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Abstract

Conclusions about the genetic architecture of a phenotype relating to the contributions of genetic 

additivity, dominance, epistasis or genotype × environment interaction, depend upon the statistical 

and distributional properties of the measured trait. This dependence is frequently ignored in 

contemporary genetic studies and can radically change the conclusions that may be drawn from 

the data. The interdependence of the conclusions about genetic architecture and instruments used 

for behavioral measurement is explored by simulated studies of the interaction between candidate 

genes and measured environment in psychiatric genetics. Trait values are simulated (N = 100,000) 

under several commonly encountered scenarios and subjected to two simulated 20-item 

psychological tests each comprising items with different patterns of difficulty and sensitivity to 

variation (discriminating power) in the latent trait. Test scores are generated for each test by 

summing the binary responses across all items. The full model for digenic additive and non-

additive genetic effects and G × E is fitted to the trait values and test scores under a range of 

different simulated genetic architectures. Untransformed test scores show complex patterns of 

epistasis and G × E even when the underlying effects of genes and environment are purely 

additive and the transformation of symptom counts does not fully recover the simulated 

underlying genetic architecture. Accordingly, failing to allow for the theory of measurement when 

analyzing details of genetic architecture may frequently lead to replicable over-reporting of 

interactions and mislead potential investigators and funding agencies.
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Introduction

It is hard to imagine that I first met John Loehlin when I was a first-year PhD student in 

Birmingham. It was July 1969, while Neil Armstrong and Buzz Aldrin were walking on the 

moon. The date coincided a side-trip to the Shakespeare Memorial Theatre from a “NATO 

Advanced Studies Institute for Psychogenetics” engineered by John Jinks and Peter 

Broadhurst partly to promote their emerging application of “Biometrical Genetics” to human 

and animal behavior. That night, on the bus to Stratford, the conferees listened with bated 

breath to the final moments of countdown as the astronauts prepared to blast off from the 

moon on the start of their return to earth.

Looking back, it was an incredible opportunity for a notyet PhD to put faces to some of the 

names he had seen in print. Among those names and faces, was a younger John Loehlin, 

even then wearing his trade-mark black shoes and white socks. The tone of John’s thought 

was known already from his note modestly but concisely correcting some conceptual errors 

in Raymond Cattell’s Multiple Abstract Variance Analysis (MAVA: Loehlin 1965). I was 

not smart enough to understand either but I knew their importance from my teachers and 

idols, the late John Jinks and David Fulker. I remember being a fly on the pub wall as John 

Loehlin, Louis Guttman and David Fulker pored over a notepad in the bar discussing 

earnestly whether putting heritability estimates down the diagonal of a correlation matrix 

would solve the “communality problem” in factor analysis. I didn’t have a clue what they 

were talking about.

A burning topic in those days, as it remains today, was genotype × environment interaction 

(G × E). Although still unpublished at that point, John (Jinks) and David had shared a pre-

print of their seminal 1970 paper on the application of Biometrical Genetics to human 

behavior (Jinks and Fulker 1970). Among other significant issues they addressed was that of 

G × E and, in particular, the possibility of examining the regression of absolute intrapair 

differences for monozygotic (MZ) twins on pair means as a key to characterizing the 

relationship between sensitivity to random environmental influences (intrapair differences in 

MZ twins) and average genetic liability (measured by pair means).

Fired with enthusiasm for this insight, and challenged by David who had thought a lot about 

G × E and risk to psychopathology, we embarked on an exploration of G × E for personality 

applying the “Jinks and Fulker” approach to some early “EPQ” data on twins that Hans 

Eysenck had generously shared. Very soon I had generated some pretty diagrams and David 

had written the first draft of a joint paper showing significant, complex, non-linear, G × E 

for personality test scores. Recollection is hazy, but I think David sent an early draft to John 

Loehlin who suggested that we should check whether the interaction was “really” G × E or 

whether it was just a function of variation in measurement error over the range of test scores. 

“Goodbye” to a good paper, part of my doctoral dissertation and, for all intents and 

purposes, to a promising method since very few applications of the approach have been 

published in the 40 years since it first appeared.

