed in a controlled setting where the ball was dropped from a

specified height and always impacted the forehead. This is in

contrast to a competitive match in which the ball may be traveling

faster and with greater force, and may not impact the head on the

forehead. Accordingly, Stalnacke and colleagues measured S100b
during actual soccer matches and found that S100b levels increased

significantly after a game and also correlated with the number of

headers.35,36 There were no significant changes in levels of NSE.

There was only one study that compared biomarker levels in

athletes participating in sports versus trauma patients with head

injury presenting to the emergency department.32 A single bio-

marker (S100b) was examined in TBI patients versus soccer

players. Levels were significantly higher in trauma patients with

lesions on CT than trauma patients without lesions. Further, trauma

patients with lesions on CT had significantly higher levels than the

athletes regardless of whether or not there was heading.

Discussion

This systematic review of the literature provides a comprehen-

sive summary of the status of brain injury biomarker research in

sports and concussion. The study of biomarkers in sports concussion

is in its infancy, with the earliest published study in this review in the

year 2000. Although there are a number of interesting candidate

biomarkers for determining severity of concussion, validation of

these markers is lacking. There are a handful of biomarkers showing

correlation with number of hits to the head (e.g., headers in soccer),

acceleration/deceleration forces (e.g., jumps, collisions, and falls

with and without head injury), postconcussive symptoms (PCS),

trauma to the body versus the head (e.g., boxing), and the effects/

dynamics of play. Unfortunately, the studies are difficult to combine

and compare because the included sports are so different (some have

contact, others do not), sample collection times are variable, and the

assays used to measure the biomarkers are not uniform.

The most frequently examined biomarker among the studies in this

review, and in the TBI literature as a whole, is S100b. S100b is the

major low-affinity calcium-binding protein in astrocytes,43 which

helps to regulate intracellular levels of calcium; however, its brain

specificity has been questioned. Findings of elevated levels of S100b
in athletes participating in noncontact sports without head trauma

support the concern about its potential release from other cells, such

as chondrocytes and adipocytes.44,45 In the study by Otto and col-

leagues, S100b protein rose after running, with no significant dif-

ference in levels of S100b between jogging, running, a 25-km race,

and boxing, suggesting that S100b was derived from extracranial

sources.30 Similarly, in Dietrich and colleagues’ study, swimming

increased S100b levels independent of any head trauma.31In the

study by Hasselblatt and colleagues, both serum S100b and CK

concentrations increased significantly after a marathon race and were

correlated. As such, S100b levels exceeded those studied in other

sports, such as joggers, short-distance runners, basketball players, and

ice hockey players observed in other studies.30,33 This issue has also

been observed in the trauma literature in patients with mTBI.19,46,47

Tau is an intracellular, microtubule-associated protein that is

highly enriched in axons and is involved with assembling axonal

microtubule bundles.48 In 2013, when Neselius and colleagues

measured tau in plasma, levels were significantly increased after a

bout of Olympic boxing, compared to control levels, and decreased

significantly after a rest period. These elevations were in boxers

who had no symptoms of concussion. Moreover, in 2012, when

CSF levels of tau were examined in this same group of boxers, there

was also a significant increase in tau, but there was no correlation

between plasma and CSF-tau.42 There are inconsistencies in the

performance of tau (in the form of cleaved-tau, total-tau, and

phosphorylated-tau) that are echoed in the trauma literature. Stu-

dies assessing tau in CSF in severe TBI have correlated with

clinical outcome.49–54 However, these findings have not held true

when measured in peripheral blood50,55 or in mTBI, where tau is a

poor predictor of CT lesions and postconcussion syndrome.56–59

These inconsistencies could be a result of many factors, including

the type, variability, sensitivity, and specificity of the tau assays

used, variability in the measurement of outcomes, and the timing of

the sample collection.

Permanent neurological impairment is a serious concern for

athletes who experience repetitive head traumas given that both

concussive and subconcussive blows can be significantly damag-

ing.16,60,61 Accordingly, we have observed, through this review,

that biomarkers can remain elevated even after resting from their

sport. Zetterberg and colleagues measured S100b and NSE (found

in neuronal cell bodies) after 2 months of nonparticipation in

boxing and found that NSE showed a prolonged decay in boxers

who were exposed to very frequent, repetitive head trauma during

most of the year.37,40 Similarly, Neselius and colleagues showed

that the repetitive head trauma occurring in olympic boxing in-

duced increases in CSF levels of NFL (from neuron cytoskeleton),

GFAP (glial origin), T-tau, and S-100B acutely and subacutely

(after 14 days without boxing), even without anamnestic or clinical

symptoms of a concussion or TBI.42 A recent study by Shahim and

colleagues assessed T-tau, S100B, and NSE in professional ice
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Table 2. Summary of the Results and Findings from Each of the Included Studies

Year/author Results

2000 Otto - There was no significant difference between the baseline S-100B levels in the groups boxing, jogging, running, or
cycling ( p = 0.12). Baseline levels of S-100B protein in serum ranged between 10 and 169 ng/L (mean, 35 ng/L;
median, 22 ng/L).

