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An LXR–NCOA5 gene regulatory complex directs
inflammatory crosstalk-dependent repression of
macrophage cholesterol efflux
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Abstract

LXR–cofactor complexes activate the gene expression program
responsible for cholesterol efflux in macrophages. Inflammation
antagonizes this program, resulting in foam cell formation and
atherosclerosis; however, the molecular mechanisms underlying
this antagonism remain to be fully elucidated. We use promoter
enrichment-quantitative mass spectrometry (PE-QMS) to charac-
terize the composition of gene regulatory complexes assembled
at the promoter of the lipid transporter Abca1 following downre-
gulation of its expression. We identify a subset of proteins that
show LXR ligand- and binding-dependent association with the
Abca1 promoter and demonstrate they differentially control Abca1
expression. We determine that NCOA5 is linked to inflammatory
Toll-like receptor (TLR) signaling and establish that NCOA5 func-
tions as an LXR corepressor to attenuate Abca1 expression. Impor-
tantly, TLR3–LXR signal crosstalk promotes recruitment of NCOA5
to the Abca1 promoter together with loss of RNA polymerase II
and reduced cholesterol efflux. Together, these data significantly
expand our knowledge of regulatory inputs impinging on the
Abca1 promoter and indicate a central role for NCOA5 in mediat-
ing crosstalk between pro-inflammatory and anti-inflammatory
pathways that results in repression of macrophage cholesterol
efflux.
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Introduction

Macrophages have a critical role in maintaining systemic lipid

homeostasis. They promote the efflux of excess intracellular

cholesterol to high-density lipoproteins (HDL), thereby facilitating

its return to the liver through the reverse cholesterol transport

system. Macrophage cholesterol efflux is dependent on membrane-

associated lipid transporters, such as ATP-binding cassette, sub-

family A, member 1 (ABCA1) (Oram et al, 2000; Vaisman et al,

2001; Wang et al, 2007; Yvan-Charvet et al, 2007). The importance

of ABCA1 function to this process is illustrated in Tangier disease,

where mutations in the Abca1 gene disrupt cholesterol efflux

resulting in the formation of lipid-filled macrophage foam cells

(Bodzioch et al, 1999; Brooks-Wilson et al, 1999; Rust et al, 1999;

Orso et al, 2000).

Macrophage foam cells are highly prevalent and significant

contributors to the pathology of the chronic inflammatory disease

atherosclerosis, a leading cause of morbidity and mortality

worldwide (Moore et al, 2013; http://www.who.int/mediacentre/

factsheets/fs317/en/). During the development of atherosclerosis,

extrinsic inflammatory stimuli activate pro-inflammatory macro-

phage Toll-like receptors (TLRs), which repress expression of lipid

transporters, and therefore impede cholesterol efflux (Castrillo

et al, 2003; Spann et al, 2012). Notably, in mice, the absence of

Abca1 expression in macrophages results in increased foam cell

formation and atherosclerosis (Aiello et al, 2002; van Eck et al,

2002), while in humans, loss of macrophage cholesterol efflux

capacity is a significant risk factor for atherosclerosis (Khera et al,

2011). In fact, therapeutic efforts are now focused on enhancing

macrophage cholesterol efflux capacity in atherosclerosis (Rader &

Tall, 2012), signifying the importance of understanding the molec-

ular regulation of lipid transporter expression.

The central regulators of lipid transporter expression are the

sterol sensing liver X receptor (LXR) transcription factors LXRa
(Nr1h3) and LXRb (Nr1h2). LXRs heterodimerize with retinoid X

receptors (RXRs), and upon binding to regulatory sites for the lipid

transporters Abca1 and Abcg1, the LXR–RXR complex induces tran-

scription in a sterol ligand-dependent manner (Costet et al, 2000;

Repa et al, 2000; Venkateswaran et al, 2000a,b). As a result, sterol

ligand stimulation of LXRs inhibits atherosclerotic plaque formation

in mice (Joseph et al, 2002). The specificity of this sterol-mediated
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gene induction is dependent on LXR–cofactor interactions, where

corepressor complexes are replaced with coactivator complexes

(Wagner et al, 2003; Huuskonen et al, 2004, 2005; Lee et al, 2008;

Jakobsson et al, 2009). However, the full compendium of these

signal-dependent interactions at the regulatory regions of lipid trans-

port genes remains to be elucidated.

Interestingly, the anti-inflammatory LXRs and pro-inflammatory

TLRs antagonize each other in macrophages (Castrillo et al, 2003;

Joseph et al, 2003; Ogawa et al, 2005). LXRs prevent induction of

pro-inflammatory gene expression through sumoylation-dependent

transrepression (Ogawa et al, 2005; Ghisletti et al, 2007; Huang

et al, 2011). Conversely, TLR3-4 signaling represses LXR-dependent

gene activation (Castrillo et al, 2003). In atherosclerosis, the pro-

inflammatory pathway appears dominant over the anti-inflammatory

LXR pathway, resulting in reduced macrophage cholesterol efflux

and foam cell formation. While these observations indicate the

importance of signal crosstalk, much remains to be understood

about the mechanisms governing these interactions and their effects

on lipid transporter expression.