Sadly, the fact that the approach, and John Loehlin’s early critical insight, lie all but 

forgotten by the contemporary literature means a fundamental lesson from quantitative 
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genetics appears not to have been internalized by the new generation of behavioral 

researchers competing for the prestige and funding that goes with the pursuit of G × E in 

psychiatric genetics. The apparently forgotten lesson from those early efforts is quite simple. 
You can generate almost any interaction you want by changing the scale of measurement. 

The implication is equally simple: Don’t make a career out of your interaction until you 

have excluded simpler psychometric considerations that owe nothing to the subtleties of the 

underlying genetic and environmental causes of human variation.

The seminal contribution of Fisher, Immer and Tedin (1932) notwithstanding, geneticists 

have remained cautious about the using the properties of observed phenotypic distributions 

to infer subtleties of the genetic architecture of complex traits. This caution stems from the 

observation that a variety of more or less arbitrary factors, having little or nothing to do with 

genetics, can affect the more subtle features of trait distributions. Paramount among such 

factors are those arising from the fact that the scales used to measure variation have an ill-

defined, relationship to underlying biological differences. Hence, changes in the units or 

method of measurement can lead to drastically different conclusions about the genetic 

architecture of the underlying biological system. Mather and Jinks (1982) offer a classical 

statement of the interdependence of measurement and genetic inference:

“The scale on which the measurements are expressed for the purposes of genetical 

analysis must therefore be reached by empirical means. Obviously it should be one 

which facilitates both the analysis of the data and the interpretation and use of the 

resulting statistics…The scale should preferably be one on which…the interactions 

among the genes and between genotype and environment are absent, or at any rate 

as small as they can reasonably be made.” (p. 64, our italics). Lack of careful 

attention to this goal leaves in question the heuristic value of claims to find G × E 

in psychiatric data.

With respect to behavior, measurement often boils down to decisions about which 

constellations of items, combined in which way, best characterize the salient latent 

behavioral outcomes and psychosocial risk factors. The relationship between the numbers 

generated by a test and the way genes and environment work is tenuous and theory-

dependent. There is an intimate connection between the choice of measure, and conclusions 

drawn about the relative importance of genes, environment and the various possible 

interactions between them. Elegant pictures of the role of G × E interaction may be no more 

robust than the items selected to measure the hypothesized latent variable, the rule used to 

combine them, or how the scores are scaled after they have been combined.

Mather and Jinks recommend that “So far as possible the non-allelic genes and non-heritable 

agents should all be additive in action” but also caution that such scales may be hard to find 

since “Each gene and each non-heritable agent may be acting on its own scale” and the 

elegance of a parsimonious additive model may be elusive. The problem is that psychiatric 

geneticists seldom bother to look. We are not blessed with decisions as simple as whether to 

measure body-weight in kilograms or log-kilograms, though even here the choice of scale 

will not be neutral with respect to conclusions about the contributions of additive and non-

additive effects.
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Although the point had been made on several occasions (see e.g. Eaves and Eysenck 1977; 

Purcell 2002), a recent paper (Eaves 2014) reiterated the implications of common problems 

of measurement in psychiatric genetics for the detection of interaction between measured 

environmental covariates and random genetic effects in twin studies. In particular, it was 

demonstrated that the use of symptom counts, characteristic of attempts to quantify clinical 

outcomes, would almost certainly generate statistical evidence for G × E when the 

underlying genetic and environmental causes of variation in liability were purely additive. 

Furthermore, because such interactions depend purely on the units of measurement rather 

than biology, they are almost certain to replicate, a sine qua non for publication.

Studies of G × E in humans are not confined to the study of multifactorial liability and the 

structural modeling of the patterns of covariance between relatives but extend to the 

detection and analysis of interaction between candidate genes and environmental covariates. 

Such studies enjoy a high profile and the generated enthusiasm influences the direction and 

funding of subsequent research in psychiatric and behavioral genetics. With this in mind, 

and knowing the inherent problems of interpreting interactions in twin and family studies, 

this paper explores the extent to which the same uncertainties attend apparent 

demonstrations of interaction between candidate genes and covariates in psychiatric 

genetics.