- The increase in S-100B resulting from boxing was significantly higher than that after headers ( p < 0.0001), cycling
( p = 0.0002), and sprinting ( p < 0.02).

- There was no significant difference in the rise between the boxing, jogging, and the 25-km race groups ( p = 0.27).
- Competitive boxing resulted in significantly higher levels of S-100B than jogging ( p < 0.01).
- Competitive boxing and 25-km race resulted in S100B elevations that were NOT significantly different ( p = 0.9).
- Sparring boxing was not significantly different from jogging, running, or the 25-km race ( p = 0.21).
- Sprinting caused significantly higher elevations in S-100B than cycling ( p = 0.021) or headers ( p = 0.009). There

were no difference between cycling and headers ( p = 0.69).
- In boxing, S100B correlated with the number and weight of the punches and boxers fighting without head

protectors had higher levels of S-100B than those without protectors.

2003 Dietrich - S100B was statistically different from baseline 70.7 – 17.7 pg/mL to after the swimming race 108.13 – 19.49 pg/mL
( p < 0.001). Following the race, 4 of 16 (25%) did not have an increase in S100B from their baseline levels.

- Prolactin increased from 10.2 – 0.9 to 16 – 2.2 ng/dL ( p < 0.001) pre- and postrace. There was no correlation
between S100B and prolactin.

2003 Mussack - Median S100B serum levels of the heading group increased from 0.15 to 0.18 ng/mL ( p < 0.05) after training.
Levels returned to baseline after 6 h. S100B levels of the no-heading exercise group barely changed from 0.10 to
0.11 ng/mL after training ( p > 0.05). At 6 h, levels were 0.09 ng/mL. Levels of S100B were significantly lower in
the no-heading group, compared to the heading group.

- Baseline levels were higher in younger players ages 12–13 (0.20 ng/mL) and 14–15 (0.17 ng/mL), compared to
those ages 16–17 (0.06 ng/mL; p = 0.006 and p < 0.001, respectively).

- CT + levels were higher (0.62 ng/mL) than CT - levels (0.10 ng/mL). Levels in the CT + group were significantly
higher than both the heading and no-heading groups.

2003 Stalnacke - For ice hockey, S100B levels increased from
Pregame = 0.22 – 0.04 lg/L (range, 0.14–0.32) to
Postgame = 0.30 – 0.11 lg/L (range, 0.17–0.44; p < 0.001).
- For basketball, S100B levels increased from
Pregame = 0.22 – 0.04 lg/L (range, 0.17–0.28) to
Postgame = 0.30 – 0.10 lg/L (range, 0.17–0.51; p = 0.001).
- For ice hockey, NSE levels increased from
Pregame = 10.19 – 3.35 lg/L (range, 7.46–19.75) to
Postgame = 11.7 – 3.36 lg/L (range, 7.99–22.39; p = 0.13)
- For basketball, NSE levels increased from
Pregame = 9.71 – 2.93 lg/L (range, 6.4–17.33] to
Postgame = 10.26 – 3.06 lg/L (range, 7.22–19.88; p = 0.13)

2004 Hasselblatt - Serum S100B concentrations and serum CK activities increased after the race ( p < 0.001). After 20 h, serum S100B
concentrations decreased and 83% were within the reference levels.

- Serum GFAP concentrations remained below detection at all time points.
- Three hours after the race, an increase in serum CK activity by 500 U/L was associated with an increase of serum

S100B by 0.05 ug/L, compared to baseline. Elevated S100B levels were associated with elevated CK levels
immediately postrace, at 1, 3, and 20 h.

- Serum S100B and CK levels were not associated with gender, age, or training status.