We hypothesized that activation of the TLR3 pathway downregu-

lates LXR-mediated cholesterol efflux by recruiting corepressors to,

or maintaining corepressors on, the promoters of lipid transporter

genes. To identify such factors, we employed promoter enrichment-

quantitative mass spectrometry (PE-QMS) to characterize the

composition of gene regulatory complexes at the Abca1 promoter

(Ranish et al, 2003, 2004; Kim et al, 2007; Mittler et al, 2009; Foul-

ds et al, 2013; Mirzaei et al, 2013; Viturawong et al, 2013). We

performed a systems-level analysis of proteins that associate with

Abca1 regulatory DNA in macrophages at a time when Abca1

expression was being downregulated, as these are likely to reflect

corepressor interactions. Using quantitative mass spectrometry, we

simultaneously identified a compendium of LXR ligand-stimulated

and LXR binding-dependent regulators, including the nuclear recep-

tor cofactor NCOA5. We further demonstrate that NCOA5 is

recruited to the Abca1 promoter in vivo in response to both lipid

and inflammatory signals where it functions as an LXR corepressor

to suppress Abca1 transcription and cholesterol efflux.

Results

Identification of LXR-dependent transcriptional regulators using
promoter enrichment-quantitative mass spectrometry (PE-QMS)

To investigate the mechanisms controlling Abca1 transcription, we

began by examining its expression dynamics in response to the

synthetic LXR ligand T0901317 (Schultz et al, 2000). Using

isolated C57BL/6 bone marrow-derived primary macrophages

(BMMs), we observed an initial ligand-stimulated increase in both

Abca1 mRNA (Fig 1A) and ABCA1 protein (Supplementary Fig

S1A and B). This response was dependent on LXR, as Nr1h3�/�:
Nr1h2�/� (LXR�/�) BMMs failed to induce ligand-stimulated

expression (Fig 1A). We also observed minimal changes in Nr1h3

and Nr1h2 mRNA expression during this response (Supplementary

Fig S1C and D).

Notably, Abca1 ligand-stimulated mRNA expression peaked at

8–16 h and was subsequently followed by a decline in expression in

LXR+/+ BMMs (Fig 1A). We observed a similar pattern in ABCA1

protein expression (Supplementary Fig S1A). While current

evidence suggests LXR coactivators are responsible for ligand-

stimulated transcriptional induction (Calkin & Tontonoz, 2012), a

mechanism to explain the subsequent attenuation of the Abca1 tran-

scriptional response following ligand treatment remains unknown

(Fig 1A).

To test the hypothesis that LXR cofactor complexes are responsi-

ble for attenuating Abca1 expression in macrophages, we under-

took a multifaceted approach to compare Abca1 promoter-

associated proteins using promoter enrichment-quantitative mass

spectrometry (PE-QMS) (Fig 1B). PE-QMS uses in vitro biotinylated

regulatory DNA to enrich for gene regulatory complexes, which are

subsequently identified and quantified by mass spectrometry. Nota-

bly, this technology requires no a priori knowledge of transcription

factor binding. We chose a 321-bp genomic regulatory sequence

flanking the proximal direct repeat 4 (DR4) LXR response element

(LXRE) of Abca1, which contains the TATA box and is responsive

to LXR ligand stimulation (Supplementary Fig S2A). Importantly,

this sequence is within a DNaseI hypersensitive region and is

devoid of nucleosomes, as measured by DNase-Seq and acetylated

histone H4 ChIP-seq, respectively (Supplementary Fig S2B)

(Ramsey et al, 2010; Gold et al, 2012).

To isolate and identify transcriptional regulators which bind to

this region in an LXR ligand-stimulated manner, nuclear extracts

from RAW 264.7 macrophages stimulated for 18 h with LXR ligand

or vehicle control were incubated with the biotinylated Abca1 regu-

latory sequence, and stably bound proteins were eluted and

analyzed by quantitative mass spectrometry (Fig 1B). These macro-

phages displayed a similar response to the synthetic LXR ligand

T0901317 as primary BMMs (Supplementary Fig S3). To determine

which of these associations were dependent on LXR promoter

binding, we performed another PE-QMS experiment in which we

compared the compendium of proteins bound to the wild-type LXRE

in the Abca1 promoter with those bound to an LXRE that we engi-

neered to contain mutations that completely abolished LXR binding

and the ligand-stimulated transcriptional response of Abca1 (Fig 1B;

Supplementary Figs S4 and S5).

After removing any proteins encoded by genes that were not

expressed in primary macrophages (Ramsey et al, 2008; Gold et al,

2012), we identified 79 potential Abca1 promoter-associated

proteins (FDR < 1%; Fig 1C; Supplementary Table S1A and B).

