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Populations of isogenic embryonic stem cells or clonal bacteria
often exhibit extensive phenotypic heterogeneity that arises from
intrinsic stochastic dynamics of cells. The phenotypic state of a cell can
be transmitted epigenetically in cell division, leading to correlations
in the states of cells related by descent. The extent of these
correlations is determined by the rates of transitions between
the phenotypic states. Therefore, a snapshot of the phenotypes
of a collection of cells with known genealogical structure contains
information on phenotypic dynamics. Here, we use a model of
phenotypic dynamics on a genealogical tree to define an inference
method that allows extraction of an approximate probabilistic
description of the dynamics from observed phenotype correlations
as a function of the degree of kinship. The approach is tested and
validated on the example of Pyoverdine dynamics in Pseudomonas
aeruginosa colonies. Interestingly, we find that correlations among
pairs and triples of distant relatives have a simple but nontrivial
structure indicating that observed phenotypic dynamics on the gene-
alogical tree is approximately conformal—a symmetry characteristic
of critical behavior in physical systems. The proposed inference
method is sufficiently general to be applied in any system where
lineage information is available.
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Collectives of nominally isogenic cells, be it a clonal colony of
bacteria or a developing multicellular organism, are known

to exhibit a great deal of phenotypic diversity and time-
dependent physiological variability. While often transient and re-
versible, phenotypic states of cells can persist on the time scale of
the cell cycle and be transmitted frommother to daughter cells. This
epigenetic inheritance has been a subject of much recent research
and is known to involve a multitude of different molecular mech-
anisms (1–3), from transcription factor transmission to DNA
methylation (4, 5). Stable phenotypic differentiation is at the heart
of any animal and plant developmental program (6, 7). The role and
extent of phenotypic variability in microbial populations is less well
understood, but is coming into focus with the spread of single cell-
resolved live imaging (8, 9) and other single-cell phenotyping
methods (10). Phenotypic variability within a colony implements the
intuitively plausible bet-hedging strategies of survival (11–15), such
as persistence (16), sporulation (17), or competence (18). More
generally, phenotypic variability may be implementing interesting
“separation of labor”-type cooperative behavior within colonies
(19), although evolutionary stability of such strategies remains a
subject of much theoretical debate (20–22). Phenotypic variation
can originate from precisely controlled pattern-forming interactions
either from global or local intercellular signaling, as is the case in
animal and plant development. For microbes, intracellular sto-
chasticity is seen as playing a leading role in driving transitions
between physiologically significant phenotypic states (23–25). It is
an open problem to understand the extent to which the phenotypic
diversity in a bacterial system is driven by cell-autonomous sto-
chastic processes as opposed to interaction with their neighbors,
which could take the form of a feedback through local nutrient
availability, secreted factors (26), or direct contact signals (27).
As an example, we consider Pseudomonas aeruginosa, a com-

mon bacteria that, like all others, requires iron for metabolism,

DNA synthesis, and various other enzymatic activities. To absorb
iron from its naturally occurring mineral phase, P. aeruginosa
produces and releases iron-chelating molecules called side-
rophores (28, 29). Pyoverdine (Pvd) is a type of siderophore that is
particularly suited for experimental analysis, because it is naturally
fluorescent (30). Pvd concentration varies significantly from one cell
to another (31), which is largely due to the fact that Pvd is traf-
ficking between cells that either sip or secrete them (29). Moreover,
Pvd concentration along lineages has a correlation time of the order
of two to three cell cycles (31). The feeder/recipient phenotypes are
epigenetically passed on for a few generations before switching—a
recent observation (31) that changes the landscape of the discourse
on common goods, cooperation, and cheating.
Dynamics of stochastic phenotypes can be followed through

multiple generations using fluorescent time-lapse microscopy and
single-cell tracking (8, 9). However, the number of distinct fluo-
rescent reporters of gene expression in a single cell is inherently
limited by their spectral overlap. Alternatively, phenotypic hetero-
geneity can be measured with relative ease using destructive or fixed
cell methods [such as immunostaining (32) and fluorescence in situ
hybridization (FISH) (10)] that only provide static snapshots. De-
structive measurements can, however, be supplemented with line-
age information (kinship) that can be collected using phase time-
lapse microscopy and single-cell tracking. We ask: How much can
one say about dynamics from a static snapshot of heterogeneity and
the knowledge of the relatedness of the individuals in a population?
Below, we shall take a constructive approach to this question,
demonstrating that by adopting a certain plausible and quite general
probabilistic description of phenotypic dynamics along lineages, it is
indeed possible to infer the dynamics from static snapshots. We
shall test the method on the example of Pvd dynamics in P. aeru-
ginosa, comparing the inference to direct dynamical measurements.
Thus, our goal here is to provide a tool for the study of epi-

genetic dynamics within proliferating collectives of cells. We
shall focus on the cell-autonomous dynamics and mother-to-
daughter transmission and relate the statistical description of
phenotypic dynamics along any one lineage to the observable
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correlations between phenotypic states in a snapshot of cells at
any given time, which, as we shall see, explicitly depend on the
degree of kinship of the cells. Below, after framing our approach as
an inference problem (Inference Problem for Phenotypic Dynamics),
we shall define a class of models parameterizing phenotypic dy-
namics on lineages (The Minimal Model of Stochastic Phenotype
Propagation and Effective Interactions Between Siblings) and ex-
plicitly calculate the form of “kin correlations” from which the
underlying dynamics is to be inferred. In Kin Correlations in the
Poverdine Dynamics and Inferring the Interactions in P. aeruginosa,
we shall apply the approach to the data on siderophore production
in P. aeruginosa colonies (31), which will allow us to compare the
inference results with the direct measurement of time-dependent
phenotypes of all cells within the colony, validating our approach.
Spatial Interactions will address the question of kinship and spatial
correlations within a bacterial colony. In Discussion, we shall ex-
plain why kin correlations have a structure similar to that of cor-
relations in conformal field theories known in physics (33, 34) and
address possible practical applications of the approach.