2004 Stalnacke - S100B levels increased from
Pregame = 0.066 – 0.025 lg/L to
Postgame = 0.118 – 0.040 lg/L ( p < 0.001)
- NSE levels increased from
Pregame = 8.57 – 2.31 lg/L to
Postgame = 10.29 – 2.16 lg/L ( p < 0.001)
- Elevations in S-100B pre- to postgame were significantly correlated with the number of headers (r = 0.428;

p = 0.02) and with the number of other traumatic events (r = 0.453; p = 0.02).
- Changes in NSE were not significantly correlated with headers or other traumatic events. No concussions were

observed during the game.
- There were no significant correlations between the total RPQ score and changes in S-100B ( p = 0.130) or changes

in NSE ( p = 0.603).

2006 Stalnacke - S-100B levels increased from 0.11 – 0.05 lg/L pregame to 0.18 – 0.11 postgame ( p = 0.001).
- NSE levels increased from 9.05 – 1.59 lg/L pregame to 10.14 – 1.74 lg/L postgame ( p = 0.001).
- The changes in S-100B correlated significantly with the number of headers (without

jumps/collisions/falls; r = 0.307; p = 0.042), number of headers (with jumps/collisions/falls; r = 0.474; p = 0.001),
and with the number of other traumatic events (r = 0.517; p = 0.001).

- The changes in NSE were not significantly correlated with the number of headers or other traumatic events.

(continued)
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Table 2. (Continued)

Year/author Results

2009 Zetterberg - For S100B, the median level for boxers was 70 ng/L (range, 32–240), compared to controls (65 ng/L; range, 19–13;
p > 0.05).

- For BDNF, the median level for boxers was 1.6 ng/mL (range, 0.303–10), compared to controls (1.2 ng/mL; range,
0.29–10; p > 0.05).

- For h-FABP, the median level for boxers was 1.5 ng/mL (range, 0.39–2.9), compared to controls (1.8 ng/mL; range,
0.94–13; p > 0.05).

- For NSE, the median level for boxers was 11 ng/mL (range, 2.3–41), compared to controls (4.8 ng/mL; range, 0.78–
27; p = 0.014).

- For GFAP, levels were below the detection limit of the assay in all samples ( < 0.78 ng/mL).
- Serum levels of NSE did not correlate with age, body mass index, age at boxing debut, boxing duration, or total

number of bouts.

2011 Graham - There were significant increases in NSE, S100B, and cortisol in those with the punches to the head (PTH) group,
but not the punches to the body (PTB) group. CK significantly increased in both PTH and PTB groups.

- S100B:
PTH group: pre, 0.35 – 0.61; post, 0.54 – 0.73
PTB group: pre, 0.42 – 0.19, post, 0.43 – 0.2
- CK:
PTH group: pre, 207 – 107; post, 244 – 118
PTB group: pre, 50 – 43; post, 195 – 63
- NSE:
PTH group: pre, 19.7 – 14; post, 31.1 – 26.6
PTB group: pre, 16.4 – 13; post, 17.5 – 14
- Cortisol:
PTH group: pre, 373 – 202; post, 756 – 93
PTB group: pre, 416 – 140; post, 417 – 135

2013 Neselius - Plasma tau concentrations significantly increased after a bout, compared to control levels (2.46 – 5.10 vs.
0.79 – 0.961 ng/L; p = 0.038).

- The other biomarkers were not significantly elevated.
- Tau decreased significantly after a rest period to 1.43 – 2.5 ng/L ( p = 0.030).
- There were no differences in concentrations of BDNF, Ab1-41, and S100B between boxers and controls.

Additionally, there were no differences for these biomarkers between the two time points (1–6 vs. 14 days).
- For GFAP, all samples were below detection.
- For BDNF (mean – SD)
Controls = 29,146 – 5419 ng/L
Boxers (1–6 days) = 28,353 – 7170
Boxers (14 days) = 27, 836 – 7621
- For Ab42:
Controls = 11.6 – 4.4 ng/L (range, 0.7–18.9)
Boxers (1–6 days) = 12.1 – 4.8 (range, 4.0–26.9)
Boxers (14 days) = 11.2 – .2 (range, 0.0–20.1)
- For S100B:
Controls = 0.041 – 0.025 ng/L (range, 0.011–0.137)
Boxers (1–6 days) = 0.037 – 0.018 (range, 0.015–0.088)
Boxers (14 days) = 0.043 – 0.024 (range, 0.014–0.118)
- For tau:
Controls = 0.79 – 0.96 ng/L (range, 0.02–4.76)
Boxers (1–6 days) = 2.46 – 5.1 (range, 0.13–26.73)
Boxers (14 days) = 1.43 – 2.51 (range, 0.02–11.60)

2006 Zetterberg - After a bout, there was a marked increase in the CSF levels of NFL, T-tau, and GFAP, compared to after a 3-month
rest from boxing (mean – SD).