Using a 1.5-fold change in binding response as a cutoff, which we

chose after examining the binding response of LXR and RXR, we

identified ligand-stimulated and LXR-dependent subsets of interac-

tions (Fig 1C; Supplementary Table S1C). Notably, these subsets

were enriched for gene ontology (GO) terms related to transcription

(Supplementary Table S2A–C).

We detected 19 proteins that were reproducibly enriched in the

ligand-stimulated experiments, of which seven were dependent on

LXR promoter binding, ten were independent, and two were unde-

termined (Fig 1C; Supplementary Table S1C). Interestingly, of these

19 ligand-stimulated associations, 15 were the products of genes

whose RNA levels in macrophages did not change more

than 1.5-fold in response to T0901317 (Supplementary Fig S6).

Furthermore, all seven LXR-dependent associations, along with five

of the LXR-independent associations, were from proteins annotated

as transcription factors (Supplementary Table S1C) (Ashburner

et al, 2000; Roach et al, 2007).
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Functional validation of the ligand-stimulated and
LXR-dependent candidate regulators

We next sought to assess the function of these LXR-dependent puta-

tive regulators identified by PE-QMS. We began by generating a

protein interaction network in silico. This analysis indicated that

both NCOA5 and NHP2 were connected to TLR-dependent inflam-

mation through physical protein–protein interactions in mouse or

human (Fig 2A). Moreover, reporter assays using the same regula-

tory sequence as that used for the PE-QMS enrichment indicated
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Figure 1. Promoter enrichment-quantitative mass spectrometry (PE-QMS) identifies transcriptional regulators of Abca1 expression.

A RT–qPCR of Abca1 transcripts following 1 lM T0901317 stimulation of LXR+/+ and LXR�/� primary BMMs. Fold changes are shown relative to LXR+/+ 0 h. Error bars
represent � SEM for n = 4–8 (**P = 0.001 at 8 h and **P = 0.00004 at 16 h versus LXR�/�; **P = 0.0003 at 0 h versus LXR+/+); bottom, proposed model explaining
the ligand-dependent induction of Abca1. Following ligand stimulation, LXR–corepressor complexes are exchanged for LXR–coactivator complexes, which promote
gene expression. The LXR–cofactor interactions responsible for the attenuation of expression beginning after 16 h remain unknown.

B Overview of the PE-QMS experimental strategy to identify LXR ligand-stimulated and LXR binding-dependent interactions with the Abca1 promoter. Nuclear extracts
were prepared from RAW 264.7 macrophages treated with control or 1 lM T0901317 (depicted as a black circle) for 18 h. The Abca1 promoter region was used to
isolate gene regulatory complexes under the indicated conditions. Immobilized templates were washed, and bound proteins eluted and digested. Peptides were
purified, then identified, and quantified by mass spectrometry.

C Heat map of the PE-QMS experiment. Ligand-dependent subsets were quantified using label-free and isotope labeling approaches and are indicated on the left.
Colors represent Log2 relative abundance ratios (T0901317/vehicle) of identified proteins. LXR binding-dependent subsets were quantified using an isotope labeling
approach and are indicated on the right. Changes in binding > 1.5-fold were employed as cutoffs for depicted subsets. ND = not determined. Full dataset is available
as Supplementary Table S1.
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that while SND1, SART1, and HMBOX1 induced Abca1 transcription

almost twofold (P < 0.05; Fig 2B), NCOA5 expression significantly

repressed the Abca1 transcriptional response threefold

(P = 0.00005; Fig 2C). These results suggest a regulatory balance

between activators and repressors functions to coordinate Abca1

expression.

Interestingly, NCOA5 has previously been described as a cofactor

for a small subset of nuclear receptors, including estrogen receptor 1

(ESR1); however, its role in transcription seems to be context

dependent (Sauve et al, 2001; Jiang et al, 2004; Gao et al, 2013;

Sarachana & Hu, 2013). In addition, polymorphisms in Ncoa5 are

associated with both chronic inflammatory disease and metabolic

disease (Bento et al, 2008; Lewis et al, 2010; Zervou et al, 2011). To

our knowledge, NCOA5 has never previously been implicated in

LXR-regulated gene expression, cholesterol efflux, or atherosclerosis.

This, together with its repression of Abca1 transcription and its

potential involvement in TLR signaling, makes NCOA5 an ideal

candidate for further investigation.

NCOA5 functions as an LXR corepressor

To further investigate the role of NCOA5 in Abca1 transcription, we

performed reporter assays using NCOA5 and Abca1 mutants. Dele-

tion of the NH2-terminus (Δ1–280aa), which contains a putative

repressor domain (Sauve et al, 2001), abolished the repressive effect

of NCOA5 on the reporter (Fig 2C). However, NCOA5 retained

repressive activity after mutation of the LXRE (Fig 2C), suggesting it

can still function in the absence of LXR binding. In addition, over-

expression of NCOA5 in primary BMMs confirmed its ability to

repress Abca1 expression (Fig 2D; Supplementary Fig S7A).

To determine whether NCOA5 directly interacts with LXR, we

performed in vitro pulldown assays. Full-length in vitro translated
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Figure 2. Identification of NCOA5 as an LXR repressor.