Results
Inference Problem for Phenotypic Dynamics. Consider a growing
population of asexual individuals. At every generation, each in-
dividual gives rise to two daughters that, with some probability,

inherit the phenotypic traits of their parent. This growing pop-
ulation is naturally represented as a tree (see Fig. 1): The most
current population of cells corresponds to the leaves of the tree,
while the branches represent its history back to the founder cell at
the root. Phenotypic dynamics unfolds along the lineage linking any
one leaf to the root, and correlations between kin arise from the
fact that close relatives share more of their history. We shall as-
sume that phenotypic dynamics is stochastic with some well-de-
fined probabilistic rule (e.g., some Markovian random process), so
that the state of a cell along its lineage through the genealogical
tree is a realization of the random process. Phenotypic variability
within cell population defines a distribution of states pn =
ð1=NÞPihδnsii, where si is the state of cell i, h. . .i denotes averaging
over the realization of the random dynamics, N is the number of
cells, and δns is equal to 1 if n= s and is equal to 0 otherwise. In
practice, averaging over different realizations of the random process
is achieved by averaging over multiple observed trees.
Kin correlations are then defined as correlations between the

phenotypic states of pairs, triples or, in general, m-tuples of
leaves with the same degree of relatedness. More specifically, we
characterize kin correlations by the joint distribution describing
the probability of different cells being found simultaneously in
certain states. For example, for the pair correlator, Gð2Þ

mnðuÞ is
defined in a given population (i.e., the single realization of the
dynamics) as the fraction of all pairs of cells with the common
ancestor u generations in the past that are in states m and n,

Gð2Þ
mnðuÞ=

1
N 2

X
ij,ki−jk=u

�
δm, siδn, sj

�
[1]

where ki− jk is the genealogical distance, or the level of kinship,
between cells i, j, which is defined as the number of generations
to their most recent common ancestor. N 2 is the number of all
pairs at genealogical distance u. Because of the possible corre-
lations, this joint probability may not be equal to the product of
probabilities, pnpm, to observe n and m on their own. These
correlations are explicitly captured by

gð2ÞmnðuÞ=Gð2Þ
mnðuÞ− pm pn, [2]

which explicitly subtracts the uncorrelated (product) term.
Similarly, the triple distribution is defined by

Gð3Þ
lm,nðu, vÞ=

1
N 3

X
ijk,ki−jk=u,ki−kk=u+υ

�
δl, siδm, sjδn, sk

�
, [3]

where u is the number of generations to the common ancestor of
the more closely related pair, v is the further number of gener-
ations back to the common ancestor of all three nodes (see Fig.
1), and N 3 is the total number of such triplets. To focus on the
correlation effects, we subtract the contribution of independent
fluctuations,

gð3Þlm, nðu, vÞ=Gð3Þ
lm, nðuÞ− pn g

ð2Þ
lm ðuÞ− pm gð2Þln ðvÞ− pl gð2ÞmnðvÞ− pl pm pn,

[4]

which is defined so that it goes to zero when joint probability
factorizes. The so-called “connected correlators” gð2ÞmnðuÞ and
gð3Þlmnðu, vÞ explicitly quantify the extent of pairwise and third-order
correlation between the nodes on the boundary of the genealog-
ical tree. How much can these readily measurable correlations,
defined as they are by a snapshot of a population with known
genealogy, tell us about the dynamics that unfolded on the tree?

The Minimal Model of Stochastic Phenotype Propagation. Let us
begin with the simplest possible model. Assume that stochastic

A

B

Fig. 1. (A) Phenotypic dynamics on a tree. The phenotypic state (color) of
each node stochastically changes when inherited from the parent. Only the
boundary nodes are accessible at the time of observation. Stochastic varia-
tion on the boundary is characterized by kin correlation functions, for ex-
ample, the probability of observing blue and red colors on two nodes whose
common ancestor was three generations back (u= 3). Similarly, the three-
point correlation function can be investigated for a set of points, where the
common ancestor of the two closest points is two generations back (u= 2),
and that of all three is an additional two generations back (v = 2). (B) Pyo-
verdine distribution in a P. aeruginosa colony. Genealogy is captured by
imaging the growth of the colony. At the last time step (390 min after the
start of growth) the phenotype of the bacteria—the intensity of Pvd fluo-
rescence—is imaged and assigned to each node.
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dynamics can be approximated by a Markov process, which
means that probability to transition from state n to a state m in
the time of a cell cycle depends only on the two states involved;
i.e., the dynamics is defined probabilistically by a transition
probability matrix T1ðmjnÞ (with

P
mT1ðmjnÞ= 1). The proba-

bility TuðmjnÞ for a cell to start in state n and end up in
state m time u generations later is given by the product of
the u transition matrices obtained by iterating TuðmjnÞ=P

kT1ðmjkÞTu−1ðkjnÞ. We can now calculate the joint distribution
for a kin pair descending from a common ancestor in state l, u
generations back,

Gð2Þ
mnðuÞ=

X
l

TuðmjlÞTuðnjlÞ pl. [5]

The third-order correlator can be written down in a similar way,

Gð3Þ
mm′,m″ðu, vÞ=

X
l, k

TuðmjkÞTu
�
m′jk�TvðkjlÞTu+v

�
m″jl� pl. [6]

In our minimal model, we assume that phenotypic states ef-
fectively form a chain with transitions occurring only between
neighboring states (more generally, any graph without loops
would behave the same way). In this case, stochastic dynamics
satisfies Detailed Balance (33, 35) (see SI Text), meaning that,
in equilibrium, the forward and backward fluxes between any
pair of states balance: T1ðmjnÞpn = pmT1ðnjmÞ. This allows defi-
nition of a symmetric matrix Amn = p−1=2m T1ðmjnÞp1=2n such that
Amn =Anm. Note that pm, being the equilibrium probability of
statem, satisfies

P
nT1ðmjnÞpn = pm and hence

P
nAmnp

1=2
n = p1=2m .