- NFL = 845 – 1140 vs. 208 – 108 ng/L ( p = 0.008)
- T-tau = 449 – 176 vs. 306 – 78 ng/L ( p = 0.006)
- GFAP = 541 – 199 vs. 405 – 138 ng/L ( p = 0.003).
- Levels of NFL and GFAP, but not T-tau, were significantly higher in boxers after a bout than in controls.
- For GFAP and T-tau, there were no significant differences in biomarker levels in boxers after the 3-month rest

period and controls. However, NFL remained significantly elevated in boxers after 3 months, compared to
controls.

- NFL, T-tau, and GFAP concentrations were higher in boxers who had received many hits ( > 15) or high-impact
hits to the head, compared with boxers who reported few hits.

- Levels of P-tau, Ab(1–40), and Ab(1–42) were not significantly altered in boxers after a bout, compared with after
rest or levels detected in controls.

(continued)
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Table 2. (Continued)

Year/author Results

2007 Zetterberg - There were no significant differences in biomarker levels (CSF or serum) in soccer players who performed either
10 or 20 approved headings and no significant differences in biomarker levels (CSF or serum) in soccer players
(either 10 or 20 headings) versus controls.

- Surprisingly, S-100B concentrations were higher in the control group compared to players with 10 or 20 approved
headings ( p = 0.049 and p = 0.008).

- There were no correlations between the number of approved headings and any of the biomarker levels.
- For albumin ratio (median/range):
Controls = 4.1 (range, 2.5–6.3)
Players (10 headings) = 4.1 (range, 2.4–9.3)
Players (20 headings) = 3.9 (range, 2.0–8.7)
- For NF-L, all levels were less than 125 ng/L.
- For T-tau:
Controls = 320 ng/L (range, 120–540)
Players (10 headings) = 315 ng/L (range, 170–400)
Players (20 headings) = 250 ng/L (range, 190–420)
- For GFAP:
Controls = 280 ng/L (range, 190–460)
Players (10 headings) = 265 ng/L (range, 180–510)
Players (20 headings) = 260 ng/L (range, 190–330)
- For S100B in CSF:
Controls = 1.1 lg/L (range, 0.77–1.2)
Players (10 headings) = 0.87lg/L (range, 0.71–1.2)
Players (20 headings) = 0.82 lg/L (range, 0.48–1.3)
- For S100B in serum:
Controls = 0.040 lg/L (range, 0.030–0.060)
Players (10 headings) = 0.06 lg/L (range, 0.03–0.12)
Players (20 headings) = 0.04 lg/L (range, 0.01–0.07)

2012 Neselius - Levels of NFL ( p = 0.001), GFAP ( p = 0.001), T-tau ( p = 0.025), and S-100B ( p = 0.03) were significantly
increased after boxing, compared to controls.

- Levels of NFL ( p = 0.004) and GFAP ( p = 0.001) remained elevated after the 14-day rest period.
- For NFL (mean – SD)
Controls = 135 – 51 ng/L (range, 125–380)
Boxers (1–6 days) = 532 – 553 (range, 125–2480)
Boxing (14 days) = 402 – 220 (range, 125–1780)
- For GFAP:
Controls = 244 – 145 ng/L (range, 90–820)]
Boxing (1–6 days) = 496 – 238 (range, 70–1020)
Boxing (14 days) = 367 – 113 (range, 170–600)
- For FABP:
Controls = 458 – 271 ng/L (range, 67–1383)
Boxing (1–6 days) = 407 – 208 (range, 108–1089)
Boxing (14 days) = 334 – 195 (range, 40–769)
- For Ab1-42:
Controls = 297 – 39 ng/L (range, 231–362)
Boxing (1–6 days) = 306 – 52 (range, 191–411)
Boxing (14 days) = 294 – 54 (range, 178–423)
- For S100B:
Controls = 0.60 – 0.23 ng/L (range, 0.30–1.16)
Boxing (1–6 days) = 0.76 – 0.29 (range, 0.34–1.68)
Boxing (14 days) = 0.63 – 0.16 (range, 0.33–0.99)
- For T-tau:
Controls = 45 – 17 ng/L (range, 24–95)
Boxing (1–6 days) = 58 – 25 (range, 25–132)
Boxing (14 days) = 49 – 21 (range, 19–121)
- For P-tau:
Controls = 23 – 6 ng/L (range, 14–40)
Boxing (1–6 days) = 21 – 7 (range, 9–38)
Boxing (14 days) = 22 – 8 (range, 9–43)

Ab1-42, amyloid b1-42; Ab1-40, amyloid b1-40; BDNF, brain-derived neurotrophic factor; CK, creatine kinase; CSF, cerebrospinal fluid; GFAP, glial
fibrillary acidic protein; NFL(P), neurofilament light protein; h-FABP, heart-type fatty acid binding protein; NSE, neuron-specific enolase; P-tau,
phosphorylated tau at threonine; RPSQ, Rivermead Post-Concussion Symptom Questionnaire; SD, standard deviation; T-tau, total tau; TBI, traumatic
brain injury; TNF, tumor necrosis factor.
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hockey players preseason and postconcussion at 1, 12, 36, and 144 h.