Approach

The problem is addressed by simulating the effects of two candidate loci and environment 

on liability to a psychiatric disorder. A general biometrical-genetic model for the additive, 

dominance and epistatic effects of the two loci (c.f. Mather and Jinks 1982) characterizes the 

main effects of the genes on liability and the (linear) response of genotypes to a 

continuously variable environmental covariate (G × E interaction). The model has been 

widely used in experimental organisms, including plants and fruitflies and has the advantage 

of capturing classical patterns of non-allelic interaction (epistasis) as special cases of the 

general model.

Genotypes, environments and liabilities were simulated for a large number of independent 

subjects (N = 100,000) under a variety of configurations for the additive and non-additive 

effects of the loci and covariate. Simulated subjects were scored using simulated responses 

to dichotomous items (k = 20) of checklists using two types of test analogous to those 

frequently encountered in behavioral measurement. The first, resembling a typical checklist 

of relatively infrequent symptoms, comprises items with equal low endorsement frequency 

(difficulty) and the same discriminating power. The second, more characteristic of tests used 

to assess abilities, comprises items with a wide range of difficultly and variable 

discriminating power.

The general linear model for gene effects and G × E is fitted to the liabilities and test scores 

derived from the item responses to test the main effects and interactions of the candidate 

genes and environments simulated under various “true” configurations of their effects on 

liability. Parameter estimates and their sampling errors are recovered and t tests compared 

for the various types of measurement to assess the impact of different approaches to 
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measurement on the outcome of tests for non-additive effects of genes and environment 

(epistasis and G × E) under various combinations of “true” genetic model and mode of 

assessment.

For various configurations of genetic effects at the two candidate loci it is shown how 

estimates and significance levels of non-additive genetic effects and G × E are critically 

dependent on the items and rules for combining them chosen to measure a psychiatric 

outcome.

Genetic model

Table 1 presents the general model for the main effects and interactions of two diallelic loci 

on a continuous trait outlined by Mather and Jinks (1982, c.f. Van der Veen 1959).

Various notations and parameterizations may be found in the literature. The notation used 

here has enjoyed widespread application for the analysis of digenic effects on the means and 

variances of generations derived from crosses between inbred lines of diploid species and 

for specifying the components of genetic variance in randomly mating populations (Mather 

1974). The model specifies the homozygous (additive effects) and heterozygous effects 

(dominance effects) of the two loci, da, db, ha and hb respectively, and the four possible 

types of epistatic interaction between them: between homozygotes, iab; between 

homozygotes at the A/a locus (AA versus aa) and heterozygote at B/b, jab; between 

heterozygote at the A/a locus and homozygote at B/b, jba; between both heterozygous 

effects, lab. While the notation appears cumbersome, it has the advantage of generality in 

capturing characteristic patterns of classical epistatic segregation in Mendelian dihybrid 

crosses while not being restricted by them. The classical patterns of epistasis were described 

in the first decade of the 20th century (see e.g. Miko 2008, for a recent didactic summary of 

the classical ratios). Thus, the 9:7 F2 segregation characteristic of complementary gene 

interaction is realized when, inter alia, da = db = ha = hb = iab = jab = jba = lab in Table 1. In 

contrast the 15:1 F2 segregation characteristic of duplicate gene interaction arises, for 

example, when da = db = ha = hb = −iab = −jab = −jba = −lab. “Complementary” epistasis 

arises when genes form a series in a biological pathway such that failure of either 

component leads to failure of the pathway. “Duplicate” epistasis corresponds to systems that 

are buffered by redundant parallel pathways so that failure of both components is required 

for system failure and has commonly been associated with a strong linear component of the 

relationship between phenotype and fitness (see e.g. Mather 1966).

The model for the additive, dominant and epistatic effects of the locus pair may be extended 

to include their effects on the response to an environmental covariate (G × E interaction). 

Following the approach of, e.g. Bucio Alanis and Hill (1966) and developed by Jinks and his 

coworkers (see Mather and Jinks 1982) genotypes differ in their regression on the 

environmental covariate. Just as differences in the main effects of the gene pair may be 

represented by the parameters da, db, ha, hb, iab, jab, jba and lab, so an analogous 

parameterization may be used to account for genotypic differences in the (e.g. linear) 

regression of phenotype on measured environment. For example, the regression of the AAbb 

genotype on environment is βm + βda − βdb where βm is the regression of the mid-
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homozygote on the environment, βda the homozygous effect of locus A/a on regression and 

βdb the homozygous effect of the B/b locus on response to the environment.