A Protein–protein interaction network showing connectivity between the putative ligand-stimulated and LXR binding-dependent transcriptional regulators of Abca1
(shown in orange). Edges represent protein–protein interactions. NCOA5 node and edge are outlined red to indicate that this physical association is found in mouse
interaction networks.

B Luciferase reporter assays from RAW 264.7 macrophages expressing reporter alone, or together with full-length SND1, SART1, or HMBOX1. LXR ligand stimulations
with 1 lM T0901317 were performed for 18 h. A diagram of the reporter construct is shown above. Fold changes are shown relative to vehicle-stimulated reporter
alone (first lane). Error bars represent � SEM for n = 9 (**P = 0.001, *P = 0.011 for SND1, *P = 0.046 for SART1).

C Luciferase reporter assays from RAW 264.7 macrophages expressing reporter alone, or together with full-length NCOA5 or an NCOA5 mutant lacking the NH2-
terminus. LXR ligand stimulations with 1 lM T0901317 were performed for 18 h. Diagrams of the reporter constructs are shown above. Fold changes are shown
relative to vehicle-stimulated reporter alone (first lane). Error bars represent � SEM for n = 6–12 (**P < 0.001, *P = 0.035).

D RT–qPCR of Abca1 transcripts following infection of primary BMMs with Ncoa5 or control retrovirus. LXR ligand stimulations were performed with 1 lM T0901317 for
18 h. Fold changes are shown relative to vehicle-stimulated control. Error bars represent � SEM for n = 4 (*P = 0.029).
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NCOA5 protein specifically bound to GST-LXRa in a ligand-indepen-

dent manner (Fig 3A). Notably, deletion of the NH2-terminus (Δ1–

280aa) prevented this interaction, while the NH2-terminal fragment

strongly bound GST-LXRα (Fig 3A). Given the nuclear receptor

interaction motif on NCOA5 is found within its COOH-terminus

(Sauve et al, 2001), these results indicate NCOA5 directly interacts

with LXR through a non-canonical domain in the NH2-terminus.

To confirm that NCOA5 functions as an LXR cofactor, we exam-

ined their interaction in macrophage nuclear extracts. Indeed,

endogenous NCOA5 immunoprecipitated with a Protein C-tagged

version of LXRa expressed in RAW 264.7 macrophages (Fig 3B).

Similar to the in vitro pulldowns, this in vivo interaction also

occurred both in the presence and absence of LXR ligand. Together,

these results indicate that NCOA5 functions as an LXR corepressor,

and its mode of interaction appears to be distinct from its mode of

interaction with ESR1 (Sauve et al, 2001).

To determine whether NCOA5 localizes to the Abca1 promoter

in vivo, we performed chromatin IP (ChIP) assays in primary BMMs
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Figure 3. NCOA5 functions as an LXR corepressor.

A In vitro pulldown assays using recombinant GST-LXRa to isolate the indicated in vitro translated NCOA5 constructs. Assays were performed for 2 h in the presence or
absence of 2 lM T0901317. Samples were immunoblotted as indicated. Note the requirement of the NCOA5 NH2-terminus for interacting with LXRa.

B Immunoprecipitation of Protein C-tagged LXRa from stable RAW 264.7 macrophage nuclear extracts stimulated with 1 lM T0901317 or vehicle control for 18 h,
followed by immunoblotting for endogenous NCOA5 or over-expressed LXRa. Protein immunoblots of nuclear extracts are shown below.

C NCOA5 ChIP time course from primary BMMs stimulated with 1 lM T0901317 or vehicle control. qPCR was performed for the Abca1 proximal LXRE. Note the ligand-
stimulated association of NCOA5. Error bars represent � SEM for n = 4–9 (*P = 0.02).

D NCOA5 ChIP assays from LXR�/� BMMs stimulated with 1 lM T0901317 or vehicle control for 18 h. qPCR was performed for the Abca1 proximal LXRE. Error bars
represent � SEM for n = 5–6 (**P = 0.0003 for vehicle and **P = 0.002 for T0901317).
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in the presence or absence of LXR ligand stimulation. Using primers

spanning the proximal LXRE just upstream of the Abca1 transcrip-

tional start site (TSS), which is contained within the same region

analyzed by PE-QMS, we detected ligand-dependent occupancy of

NCOA5 on the Abca1 promoter at 18 h (Fig 3C). We also assayed

an upstream region lacking an LXRE as a negative control and failed

to detect significant NCOA5 binding at 8 h or 18 h post-ligand treat-

ment (Supplementary Fig S7B), confirming the specificity of our

results. These data also indicate that despite interacting directly with

LXR in the presence or absence of ligand, NCOA5 only localizes to

the Abca1 promoter in vivo following ligand stimulation.