We note that thus defined, our minimal model of epigenetic
dynamics is mathematically identical to the model studied by
Harlow et al. (33) (in a very different context). Following ref. 33,
we diagonalize the symmetric matrix, Aϕα = λαϕ

α, and rewrite the
transition matrix in terms of its orthonormal eigenvectors ϕα and
eigenvalues λα,

TuðmjnÞ= p1=2m p−1=2n

X
α

ðλαÞuϕα
mϕ

α
n. [7]

The equilibrium distribution corresponds to the largest eigen-
value λ0 = 1 and corresponding ϕð0Þ

n = p1=2n .
To take full advantage of the ensuing simplifications, we de-

fine correlators in the ϕα basis,

Ĝ
ð2Þ
αβ ðuÞ=

X
mn

p−1=2m p−1=2n Gð2Þ
mnðuÞϕα

mϕ
β
n. [8]

In this basis, pair correlators for our “minimal model” of
phenotypic dynamics have a very simple form (33),

Ĝ
ð2Þ
αβ ðuÞ= λ2uα δαβ, [9]

and similarly for the three-point correlator expressed in ϕα basis
in analogy with Eq. 8.

Ĝ
ð3Þ
αβγðu, vÞ= λuαλ

u
βλ

u+2v
γ Cαβγ , [10]

where we have defined constants,

Cαβγ =
X
m

p−1=2m ϕα
mϕ

β
mϕ

γ
m, [11]

which are analogous to “structure constants” that appear in con-
formal field theories describing critical phenomena in physics
(34, 36)—an interesting connection, explored by Harlow et al.
in ref. 33, which we shall explain in Discussion.

Note that since ϕð0Þ
m = p1=2m , it follows from the orthonormality

of eigenvectors
P

mϕ
α
mϕ

β
m = δαβ that Cαβ0 = δαβ. It is easy to verify

that connected correlators ĝð2Þαβ and ĝð3Þαβγ are nonzero only for
α, β, γ ≥ 1 and are also given by Eqs. 9 and 10. We emphasize that
Cαβγ is determined by ϕα, the eigenstates of the pair correlator;
thus the pair correlators fully determine the three-point cor-
relation functions.
In fact, it can be shown (see SI Text) that all of the higher-

order correlators can be expressed completely in terms of λα and
Cαβγ, which puts a strong and readily testable constraint on
predicted correlators: A pair correlator can be used to define
model parameters, and higher-order correlators can be used to
test the model. Actually, as we shall show next, the simple di-
agonal form of the expression for Ĝ

ð2ÞðuÞ is already a nontrivial
consequence of assumed dynamics that must be tested to verify
the underlying assumptions such as existence of detailed balance.

Kin Correlations in the Pyoverdine Dynamics in P. aeruginosa. In the
experiments of Julou et al. (31), the fluorescence of free Pvd in
each bacterium was measured using time-lapse fluorescent mi-
croscopy, while the growth of the colony was followed with phase
microscopy, providing the genealogical tree. For the analysis
below (see Methods), we used only the final snapshots of Pvd
distribution for nine colonies, each with 29 cells. Each snapshot
gives us Pvd concentrations in individual cells corresponding to
the leaves of a genealogical tree nine generations deep. These
concentrations were binned to three equally likely states, deno-
ted from 1 to 3, defining, respectively, low, medium, and high
concentration states. (Connecting to the general formulation
presented above, we note that in analyzing the data, we can
choose our freedom to define “bins” to set pn uniform.)
It is plausible to think of Pvd dynamics in the colony as a

stochastic process on a tree subject to interactions that correspond
to local exchange of Pvd. We begin by comparing the observed
pairwise kin correlations to the prediction of our minimal model
given by Eq. 9. To that end, we construct correlation matrices for
pairs of leaves conditioned by their relatedness, u, and diagonalize
them. Fig. 2A depicts the eigenvalues of the two-point correlation
matrices Gð2Þ

mn as a function of relatedness u. The eigenvalues are
taken to the power of 1=2u to remove the trivial distance de-
pendence (λ2uα → λα); for the minimal model considered above, this
scaling will result in eigenvalues that are independent of u (see Eq.
9). The observed values, however, are significantly different from
constant (see SI Text for the P values), suggesting either a presence
of interaction or a deviation from the simple Markovian or de-
tailed balance form of stochastic dynamics.
However, the observed eigenvalues deviate most at u= 1 and

then asymptote to a constant value with increasing u, suggesting
the minimal model may still provide a good description of cor-
relations among distant relatives. To test that, we examined
third-order correlators, for which the minimal model predicts
Eq. 10: an expression defined entirely in terms of the second-
order correlators, without any additional parameters. (As noted
above, this relation is the consequence of the hidden conformal
symmetry of the process.) Fig. 2 B and C depicts the three-point
correlation functions of the data. The eigenvectors of Gð2Þ at
u= 5 were used as a naive approximation of ϕα

m. The λα were
approximated as eigenvalues of Gð2Þðu= 5Þ taken to the power of
1=10. Within statistical error, Eq. 10, computed using Gð2Þ at
u= 5, seems to correctly predict the Gð3Þ at distant boundary
points; however, the deviation increases as closer points on the
boundary are considered. At distance u= v= 1, the predicted
third-order correlation function is significantly different from the
experimental observation, which is not surprising, given the al-
ready noted deviations in observed pair correlations. However,
the approximate agreement observed at longer genealogical
distances is nontrivial and supports the validity of the model.