Table 2 summarizes the parameters of the full model for the effects of a pair of diallelic loci 

on a quantitative phenotype. Additional parameters specify the allele frequencies, the mean 

and variance of the hypothesized environmental covariate and the variance of residual 

effects.

Simulations

The large number of parameters in the digenic model for epistasis and G × E precludes 

consideration of any but a small fraction of the set of possible genetic systems. Arbitrariness 

of the units used to measure behavior introduces an additional dimension to explore the 

impact of test construction and scoring for the detection of epistasis and G × E.

Five two-locus models were chosen for simulation:

1. The two locus model with a main effect of environment (βm) with no dominance, 

epistasis or G × E.

2. Model 1 with the addition of heterozygous effects, ha and hb without epistasis or G 

× E.

3. Model 2 plus complementary gene interaction, without G × E.

4. Model 2 plus duplicate gene interaction, without G × E.

5. Model 1, with the addition of homozygous effects, βda and βdb, on linear response 

to the measured environment (G × E).

The parameter values employed to simulate the genotypes and individual continuous 

phenotypes are summarized in Table 3. Each simulation assumed further that the origin for 

the genetic main effects (m) was 10. The measured environment was assumed to be 

distributed normally (μ = 5, σ = 1) and residual effects of unmeasured genes and 

environment to be distributed normally (μ = 0, σ = 1).

The traits simulated under each model, standardized to zero mean and unit variance, were 

then “administered” two simulated tests comprising 20 binary items. Item parameters were 

chosen to reflect two different extreme measurement models. Raw test scores were 

generated by summing the 0/1 item responses across items. Both tests assumed normal ogive 

item characteristic curves for each item. The items of the first test were assumed to have unit 

thresholds (item difficulties) and sensitivities (discriminating powers). Item difficulties of 

the second test were assumed to be distributed uniformly (ranging from −2 to 2) with 

discrimination parameters distributed uniformly (ranging from 0.5 to 1.5). Thus, the first test 

generated symptom counts with a J-shaped distribution characteristic of those often 

encountered in psychiatric assessment. The second test, with item difficulties distributed 

uniformly across most of the range of simulated trait values generated scores more 

symmetrically distributed around an intermediate mode. Table 4 shows the specific item 

parameters simulated for the second test. In addition, the raw trait values and test scores 

were dichotomized to generate outcome (“disease” phenotypes) at thresholds giving the 
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closest to 20 % prevalence in the population. The raw sum scores for the first test were also 

subjected to a square root transformation to minimize the effects of heteroscedasticity on the 

subsequent regression analysis of the raw symptom counts (c.f. Bartlett 1947) and spurious 

non-additive genetic effects (c.f. Eaves and Eysenck 1977). It will be seen that simple 

transformation does not always have the desired result.

100,000 independent observations were simulated under each of the five genetic models. 

The sample size was chosen to give estimates that were stable enough to allow relatively 

reliable inferences about the power and biases implicit in the detection of the main effects 

and interactions of the pair of candidate loci and the environment but not so large as to 

overwhelm a typical laptop computer. Simulations and regression analyses were conducted 

in R 2.13.2.

Statistical analysis of simulated data

The full linear regression model, allowing for additive, dominance and epistatic effects of 

the two loci on the average phenotype and linear response to the covariate (G × E) was fitted 

to the data generated under each of the five models for genetic and environmental effects 

(above). The raw trait values, sum scores for the two simulated tests and transformed scores 

for the first test were all analyzed on the assumption of normal errors. The dichotomous 

disease phenotypes were analyzed by logistic regression assuming binomial errors. In 

addition to the full model, the “true” model, assumed in generating each data set, was fitted 

and a variety of reduced models that were expected to illuminate errors of inference that 

might attend the unwary.

Results

The results of fitting regression models for candidate genes and environmental effects are 

summarized for each of the five simulated data sets in Tables 5, 6, 7, 8, 9. Parameter 

estimates and t-values are given for each model, test and simulated data set (N = 100,000). 