To assess the requirement of LXR for NCOA5 binding at the

Abca1 promoter, we performed ChIP assays in LXR�/� BMMs. Nota-

bly, we detected ligand-independent occupancy of the Abca1

promoter by NCOA5 in the absence of LXR (Fig 3D), suggesting an

additional mechanism exists for NCOA5 recruitment under these

conditions. Taken together, these results identify NCOA5 as an LXR

corepressor, which localizes to the Abca1 promoter in vivo following

LXR ligand treatment to repress Abca1 expression. In the absence of

LXR, NCOA5 can still occupy the Abca1 promoter and repress its

expression through an undetermined mechanism.

NCOA5 attenuates Abca1 expression

To investigate the dynamic role of NCOA5 as an LXR corepressor of

Abca1, we silenced its expression in primary BMMs using shRNA

and performed a time course of LXR ligand stimulation. With a non-

silencing control shRNA, we observed an Abca1 mRNA expression

profile that was similar to earlier experiments (see Fig 1A), with

expression peaking at 16 h post-ligand stimulation (Fig 4A). More-

over, we did not detect any significant change in Ncoa5 expression

in response to LXR ligand (Supplementary Fig S7C). Following

administration of Ncoa5 shRNA, which persistently and substan-

tially lowered Ncoa5 expression at both the mRNA and protein

levels (Supplementary Fig S7C and D), we observed a similar initial

induction of Abca1 expression (Fig 4A). However, with Ncoa5 silen-

cing, Abca1 expression remained elevated even at 30 h post-ligand

stimulation (Fig 4A). This effect was recapitulated at the protein

level, where ABCA1 abundance was greater at 30 h post-ligand

stimulation in Ncoa5 knockdown BMMs (Fig 4B; Supplementary Fig

S7E). Consistent with its proposed role as an LXR corepressor, these

results demonstrate that NCOA5 is required for attenuation of Abca1

expression following LXR ligand stimulation.

TLR3 signals to NCOA5 to suppress Abca1 expression

The TICAM1/TRIF-dependent inflammatory receptors TLR3 and

TLR4 have a profound antagonistic effect on ligand-induced LXR

target gene expression (Castrillo et al, 2003). To investigate

whether NCOA5 is involved in signal crosstalk between these pro-

inflammatory TLRs and the anti-inflammatory LXR pathway, we

silenced Ncoa5 expression in primary BMMs and stimulated with

LXR ligand, the TLR3 agonist polyinosinic-polycytidylic acid

(PolyIC), and the TLR4 agonist bacterial lipopolysaccharide (LPS).

In non-silencing shRNA controls, we detected an LXR ligand-

dependent increase in Abca1 expression at 4 h (Fig 5A and B). The

addition of PolyIC or LPS, either in the presence (Fig 5A and B) or

absence (Fig 5C and D) of LXR ligand, significantly reduced Abca1

expression, together with some elevation of Ncoa5 mRNA (Supple-

mentary Fig S8A–D). Strikingly, knockdown of Ncoa5 (Supplemen-

tary Fig S8A–D) abolished the ability of PolyIC but not LPS to

attenuate LXR ligand-dependent Abca1 expression (Fig 5A and B).

Moreover, loss of NCOA5 failed to prevent either PolyIC- or

LPS-mediated reduction of basal Abca1 expression in the absence of

LXR ligand in LXR+/+ BMMs (Fig 5C and D).

To test the hypothesis that TLR3–LXR signal crosstalk recruits

NCOA5 to the Abca1 promoter to repress its activity, we performed

NCOA5 ChIP assays in primary BMMs at 3 h post-stimulation. In

macrophages lacking TLR stimulation, we failed to detect binding of

NCOA5 near the proximal Abca1 LXRE in response to LXR ligand or

control (Fig 5E). However, following the addition of PolyIC to LXR

ligand-stimulated BMMs, we observed a threefold increase in occu-

pancy of the Abca1 promoter by NCOA5 (Fig 5E). In addition,

administration of PolyIC in the absence of LXR ligand failed to
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recruit NCOA5 to the Abca1 promoter (Fig 5F). These results further

indicate the responsiveness of NCOA5 to TLR3 signals only when

co-stimulated with LXR ligand.

To explore the biological significance for the role of NCOA5 in

mediating the TLR3-dependent repression of LXR ligand-induced

Abca1, we performed sterol efflux assays in control and Ncoa5

knockdown primary BMMs. In non-silencing shRNA control macro-

phages, we detected diminished cholesterol efflux from ABCA1 to

its lipid acceptor apolipoprotein A–I (APOA1) upon addition of

T0901317 and PolyIC, compared to LXR ligand alone (Fig 5G). Nota-

bly, following shRNA silencing of Ncoa5, LXR ligand-induced

ABCA1 efflux to APOA1 failed to be impeded by TLR3 stimulation

(Fig 5G). These results indicate that NCOA5 has an important role

in attenuating Abca1 expression and function in response to TLR3–

LXR signal crosstalk.

To investigate the mechanism by which NCOA5 suppresses

Abca1 transcription, we examined RNA polymerase II (RNAPII)

recruitment and activation. Using ChIP assays in primary BMMs, we

observed increased occupancy of both unmodified/pSer5 and pSer2

RNAPII at the Abca1 TSS in response to LXR ligand (Figs 6A and B).