Hormoz et al. PNAS | Published online April 22, 2015 | E2283

PH
YS

IC
S

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504407112/-/DCSupplemental/pnas.201504407SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504407112/-/DCSupplemental/pnas.201504407SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504407112/-/DCSupplemental/pnas.201504407SI.pdf?targetid=nameddest=STXT


The fact that Eq. 10 correctly predicts the three-point corre-
lation function (based on the measured pair correlator) for
sufficiently distant relatives demonstrates that the simple mini-
mal model already provides a reasonable approximation for the
long-time dynamics, which is quite remarkable, as it confirms
approximate validity of the detailed-balance and Markovian pro-
cess assumptions. We shall next demonstrate that the deviations
at short times can be accounted for by existence of interaction
between sisters.

Effective Interactions Between Siblings. We now generalize our
minimal model to allow for interactions between siblings, which
can, in effect, be captured in the form of the mother−daughter
transmission function Γðk1, k2jnÞ. The two-point correlator is now

Gð2Þ
mnðuÞ=

X
l

X
k1, k2

Tu−1ðmjk1ÞTu−1ðnjk2ÞΓðk1, k2jlÞ pl. [12]

Γðk1, k2jlÞ describes possible correlation in the states of the two
daughters as they “inherit” from the mother. [Because the un-
conditioned effect of the mother−daughter transition is sub-
sumed in T1ðmjnÞ, we have

P
k2Γðk1, k2jlÞ=T1ðk1jlÞ]. Finally, pl

is the probability of the ancestor to be in state l.
Similarly, the third-order correlator is modified to

Gð3Þ
m1,m2,m3ðu, vÞ=

X
l, ki

Tu−1ðm1jk1ÞTu−1ðm2jk2ÞΓðk1, k2jk3Þ

Tv−1ðk3jk4ÞTu+υ−1ðm3jk5ÞΓðk4, k5jlÞpl.
[13]

Without any simplifying assumptions on Γðk1, k2jnÞ, we have a
more general expression for the pair correlator,

Ĝ
ð2Þ
αβ ðuÞ= λu−1α λu−1β b̂αβ [14]

with b̂αβ =
P

l,m,nðpn=
ffiffiffiffiffiffiffiffiffi
plpm

p ÞΓðlmjnÞϕα
l ϕ

β
m. Thanks to the consis-

tency condition (and the fact that ϕð0Þ
m = p1=2m ), we have b̂α0 = δα0,

so that the interaction mixes only the (decaying) α≥ 1 eigen-
modes of T.
In SI Text, we show that ϕα

m and λuα are still recovered as the
large u asymptotic eigenfunctions and eigenvalues of Gð2Þ

lm ðuÞ.
Hence they can be directly estimated from the large u data.
With ϕα

m obtained by diagonalizing Gð2Þ
lm ðuÞ for distant kin,

we can obtain b̂αβ from the observed sister correlations
b̂αβ =

P
l,mp

−1=2
l p−1=2m ϕα

l ϕ
β
mG

ð2Þ
lm ð1Þ. We can then, by diagonalizing

λu−1α λu−1β b̂αβ, calculate finite u corrections to ϕα
m and λα and use

these to get a corrected estimate for b̂αβ, defining an iterative
process by which we fit interaction correction to the observed
pair correlators.
Pair correlators, however, do not fully determine the Γðl,mjnÞ

interaction, and we next consider the third-order functions.
Rewriting Eq. 13 in terms of the eigenvectors ϕα

l of the large u
(conformal) limit, we find

ĝð3Þαβγðu, vÞ= λu−1α λu−1β λu+v−1γ

X
δ≥1

λv−1δ Γ̂ðα, βjδÞb̂γδ [15]

with the definition

Γ̂ðα, βjδÞ=
X
l,m, k

ffiffiffiffiffiffiffiffiffi
pk
plpm

r
ϕα
l ϕ

β
mϕ

δ
kΓðl,mjkÞ, [16]

which reduces to a multiple of the symmetric structure constants
λαλβCαβδ in the absence of interaction, when Γðl,mjkÞ=
T1ðljkÞT1ðmjkÞ. We also observe that Γ̂ðα, βj0Þ= b̂αβ is already
determined by the analysis of pair correlations. Because λδ de-
creases with increasing δ, one can approximate by truncating the
sum over δ and proceed to define Γ̂ðα, βjδÞ by least-square fitting
the (overdetermined, on account of u, v dependence) linear system
relating it to ĝð3Þαβγðu, vÞ. In practice, with limited data, we retain
only the leading correction term (δ= 1), which, as we demonstrate
below, can already provide a satisfactory approximation.