Residual standard errors and squared multiple correlations from regression models are also 

tabulated where appropriate.

Central to the current exercise, when the full model is estimated for the true latent 

parameters, with all the parameters for the main effects and interaction of genes and 

environment, the precise pattern of simulated values for all five cases is recovered. In each 

case, parameter estimates are very close to their simulated values and the values of non-zero 

parameters typically yield highly significant t-values with these very large samples. Thus, 

for data simulated under the digenic additive model with no non-additive genetic effects or 

G × E (Table 5), estimates of da and db are 0.989 and 0.959 respectively, the regression on 

phenotype on environment is 0.501 and the residual variance is 1.006 as expected. All other 

estimates are close to their zero expected values. The results for the other data sets (Tables 

6, 7, 8, 9) also correspond to their expected values as long as the true latent phenotypes are 

measured directly.

In contrast with the regressions on the true latent trait, the picture changes markedly when 

analysis is based on test scores for the digenic additive model. For example, even when data 
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are simulated under the simplest additive model (Table 5), regression analysis of the 

symptom counts, S, derived from a test with equal item parameters (“Test 1”) yields a much 

less parsimonious model, in which not only homozygous effects of both loci are significant 

(though less so) but there are also marked non-additive genetic effects, including some 

dominance and strong additive × additive epistasis. Furthermore, raw symptom counts yield 

highly significant evidence of homozygous effects on sensitivity to the environment: (βda, 

βdb) = (0.423, 0.442) and even evidence of higher order interactions with apparent epistatic 

effects contributing to G × E: (βiab, βjab, βjab) = (−0.164, 0.160, 0.164).

A square root transformation of the test scores improves the fit of the additive model but, 

with this large sample, still yields evidence of significant homozygote × homozygote 

epistasis (iab = 0.483) and supports some epistatic effects on G × E (βiab = 0.483). Although 

non-additive effects may not be statistically significant with smaller sample sizes, estimates 

will be biased in the direction of detecting spurious G × E leading to inflated type I errors 

when the properties of measurement are ignored.

The situation is much improved when analysis is conducted on scores derived from items 

with difficulties distributed uniformly over the range of latent trait values. Only the 

homozygous main genetic effects and main effect of the measured environment are 

significant. There is no convincing evidence of dominance, epistasis or G × E.

Fitting the full model to the dichotomized trait values of test scores yields the correct 

conclusion for data simulated under the additive genetic model (Table 5), showing little 

support for any but homozygous main effects of the two candidate loci. However, 

significance levels are much reduced under the full model, reflecting substantial loss of 

information when the continuous variables are dichotomized. Fitting a model that ignores all 

possible non-additive effects yield highly significant estimates of the additive main effects 

of both loci but the gain in significance presumes prior knowledge of the genetic 

architecture that might not be justified in practice (compare results for other simulated 

genetic models).

Taken overall, the results of testing candidate gene models for epistasis and G × E may be 

seriously misleading even under the simplest additive genetic model (Model 1) when 

investigators are forced to analyze test scores based on items with restricted range of 

difficulty. Dichotomizing scores and trait values avoids much of the potential bias but at the 

cost of dramatically reduced power in exploratory analysis. The problem is only partly 

resolved by a square root transformation of test scores but difficulties can be minimized if it 

is possible to construct a test in which the item parameters span the range of hypothesized 

trait values.

Results for other, more complex, genetic architectures (Models 2–5, Tables 6, 7, 8, 9) only 

get worse. In every case, fitting the full regression model to the simulated latent trait values 

with normal errors (N) yields unbiased estimates and most conclusions are qualitatively 

correct when models are fitted to scores on the second test with items spanning a wide range 

of difficulty. However, dichotomizing the trait or test scores, even with these large samples, 

leads to such marked loss of information that recovery of the true genetic architecture may 
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be difficult or impossible given the range of possibilities a priori. In virtually every case, 

scores based on counts of relatively infrequent symptoms yield spurious results of 

remarkable complexity. The problem is not generally resolved by simple transformation.