Notably, we detected reduced RNAPII levels when PolyIC was

combined with LXR ligand (Fig 6A and B), indicating that NCOA5-

mediated attenuation of Abca1 expression in response to TLR3–LXR

signal crosstalk correlates with a defect in RNAPII function, likely

through recruitment.

To ascertain the role of LXR in this RNAPII defect, we performed

the above experiments in LXR�/� BMMs. We did not detect an LXR

ligand-dependent increase in occupancy of either unmodified/pSer5 or

pSer2 RNAPII at the Abca1 TSS (Fig 6C and D). However, we still

observed a reduction in RNAPII occupancy following treatment
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A, B RT–qPCR of Abca1 expression from primary BMMs infected with non-silencing or Ncoa5-specific shRNAs. Ligand stimulations were performed for 4 h with vehicle
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G Cholesterol efflux assays to APOA1 from primary BMMs infected with non-silencing or Ncoa5-specific shRNAs. Agonist stimulations were performed for 6 h. Error
bars represent � SEM for n = 3 (*P = 0.02 versus T0901317).
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with T0901317 and PolyIC (Fig 6C and D). In support of this, we

also detected decreased Abca1 mRNA expression in response to

both treatments in LXR�/� BMMs (Fig 6E; Supplementary Fig S8E),

further suggesting that NCOA5 can function even in the absence

of LXR.

To determine whether TLR3–LXR signal crosstalk prevents

RNAPII function through NCOA5, we performed ChIP assays follow-

ing silencing of Ncoa5 expression. With a non-silencing control, we

observed increased RNAPII pSer2 occupancy at the Abca1 TSS in

response to LXR ligand (Fig 6F). The addition of both LXR and TLR3
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ligands returned RNAPII pSer2 occupancy to basal levels (P = 0.33

versus Veh; Fig 6F). Following Ncoa5 gene silencing, RNAPII pSer2

binding remained elevated, failing to return to basal levels, in

response to both LXR and TLR3 ligands (P = 0.004 versus Veh;

Fig 6F). Taken together, these data establish NCOA5 as a critical

downstream mediator of the crosstalk between the pro-inflammatory

TLR3 and anti-inflammatory LXR pathways, and in response to these

signals, NCOA5 represses macrophage cholesterol efflux through

inhibition of RNAPII function at the Abca1 gene locus (Fig 7).

Discussion

Inappropriate and sustained signaling events interfere with homeo-

stasis by perturbing regulatory network function, resulting in

chronic disease. In atherosclerosis, these signals arise from chronic

inflammation and inhibit the macrophage homeostatic response to

hyperlipidemia, specifically the cholesterol efflux pathway, which

results in foam cell formation and plaque progression. While LXRs

directly induce transcription of the transporters responsible for

cholesterol efflux, it currently remains unknown whether additional

transcriptional regulatory proteins are recruited to these promoters

by inflammatory signals to block LXR-dependent gene regulation,

and the mechanisms by which this might occur.

We hypothesized that LXR cofactors receive these inflammatory

signals from TLRs to directly modulate lipid-mediated gene expres-

sion. We therefore characterized the occupancy of the Abca1

promoter by transcriptional regulators using promoter enrichment-

quantitative mass spectrometry (PE-QMS). Notably, PE-QMS

provides a DNA-context-dependent method of identifying transcrip-

tional regulatory complexes that requires no a priori knowledge of

transcription factor identity (Ranish et al, 2003, 2004). Moreover, it

can identify cofactor and combinatorial interactions, which are not

readily achieved using epigenomic and chromatin accessibility infor-

mation (Ramsey et al, 2010; Neph et al, 2012; Sherwood et al,

2014). A unique aspect of our PE-QMS design was assessing not

only the effect of LXR ligand stimulation on gene regulatory

complex composition, but also the subset of that response which

was dependent on LXR promoter binding. Identification of these

subsets would otherwise be unattainable using protein-, informat-

ics-, or omics-based methods.

We identified five previously unknown LXR-dependent regula-

tors of Abca1 and demonstrated that four of these proteins control

Abca1 expression in response to LXR ligand stimulation. We have

established for the first time, to our knowledge, that NCOA5 func-

tions as an LXR corepressor to attenuate Abca1 expression. In our

PE-QMS experiments, NCOA5 binding was twofold lower but not

undetectable in the absence of LXR ligand stimulation. This may

explain the reduction in Abca1-luciferase expression by NCOA5

even in the absence of ligand (Fig 2C). Notably, our primary

BMM ChIP and expression analyses indicate a ligand-dependent

NCOA5 occupancy and function at the Abca1 locus when LXR is

present.

TLRs recognizing endogenous ligands transmit inflammatory

signals in atherosclerosis; however, their role is complicated by

their expression and function in multiple cell types. TLR2 functions

in endothelial cells to recruit monocytes/macrophages to plaques to

facilitate inflammation (Mullick et al, 2005, 2008; Monaco et al,

2009). TLR4 also promotes inflammation leading to atherosclerosis,

albeit through a macrophage centric mechanism (Xu et al, 2001;

Michelsen et al, 2004; Stewart et al, 2010).