Testing Interaction Inference on Simulated Data. The above in-
ference algorithm was applied to simulated trees with random
sibling interactions Γ (see SI Text for details). The empirical
second- and third-order correlators were measured by counting
occurrences of pairs and triplets of phenotypic states as a func-
tion of relatedness using Eqs. 1 and 3. Eigenvectors and eigen-
values of T1 (ϕα

m and λα) were calculated using the two-point
correlator at the largest distance u= 6. As discussed above, the
minimal model is accurate, even with interactions at large sep-
aration distances. We then calculated a “naive” prediction from
the minimal model of what the correlation functions ( ~G0) should
be at other distances and higher orders using Eqs. 9−11.
We used three parameters to fit the deviations using the in-

teractive form of the second-order correlator (corresponding to
the unique nonvanishing terms in the matrix b̂αβ). Another three
parameters were fit to the third-order correlators with the series
in Eq. 15. terminated at the leading order δ= 1 (SI Text). Corre-
lators at all distances u (u, υ) were fit simultaneously to determine

Fig. 2. Kin correlations in P. aeruginosa data. (A) Eigenvalues of the two-point correlation matrix Gð2Þ
mnðuÞ of the experimentally observed trees. The trivial

distance dependence of the eigenvalues is scaled out (by taking the eigenvalues to the power of 1=2u), such that the minimal model would have constant
eigenvalues. Solid gray lines are the actual eigenvalues. The largest eigenvalue is always 1, corresponding to the equilibrium mode α= 0. The dashed gray lines
are the “naive”minimal model prediction calculated using the observed Gð2Þðu= 5Þ. The colored lines are the best fit of the interacting theory to the observed
two-point correlation functions. (B) The three-point correlation function Gð3Þ

m1,m2 ,m3 computed from the data at distances u= v = 1, and u= v = 3. The correlation
function becomes more uniform as the separation distance increases. (C) Minimal model allows us to calculate the structure constants by observing only the
second order correlators. Deviation of the minimal model structure constants (Eq. 11) from the actual structures constants inferred from the data,
ΔC =Cαβδ −Gð3Þ

obsλ
−u−2v
α λ−uβ λ−uδ . The absolute value denotes the norm of matrix ΔC (Methods), which is normalized by the SD of the finite-size fluctuations

expected in the structure constants (Methods). As expected, as the separation distance of the points on the boundary increases, the correlation functions
more closely resemble those of the minimal model. The largest deviation (at u= v = 1) has a statistical significance of 2 SD.
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the free parameters in b̂αβ [truncated Γ̂1ðα, βjδÞ] that minimized
the least-square difference between the observed and predicted
ĝð2Þαβ ðuÞ [ĝð3Þαβγðu, vÞ]. Inferred transition matrix ~Γ was then computed
from Γ̂ðα, βjδÞ using Eq. 16. Fig. 3 shows the reduction in deviation
of the predicted correlators from observed correlators as inter-
actions are introduced into the minimal model. Fitting the three-
point correlators clearly improves the inference of the transition
matrix Γ (Fig. 3D).

Inferring the Interactions in P. aeruginosa. We now return to
P. aeruginosa and attempt to infer the form of the interactions
from the observed kin correlations of Pvd. Following the above
recipe, we have fit the free parameters in b̂αβ to the observed two-
point correlation functions, correctly capturing the deviations in
the eigenvalues of Gð2Þ matrices with u (Fig. 2A, colored curves).
The inferred switching rates ~TðkjsÞ= P

m
~Γðm, kjsÞ are consistent

with the switching rates that have been measured by observing the
phenotypic states of parents and daughters in the bulk of the tree
(Fig. 4A). The apparent decrease in the probability of conserving
the parental phenotype in the bulk dynamics is due to the ambi-
guity in determining the parent phenotype; Pvd concentration can
fluctuate significantly during a cell cycle.
The inferred ~Γ at this order—the limited nature of data does

not allow us to fit higher-order correlators—contains a clear
signature of interactions. The probability of one daughter cell
having a low Pvd concentration while the other has a high Pvd

concentration is significantly reduced compared with the non-
interacting case (Fig. 4B). This is consistent with nearest neigh-
bor exchange of Pvd, which reduces sharp gradients (1-3 states)
between neighboring cells, in particular, siblings. Fig. 4B also
shows that the change in likelihood of occurrence of certain
sibling pairs is independent of the state of the parent.
Moreover, from the calculated decrease in the likelihood of ob-

serving 1-1 siblings pairs and the time scale for division (40 min),
we can crudely estimate the exchange rate between neighbors.
Define c′= c− cneigh, the difference between Pvd concentration of
a cell and its neighbor. Exchange decreases c′ over time,
dc′=dt=−γc′. If exchange were infinitely fast (or occurred with
probability 1 at each generation), we would never observe 1-3
(low-high) pairs. Our inferred interaction indicates that 1-3 pairs
occur with 1/2 the frequency expected in the absence of in-
teractions. At each generation, probability of exchange is
roughly 1/2. At each exchange, Δc′∼ c′ and Δt∼ 40× 2 min,
yielding the crude order of magnitude estimate γ ∼ 0.01/min.
This prediction is consistent with the value calculated from
the direct observation of Pvd dynamics following individual
cells (31).

Spatial Interactions. In this section, we address the spatial nature
of Pvd exchange. First, we argue that a model that only includes
interactions between sisters can be used to infer interactions that
take place between all neighboring bacteria in the colony. Next,
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Fig. 3. In silico test of the inference algorithm. (A) Eigenvalues of the two-point correlation matrix Gð2Þ of nodes whose common ancestor is u generations
back for trees generated from a randomly chosen interacting transition matrix Γ. The trivial scaling with distance has been removed, such that the eigenvalues
of the minimal model with no sibling interactions would be constant. Solid gray lines are the actual eigenvalues computed from simulated trees with in-
teractions (see SI Text for details). The largest eigenvalue is always 1, corresponding to the stationary mode. The dashed gray lines are the minimal model
prediction calculated using the observed Gð2Þðu= 5Þ. The colored lines are the interactive model fit to the observed two-point correlation functions. (B) The
observed three-point correlation function Gð3Þðm1,m2,m3Þ is depicted as 3× 3× 3 matrix for u= v = 1 (Left). The fractional deviation of each element of the
predicted three-point correlator (Eq. 10) from its actual value, ΔG=G−Gobs (depicted schematically as the diameter of the spheres), for the minimal model
and interacting model (Right). The predicted correlation functions clearly improve with introduction of interactions. (C) The cumulative deviation in the
predicted Gð3Þ at different distances ðu, vÞ for the minimal model and with corrections from interactions. Deviation is the norm of the matrix ΔG. Deviations
are larger for closer boundary points. (D) Deviation of the inferred transition matrix ~Γ from the actual one Γ for many randomly generated Γ. Distance based
on the norm is used to quantify the deviation, Δ~Γs = j~Γs −Γj, for minimal model s= 0, interactions fit to the two-point correlators s= 2, and interactions fit to
the three-point correlators s= 3. Fitting the three-point correlation functions improves the inference.
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we try to estimate the expected spatial correlations in Pvd con-
centration of cells in a colony. To do so, we restore the interactions
inferred from siblings to all neighboring pairs of bacteria.