T-tau levels peaked during the first hour after concussion and were

significantly higher in postconcussion samples at all times, compared

with preseason samples. S100B also peaked within the first hour, but

was only significantly higher at 1 h after concussion, compared with

preseason. NSE remained at preseason levels and was not signifi-

cantly elevated at any time point. Interestingly, T-tau after concussion

remained significantly elevated in players with PCS lasting more than

6 days versus players with PCS for less than 6 days.62

GFAP is a monomeric intermediate protein found in astroglial

skeleton that was first isolated by Eng and colleagues in 1971.63 GFAP

is found in white and gray brain matter and is strongly up-regulated

during astrogliosis.64 Although GFAP has been studied in brain injury

since the 1990s, it is not until recently that it has been assessed in

serum following trauma3,46,65,66 and, specifically, in sports.34,37,39 The

performance of GFAP has been much better (more accurate in de-

tecting injury) in trauma patients presenting with mTBI to the emer-

gency department, compared with the studies performed in athletes to

date. This discrepancy appears to stem from the timing of the blood

draws relative to head injury. In studies with trauma patients, samples

have been drawn within 446,65 and 24 h after injury.3,66 However, in

athletes, the samples have been drawn after several days39 or months.37

This underscores the importance of understanding the temporal profile

of the biomarkers being applied in studies.18,67

There are a number of new serum biomarkers on the horizon for

mTBI, including ubiquitin C-terminal hydrolase (UCH-L1)66,68

and alpha-II spectrin breakdown products (SBDP150).69,70 The

UCH-L1 protein is involved in the addition and removal of ubi-

quitin from proteins that are destined for metabolism.71 Alpha-II-

spectrin (280 kDa) is the major structural component of the cortical

membrane cytoskeleton and is particularly abundant in axons and

presynaptic terminals.72,73 Cytoskeletal aII-spectrin is cleaved by

caspase-3 and calpain-2 activation into spectrin breakdown prod-

ucts (SBDPs),74,75 which are detectable after TBI. Both have shown

a significant association with acute measures of injury severity in

mTBI, such as Glasgow Coma Score score, intracranial injuries on

CT, and neurosurgical intervention.66,68–70

Over the last decade, research in the field of sports concussion

biomarkers has led to a greater understanding of the effects of head

injury from sports. Moving forward, there are many challenges to

consider and overcome as we continue to pursue the clinical ap-

plication of brain-related biofluid biomarkers in sports. First, bio-

markers are being compared to variable definitions of concussion

and to subjective outcome measures. It is difficult to rate the pre-

dictive power of serum biomarkers if the clinical measures they are

being compared against are inconsistent and lack sensitivity and/or

specificity. Second, common clinical and biomarker-related data

elements need to be consistently applied to future studies on sports

concussion, given that they are currently being employed for all

severities of TBI.76,77 Third, timing of outcome measures relative

to the biomarkers need to be carefully considered in the design of

future studies. Finally, sample collection for biomarker measure-

ment will need to span longitudinally over multiple time points in

order to assess their temporal profiles. This, in turn, will be useful

for determining optimal times to measure levels of these markers

after concussion and for guiding return-to-play decisions.

Conclusion

In an effort to prevent CTE and long-term consequences of

concussion, early diagnostic and prognostic tools are becoming

increasingly important, particularly in sports and in military per-

sonnel, where concussions are common occurrences. The study of

TBI biomarkers is rapidly evolving, and should these biomarkers be

validated and become widely available, they could have many

roles. They could help with clinical decision making by clarifying

injury severity and help to monitor progression of injury and/or

recovery. Biomarkers could have a role in managing patients at

high risk of repeated injury and could be incorporated into guide-

lines for return to duty, work, or sports activities. They could also

be combined with neuroimaging to improve diagnostic and prog-

nostic accuracy as injuries evolve over time. Future studies will

require more uniform research methodology, common data ele-

ments, and consistent performance measures.
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