When the “true” model involves only additive and completely dominant effects at the two 

candidate loci, the results for the untransformed symptom counts (Test with equal item 

parameters, Table 6) provide strong support for complex non-additive effects, especially 

epistatic interactions and G × E interaction. Transformation makes matters worse by 

strengthening support for epistatic interaction between the candidates. Scores on a test with 

uniformly distributed difficulties (Test with variable item parameters, Table 6) also suggest 

some epistasis but provide no hint of G × E. Dichotomizing the scale makes it virtually 

impossible to say anything certain about genetic architecture in the two-locus case.

When the true model involves complementary gene interaction (Table 7) analysis of the sum 

of the raw symptom counts shows striking evidence for all types of G × E at the two loci. 

Indeed, statistical support for G × E far outweighs that for the additive, dominant and 

epistatic main effects of the candidate loci. If the effect of one interacting candidate locus is 

removed from the model, the main effects of the other are grossly overestimated.

In this example of complementary gene interaction, transformation redresses the balance 

somewhat by reducing the support for G × E but still yields markedly inflated type I error 

rates. A test with variable item difficulties (Table 7) recovers the right qualitative answer for 

the genetic architecture. Again, dichotomizing any of the scales makes it all but impossible 

to estimate any parameters of the full model with sufficient precision to resolve individual 

components of the model (results not tabulated).

The qualitative results in the presence of duplicate gene interaction (Table 8) resemble those 

for complementary epistasis but the symptom counts show still far greater support for G × E 

and the effects are largely untouched by transformation. Attempts to resolve all parameters 

of the full two-locus model are completely frustrated by lack of information about the 

critical features of the model in the dichotomous case (estimates not tabulated). In contrast 

to the finding in the presence of complementary epistasis, when one of the interacting loci is 

omitted from the models for the trait with duplicate gene interaction, estimates of the effect 

of the other locus are too small and far less significant than expected under the correct 

model.

All the above datasets were generated on the assumption of no G × E interaction in liability 

yet all provide strong evidence of non-additive effects when subjected to the vagaries of 

psychological testing. The final data set (Table 9) explores the consequences of simple 

digenic G × E in which the main effects of both loci are homozygous (only da = db > 0) and 

both loci show homozygous differences in their linear response to the environment (βda = 

βdb > 0). If the true scores are known, the parameter estimates of the full model, including 

GE and epistasis, correspond to those of the underlying genetic architecture. Two further 

“wrong” models were fitted to the true scores to illustrate the possible biases that ensue from 

model misspecification. Omitting the two homozygous effects on G × E leads to grossly 

inflated estimates of the main effects. Allowing one locus to affect the average response and 
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the other to affect G × E (da > 0, db = 0, βda = 0, βdb > 0) leads to biased estimates of both 

genetic parameters. As in other cases fitting the model to untransformed symptom counts 

(test with equal item parameters) produces substantially biased estimates and misleading 

conclusions supporting much more complicated models than necessary to account for 

variation in latent trait values. Consequences include spurious support for epistatic effects on 

average response and on response to the environment (G × E). If anything, square root 

transformation only makes matters worse.

Can “Truth” be recovered?

The simulations presented are not intended to exhaust all the nuances of epistasis, G × E and 

measurement that might apply in any specific context but they certainly warn investigators 

not to oversell claims to seek or find G × E for measures of human behavior. Given that 

human behavioral and psychiatric genetics do not have access to true latent trait values or 

continuous measures of underlying biological processes, investigators have to rely on scores 

derived from clusters of indicators such as test items or symptoms. The simulations above 

confirm the intimate connection between the statistical conclusions drawn about the additive 

and non-additive contributions of candidate loci and the measured environment to 

behavioral traits. Even in the simplest case (Table 5) of a two-locus additive model (with no 

dominance, epistasis or G × E), statistical analysis of counts based on many relatively 

infrequent symptoms biases results in the direction of detecting substantial epistatic and G × 

E effects. Indeed, in this simple case, the effects of G × E and epistasis are expected to be 

more significant than the main effects of genes and environment. A square-root 

transformation of the skewed symptom counts strengthens support for additive effects, but 

fails to remove the apparent contribution of epistasis and G × E. In large samples, such as 

those simulated, the effects of G × E are expected to be statistically significant. With the 

smaller samples currently employed in psychiatric genetic epidemiology, significance of 

non-additive effects is comparable with that of the main effects pointing to a serious bias 

towards Type I Errors for the detection of epistasis ot G × E even in transformed symptom 

counts.