Local interactions in P. aeruginosa colonies are believed to be
due to the exchange of Pvd. While exchange of Pvd between
neighbors can correlate concentrations found in sister cells, ex-
change is not limited to siblings and occurs between all adjacent
bacteria regardless of the degree of relatedness. Nevertheless, we
shall argue that the effect of local exchange on the distribution of
Pvd on the genealogical tree can be effectively represented
through interactions between siblings.
Fig. 5 shows the relationship between spatial distance and the

degree of relatedness in the colonies followed in the experi-
ments. Each bacterium has, on average, seven neighbors, defined
as cells located within 1.5 cell widths. Although it is more likely
to find the sister as one of cell’s neighbors (with probability 0.4
compared with 0.03 for any particular seventh cousin), the
neighborhood is dominated by distant cousins. This is because
the number of cousins grows exponentially for each additional
generation back to the common ancestor.
Thus, exchange with near neighbors is dominated by the ex-

change with distant relatives, which effectively averages over the
whole distribution without contributing to kin correlations. In
the limit of a well-mixed population, where neighbors are ran-
dom nodes from the current generation, local exchange would
contribute exactly nothing to kin correlations: Any interaction
that is not systematically coupled to the topology of the tree is
irrelevant. Bacteria on the plate, however, are not that well
mixed: The sister cell is systematically a neighbor and couples the
exchange interaction to the topology of the tree. Although close
relatives are also overrepresented among near neighbors, we
found that to a good approximation to account for local Pvd
exchange, it suffices to introduce interactions between sisters.
In the absence of direct spatial interactions, it is possible to

map kin correlations to spatial correlations—the probability of
observing a pair of bacteria in states m and n at separation dis-
tance d,

Gð2Þ
mnðdÞ=

1
N
X
u

Gð2Þ
mnðuÞpðdjuÞ2u−1, [17]

where pðdjuÞ is the probability of observing a relative of lineage
distance u at separation distance d. This distribution is deter-
mined empirically by tracking the growth of the colony and is
depicted in Fig. 5B. Here, 2u−1 is the number of relatives at
lineage distance u.
In P. aeruginosa colonies, however, direct spatial interactions

exist. Local exchange of Pvd implies that kin correlations do not

A

B

Fig. 4. Inferring the form of interactions in P. aeruginosa. (A, Left) The inferred
switching rates (probability per generation) between the three Pvd states (low,
medium, and high) along a single lineage, ~TðkjsÞ=Pm

~Γðm, kjsÞ. ~Γ is the transition
matrix inferred by fitting the interacting model to the two-point correlation
functions of the observed trees up to second cousins. (Right) The transition rates
are deduced fromdirect observations of Pvd states of parents and daughters in the
bulk of the tree. The phenotypic state seems less likely to be conserved from direct
measurements in the bulk. The discrepancy, however, is due to the ambiguity in
determining the state of the parent. (B) The change in likelihood of observing
sibling pair 1–3 from a particular parent state s due to interactions (inferred values
shown on the left). This is the ratio of the joint distribution of the sibling states ~Γ
over a separable distribution constructed from the marginal distributions ~T. The
separable distribution corresponds to independent lineages with no interactions.
Occurrence of 1-3 siblings is significantly smaller with interactions. The change in
likelihood is also independent of the state of the parent s. This is consistent with
exchange interactions that decrease Pvd differentials between neighboring cells
regardless of the lineage history. The inferred interaction is consistent with what is
directly measured using the phenotypic states in the bulk of the tree (Right).
Transitions from parent state 2 to daughter states 1–3 are rare, and their change in
likelihood was not statistically significant in our limited data set.

Fig. 5. Spatial proximity as a function of relatedness. (A) Neighbors are defined to be within 1.5 cell widths of a given bacterium. The red bacterium has six neighbors
shaded in blue. The average number of neighbors is seven. (B) Distribution of pair-wise spatial distances (in units of average bacterium width) between all pairs of
bacteria whose common ancestor is u generations back, computed over nine colonies of nine generations. Distribution at each value of u has its maximum normalized
to 1; color scale is shown on the right. The spatial distance on average increases with increasing genealogical distance. However, there are large fluctuations.
(C) Probability that a randomly chosen nearest neighbor pair has a common ancestor u generations back. It is most likely to find distant cousins (u= 7) adjacent to each
other. This is because there are exponentially more cousins going back each generation to the common ancestor. If we normalize for number of relatives at distance u
(Inset), we observe that with probability ∼ 0.4, the sister will be adjacent to its sibling. However, a particular distant cousin is a neighbor with probability less than 0.03.
(D) Second and third eigenvalues of the spatial correlation matrix Gð2Þ