Recent studies have also identified a role for TLR3 signaling in

promoting atherosclerosis (Zimmer et al, 2011). TLR3 can sense

RNA released from necrotic cells as a result of the inflammatory

process (Kariko et al, 2004; Cavassani et al, 2008; Ahmad et al,

2010; Baiersdorfer et al, 2010). Loss of TICAM1/TRIF function, the

downstream adaptor for TLR3, either systemically or specific to the

hematopoietic system, alleviates inflammation and reduces athero-

sclerosis (Lundberg et al, 2013; Richards et al, 2013). Moreover,

bone marrow-specific deletion of Tlr3 produces a similar phenotype

(Lundberg et al, 2013), suggesting that the macrophage TLR3

signaling pathway could be an important mediator of inflammation

in atherosclerosis. Conversely, global Tlr3 deletion exacerbates

lesion size, indicating an additional role for non-bone marrow-

derived cells in atherosclerosis (Cole et al, 2011; Richards et al,

2013).

Signal crosstalk between the pro-inflammatory TLR3 and anti-

inflammatory LXR pathways has previously been reported to induce

IRF3 expression, which competes with LXR for the coactivator

EP300, resulting in reduced Abca1 transcription (Castrillo et al,

2003). Our results demonstrate that in addition to competition for a

shared coactivator, TLR3–LXR signal crosstalk actively recruits the
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expression.

A In response to sterol ligand treatment, LXR–RXR heterodimers initially
induce the transcription of Abca1 through recruitment and activation of
RNAPII (left). Following prolonged sterol ligand treatment, the NCOA5
repressor directly interacts with LXR at the Abca1 promoter. This repressor
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B Crosstalk between pro-inflammatory TLR3 and anti-inflammatory LXR
pathways promotes the association of NCOA5 with LXR, resulting in the
inhibition of RNAPII recruitment and function, and repression of Abca1 gene
expression. The regulatory modification of NCOA5 following activation of
these two pathways may be similar or distinct to that in (A). We also
cannot discount the contribution of additional constituents of this
transcriptional complex to the recruitment of NCOA5.
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corepressor NCOA5 to an LXR-regulated promoter to repress Abca1

gene expression.

Notably, the repression of Abca1 following PolyIC treatment

alone is independent of NCOA5. Moreover, LPS-mediated repression

of Abca1 is completely independent of NCOA5. One possible expla-

nation for this is a regulatory event, such as a post-translational

modification of NCOA5, which specifically occurs when both the

TLR3 and LXR pathways, but not the TLR4 and LXR pathways, are

simultaneously activated (Fig 7). TLR4 induction results in wide-

spread phosphoproteome changes (Weintz et al, 2010), so it is

reasonable to hypothesize that phosphoproteome changes would

occur downstream of TLR3. Alternatively, there could be distinct

but complementary events mediated by the TLR3 and LXR pathways

that target NCOA5 function. For instance, activation of TLR3 signal-

ing could result in modification of NCOA5, while ligand binding to

LXR could permit binding of modified NCOA5 to LXR. Castrillo et al

(2003) observed the reduction in Abca1 expression by these signals

was independent of IFNab, which may further restrict potential

candidates. Future quantitative mass spectrometry studies will be

critical in delineating these mechanisms.

We also discovered that NCOA5 binds the Abca1 promoter and

retains a repressive function in the absence of LXR. An intriguing

hypothesis is these proteins are part of a larger transcriptional

complex and that NCOA5 might associate with LXR and another

constituent. This additional interaction would be sufficient to recruit

NCOA5 in the absence of LXR, such as in LXR�/� BMMs. Future

experiments will focus on identifying this factor, using our list of

candidate regulatory proteins identified by PE-QMS.

Several LXR cofactors reported to modulate its activity also regu-

late chromatin structure, including p300, SMARCA4, NCOA6, and

the NCOR complex (Castrillo et al, 2003; Wagner et al, 2003;

Huuskonen et al, 2004, 2005; Lee et al, 2008; Jakobsson et al,

2009). We detected LXR ligand-stimulated binding of the chromatin

regulators SMARCC2, INO80, and HIRA to the Abca1 promoter

by PE-QMS (Fig 1C). Despite the fact we targeted a region of the

Abca1 locus devoid of nucleosomes for PE-QMS, nucleosomes are

present adjacent to this region (Supplementary Fig S2), suggesting

the binding of SMARCC2, INO80, and HIRA may be important

for remodeling these regions or perhaps for long-distance

interactions. However, we cannot discount the possibility of a non-

chromatin-related role for these proteins, such as that described for

the NCOR complex component HDAC3 (Sun et al, 2013).

PE-QMS is not without its limitations. Chromatin structure is an

important regulator of gene expression and can affect transcription

factor binding. We controlled for this by using an open chromatin

region, as well as confirming NCOA5 genome localization by ChIP.