Several possible solutions might be offered in the pursuit of unbiased truth. The symptom 

counts may be categorized (for example into affected and unaffected subjects) and models 

fitted by logistic regression. This approach may minimize spurious interaction in simple 

cases but usually leads to such a serious loss of power that choosing between models of 

different complexity will prove difficult if not impossible with feasible sample sizes. It was 

difficult to find significant results with the large sample sizes used in the simulations.

A second approach is to design a better test, i.e. one in which item difficulties span a wide 

range of latent trait values, resembling the second simulated test in the examples above. In 

this case, regression analysis of a 20-item test recovers the “true” (additive) model with 

parameter sampling errors close to those that would be obtained if the true trait values were 

measured and little evidence for genetic effects on linear response to the environment. 

However, even a better test of this type is still affected by issues of scale.
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We are thus led to the frustrating conclusion that anything we say about G × E in psychiatric 

genetics is critically dependent on the interface between biology and psychometrics to the 

point that analysis symptom counts and dichotomous outcomes is likely to be seriously mis-

leading since estimates are biased and/or the type I error rates are higher than assumed. 

Patterns of main effect and interaction change as a function of the items chosen for 

measurement and the underlying truth about the genetic architecture of liability.

The ideal approach, suggested in a parallel set of simulations of G × E in twin data (Eaves 

2014) is to integrate the model for genetic and environmental effects on liability with an 

item-response theory (IRT) model for the relationship between latent trait and test responses. 

If the IRT model is correctly specified, unbiased tests of the main effects may be recovered 

and some of the problems of misleading inference may be avoided. This approach has still to 

be tested fully in the candidate-gene context (though see Wray et al. 2008) but would seem 

to be a sine qua non for the development of a credible research program in the study of G × 

E.

The last decade has witnessed unprecedented investment by researchers and funding 

agencies in the pursuit of G × E across many dimensions of human variation. Many of the 

models employed have been far simpler than some of those considered here and, once 

statistical significance has been achieved, publishable rationalization lurks close behind. 

Unfortunately, errors of the type described in this note are among the easiest to replicate and 

their uncritical dissemination risks distracting researchers from the more time-consuming 

task of “trying to get it right.”
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Table 1

Contributions of two-locus homozygous, heterozygous and epistatic effects to expected genotypic values 

(after Mather and Jinks 1982, p.83, Table 19)

Locus Genotype A/a

AA Aa aa

B/b BB da + db + iab ha + db + jba −da + db − iab

Bb da + hb + jab ha + hb + lab −da + hb − jab

bb da − db − iab ha − db − jba −da − db + iab

See text and Table 2 for explanation of parameters
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Table 2

Definition of model parameters

Symbol Definition

paA, pb Frequencies of increasing alleles at candidate loci A and B

m Origin of main effects (“constant”)

da, db Homozygous (“additive”) deviations at A and B

ha, hb Heterozygous (“dominance”) effects at A and B

iab Interaction between homozygous effects at A/a and B/b (“additive × additive”)

jab Interaction between additive effect at A/a and dominance effect at B/b

jba Interaction between dominance effect at A/a and additive effect at B/b

lab Interaction between dominance effects at A/a and B/b (“dominance × dominance”)

βm Origin of (linear) response to covariate (“main effect of environment”)

βda, βdb Homozygous effects of A/a and B/b on linear response to environment (“additive genetic effects on G × E”)

βha, βhb Heterozygous effects of A/a and B/b on linear response environment (“dominant genetic effects on G × E”)

βiab Additive x additive epistatic genetic effects on response to environment (G × E)

βjab Additive x dominant epistatic genetic effects on response to environment (G × E)

βiba Dominant x additive epistatic genetic effects on response to environment (G × E)

βlab Dominant x dominant epistatic genetic effects on response to environment (G × E)

mE Mean of measured environment

σE Standard deviation of measured environment

σδ Residual standard deviation
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