mnðdÞ as a function of separation distance; the first eigenvalue is trivially equal to 1. The solid lines
are the prediction of the model (with no fitting parameters) and capture the change in correlation with decreasing separation distance.
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capture all of the spatial correlations. We must reintroduce in-
teractions between neighbors that were averaged out when we
computed the kin correlators on the lineage tree. A simple way
to do so is using the following observation: Progenies of distant
ancestors that by chance remain nearest neighbors of closer
ancestors are, in effect, more highly correlated than would be
expected from degree of relatedness alone. This is because nearest
neighbors are more likely to be in the same phenotypic state. Using
this observation (see Methods) and the empirical measurement of
the probability of finding a relative at lineage distance u as a nearest
neighbor (Fig. 5C, Inset), we can estimate Gð2Þ

mnðdÞ without using any
fitting parameters. Fig. 5D shows that the prediction is in good
agreement with the observed spatial correlations.

Discussion
In this study, we have systematically related phenotypic corre-
lation as a function of kinship, or kin correlations, to the un-
derlying epigenetic dynamics. Introducing a rather general class of
models, we were able to formulate a method for inferring dynamical
parameters from static measurements on cell populations supple-
mented by the lineage information. This method was then applied
to the data on the dynamics of Pyoverdine in P. aeruginosa colonies,
with the result validated by the comparison with the direct mea-
surements of Pvd dynamics along cell lineages.
Our analysis was based on the minimal model of epigenetic

dynamics which assumed (i) independent transmission of phe-
notype from mother cell to its two daughters and (ii) detailed
balance property of stochastic transitions between phenotypic
states. The former assumption was subsequently relaxed, replaced
by a general probabilistic model of epigenetic transmission that
allowed parameterization of interaction between sister cells. The
profound advantage of our minimal model as a starting point is
the highly constrained form of the correlations that it entails:
Higher-order correlators are completely defined in terms of the
pair correlators. Exactly the same relation between correlators is
known in field theories describing critical phenomena and is as-
sociated with conformal symmetry (33, 34)—a fact noticed by
Harlow et al. (33) in the general context of Markovian dynamics
on Bethe lattices. It is remarkable that the minimal model of
epigenetic dynamics on lineages, with its highly constrained
correlators, provides a good description of experimentally ob-
served correlations among distant P. aeruginosa cells (31).
The relation between pair and higher-order kin correlations

follows from the Detailed Balance property of the minimal
model (33). The assumption of detailed balance in the dynamics
makes forward and reverse time directions indistinguishable:
There is no “arrow of time” associated with lineage dynamics,
and the tree is effectively unrooted. As a result, correlations can
depend only on the genealogical distance along the tree and
must be explicitly independent of the position relative to the
root. Now, any unrooted tree may be regarded as a finite chunk
of a “Bethe lattice,” where each vertex joins three infinite binary
trees, and all vertices are equivalent.
However, unlike a regular lattice (such as the square grid ex-

ample in Fig. 6A) where the number of nodes is a polynomial of
lattice size, the Bethe lattice grows exponentially in the number of
generations. A representation of the Bethe lattice where all of the
angles and edge lengths are constant is fundamentally impossible in
Euclidean space. It is possible, however, to embed the Bethe lattice
in hyperbolic space, where the negative curvature provides expo-
nentially growing room with increasing distance (37). Fig. 6B is a
representation of a tree in hyperbolic space using the Poincare disk
model (37) (see SI Text for details). The angles between the edges
are the same for all of the nodes in this representation, and the
Poincare disk metric makes all branch lengths equal.
There are transformations, such as rotation by 90 degrees and

translations by integer multiples of a lattice constant, that leave the
square lattice unchanged (Fig. 6A). The invariance of the square

lattice under these transformations implies that its correlation
functions obey rotational and translational symmetries. A lattice in
hyperbolic space is invariant under additional transformations. An
easy way to see this is to consider the Poincare disk representation
of trees (Fig. 6B). Conformal transformations of the Poincare disk
onto itself (see SI Text) are isometries that leave the lattice invariant
(37). Since these transformations do not change the relative posi-
tion of the bulk nodes, correlation functions on the tree must obey
conformal symmetry, which accounts for their strongly constrained
form (34).
The connection between our Eqs. 9 and 11 and correlators

typically computed in conformal field theories (33, 34) is explained
in detail in SI Text. However, this unexpected connection, while
providing interesting context for our findings, adds little compu-
tational power, as all of the key results followed directly from the
analysis of Markovian dynamics on a tree.
Despite its generality, the proposed approach has a number of

obvious limitations. Virtually by definition, it is blind to phenotypic
dynamics that occur on a time scale shorter than a cell cycle and
phenotypes that are not transmitted from mother to daughter. Such
fluctuations do not contribute to kin correlations; furthermore, they
would tend to mask the epigenetically heritable phenotypic
variation. Another limitation was evident in our analysis of Pvd

Fig. 6. Conformal symmetry of correlation functions on trees. (A) There are
transformations that leave the square lattice unchanged, such as rotation by 90
degrees, and translation by integer multiples of a lattice constant. Invariance of
the lattice under these transformations implies that the correlation functions
must obey rotational and translational symmetries. (B) A tree cannot be repre-
sented in Euclidean space as a lattice. However, it is possible to do so in hyper-
bolic space. Here, a tree in hyperbolic space is visualized using the Poincare disk;
all of the angles and branch lengths of the tree are constant (much like the
square lattice shown in A). The four images are snapshots of a conformal
transformation that maps the tree back onto itself (the color coding is a guide
for the eyes). Since the tree is unchanged, the correlation functions on a tree
must obey conformal symmetry.
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dynamics. Our focus on epigenetic dynamics along lineages does not
allow for easy incorporation of information on spatial proximity. As
a result, instead of directly estimating the interactions due to local
exchange of Pvd, we estimated the effect of this interaction on kin
correlation, which comes about because siblings are more likely to
be exchanging with each other than with anyone else. Hence, our
inference yields effective interactions, the origin of which must be
examined to be properly interpreted. Other limitations of the pre-
sent approach, such as discretization of the phenotypic state space
state and discretization of time (corresponding to synchronously
dividing population), are less fundamental. The model can be
generalized to relax these assumptions if warranted by the system
under consideration and the extent of available data.
Our example of inferring Pvd dynamics should be thought of

as a proof of principle. Dynamics of (naturally fluorescent) Pvd
can be directly observed using time-lapse fluorescent micros-
copy. Dynamic reporters in general, however, require nontrivial
genome engineering, and, at best, are limited to a few spectrally
distinct fluorophores. By contrast, measurements such as FISH
and immunostaining do not have these limitations, but only
provide static snap shots (10, 32, 38). High throughput technol-
ogies can simultaneously measure numerous biomarkers in large
populations at a single-cell resolution (10, 39–45), resulting in a
snapshot of a high-dimensional phenotypic space. Our approach
is ideally suited for these applications.
More specifically, we envision our analysis applied to un-

derstanding developmental programs and dynamics of epigenetic
states in stem cells. In these systems, lineage information can be
obtained from nonintrusive time-lapse microscopy, and fixed cell
measurements such as FISH can provide a snapshot of the ex-
pression levels of many genes simultaneously (46). Evidence of
broken detailed balance in stem cell epigenetic states can po-
tentially shed light on the underlying pluripotency network.
Similar analysis on cancer cellular states (32) can elucidate the
dynamics of phenotypic switching in cancer cells without a need
for dynamic reporters. Moreover, lineage structure of antibody
repertoires (47) and tumor cells (48, 49), when supplemented
with single-cell phenotyping, are ideally suited for analysis using
our framework. Lastly, our approach can be used to disentangle
phenotypic correlations due to shared lineage from those due to
other factors such as signaling, which is of particular interest for
understanding differentiation and reprogramming (50).

Methods
Analyzing the Experimental Data. The experimental data were in the form of a
series of images captured from the growth of P. aeruginosa microcolonies;
for details of the experiments, see ref. 31. Nine microcolonies were analyzed.
The boundary was defined to be the population on the last image. The
distance of a pair of boundary nodes was calculated by counting the number
of divisions from each node to their common ancestor (CA)—determined by
tracing back their history in the images. Although the division time of the
bacteria was on average 40 min, fluctuations were observed; number of
generations to the CA was sometimes not the same for the two nodes. For
these cases, we randomly selected the value for one of the nodes as the

distance. The same method was used to determine the distances between
three boundary points (values of u and v).

The signal (Pvd concentration) in each imagewas calculated as follows: The
fluorescence intensity in the cell was subtracted from background fluores-
cence in that image and then normalized by the mean signal of all of the cells
in the image. Normalization removes the effect of increase in the total Pvd
concentration in the microcolony over time. The resultant signal distribution
is stationary (see SI Text). For the boundary cells, we discretized the signal
into three phenotypes (low, medium, and high Pvd levels; respectively, 1–3)
by binning the signal to ensure a uniform distribution (equal numbers) of
each phenotype.

In Fig. 2C, the statistical error of the experimental data was estimated by
simulating the inferred transition matrix for 64,000 iterations of nine trees
of nine generations. The eigenvalues and eigenvectors of the inferred
transition matrix were obtained from the observed two-point correlation at
u= 5. The ϕα

m are the eigenvectors of Gð2Þð5Þ, and λα are its eigenvalues to the
power of 1/10. C0 is calculated using the ϕα

m and Eq. 11. Cobs is estimated from
the third-order correlators using Eq. 10. The deviation is calculated using the
matrix norm, jC0ðu, vÞ−Cobsðu, vÞ0j, divided by the SD of C0ðu, vÞ over the
64,000 iterations. We use Frobenius norm, which for a N×N matrix is de-
fined by jAj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i,ja

2
ij

q
.

The bulk transition rates in Fig. 4 were determined by counting all occur-
rences of the phenotypic states of parent and daughter cells in the observed
trees. The phenotypic state of a bulk node was taken to be the Pvd state at the
last time point of the cell cycle. The results were not sensitive to this choice.

Lineages in Space.Distance between any pair of bacteria in a colony is defined
as the minimum distance between either pole or centroid of one bacterium
and either pole or centroid of the other. Nearest neighbors are defined as
pairs whose distance is less than 1.5 times the average cell width. Fig. 5 was
computed using spatial information from nine colonies of nine generations.
The average coordination number is 7.

Predicting Spatial Correlations. The descendants of an ancestor at lineage
distance u′>u that remain nearest neighbors of the ancestor at lineage
distance u have undergone exchange with the latter ancestor for u′−u
generations. These bacteria contribute to the spatial correlations as relatives
not of distance u′ but rather of distance u.

We include the contribution of these “effective” ancestors as follows:

Gð2Þ
mnðrÞ=
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u
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[18]

where θðΔuÞ= ð1=τÞe−Δu=τ is the probability that exchange has not happened
in Δu generations. Here, τ is the mean waiting time for exchange, which we
estimated roughly as two generations using our inference, τ= 2. pðrjuÞ is
probability of finding an individual of relatedness u at spatial distance r, and
qðuÞ is the empirically observed probability that a particular cousin at lineage
distance u is a nearest neighbor (Fig. 5C, Inset). N is the normalization constant.
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