However, recent studies are beginning to show the feasibility of

capturing and identifying chromatin-associated proteins in their

native context (Dejardin & Kingston, 2009; Pourfarzad et al,

2013; Alabert et al, 2014), and it will be attractive to apply

these approaches to the analysis of low copy number, dynamic,

chromatin-associated complexes in the future.

Another limitation of this study is we cannot be completely

certain the full compendium of proteins bound to the Abca1

promoter was identified. For instance, MED15 is part of the large

multi-subunit Mediator complex. The lack of detection of other

subunits in this complex may reflect their instability on this

promoter under our experimental conditions, or duty cycle

limitations of the data-dependent mass spectrometry strategy

employed. Another recent study using a similar enrichment strategy

identified four Mediator subunits bound to their promoter sequences

(Foulds et al, 2013). Recent advances in mass spectrometry-based

protein identification technologies with improved sensitivity and

reproducibility, such as targeted (Mirzaei et al, 2013) and data-

independent peptide identification approaches (Gillet et al, 2012;

Egertson et al, 2013; Lambert et al, 2013), hold great promise for

overcoming these limitations and are currently being explored.

Whether aberrant targeting of NCOA5 to the Abca1 promoter to

repress its expression exacerbates disease progression remains an

important question with therapeutic relevance. Impairment of

cholesterol efflux in vivo promotes foam cell formation and

enhances atherosclerosis (van Eck et al, 2002; Tangirala et al, 2002;

Yvan-Charvet et al, 2007). Moreover, macrophages display an

enhanced inflammatory response to TLR signals in the absence of

cholesterol transporter gene expression (van Eck et al, 2002; Yvan-

Charvet et al, 2008; Zhu et al, 2008). Taken together, this suggests

that NCOA5 activity could potentiate the chronic inflammatory

process responsible for atherosclerosis.

Materials and Methods

Macrophage isolation and cell culture

All experiments were performed in accordance with the Institute

for Systems Biology and Seattle Biomedical Research Institute Insti-

tutional Animal Care and Use Committees. Mice were euthanized

by CO2 asphyxiation. C57BL6, Nr1h3�/�, Nr1h2�/� mice were

obtained from The Jackson Laboratory, and the latter two strains

were crossed in house to generate LXR�/� double knockouts.

BMMs were isolated from 8- to 12-week-old females as previously

described (Gilchrist et al, 2006). Bone marrow was collected from

femurs with complete RPMI 1640 media (10% FBS, 100 U/ml

penicillin and streptomycin, 2 mM L-glutamine) (Corning Cellgro;

Life Technologies) supplemented with 50 ng/ml recombinant

human macrophage colony-stimulating factor (rhM-CSF; Pepro-

tech). Collected bone marrow was grown on non-tissue culture-

treated dishes for 6 days, then plated on tissue culture dishes, and

stimulated with T0901317 (CAS 293754-55-9; Cayman Chemical),

PolyIC (6 lg/ml; GE Healthcare), and/or LPS (10 ng/ml; Salmo-

nella minnesota; List Biologicals) such that BMMs were harvested

on day 7. All ligands were administered simultaneously for

combined treatments. RAW 264.7 macrophages (ATCC TIB-71)

and Phoenix cells (Kinsella & Nolan, 1996) were cultured in

complete RPMI without rhM-CSF. Cell lines were tested for the

absence of mycoplasma contamination.

Promoter enrichment-quantitative mass spectrometry (PE-QMS)

A promoter region of Abca1 (chr4:53,172,714-53,173,035; NCBI

Build 37; mm9) was used to enrich for associated gene regulatory

complexes from RAW 264.7 macrophage nuclear extracts (Dignam

et al, 1983). The promoter region was PCR amplified with a

biotinylated forward primer and bound to NeutrAvidin–agarose

beads. Following blocking, immobilized promoters were incubated

with nuclear extracts in 20 mM Hepes, pH 7.4, 10% glycerol,
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60 mM NaCl, 1 mM EDTA, 5 mM MgCl2, 2 mM DTT, and 0.05%

NP-40 for 2 h. Promoter–protein complexes were washed three

times with the above buffer and then twice with the above buffer

lacking NP-40 and then eluted twice with 15 mM Tris, pH 8.3,

600 mM NaCl, 5.5 M urea, and 1 mM EDTA for 30 min at 37°C

each. Eluted proteins were digested with trypsin and purified using

C18 reversed-phase chromatography. Orthogonal label-free and

isotope labeling strategies were separately employed for protein

quantification. Labeled peptides were subsequently fractionated by

Partisphere strong cation exchange chromatography. Purified

peptides were separated by online reversed-phase HPLC over an

increasing gradient of acetonitrile and analyzed by mass spectrome-

try (LTQ-Orbitrap Velos and LTQ-Orbitrap XL). Raw output files

were processed with GeneData Expressionist and Mascot (label free)

or the Trans-Proteomic Pipeline and X!Tandem (labeled). A reverse

sequence database was used to assess FDR. Data were manually

inspected to ensure accuracy of identifications and quantifications.

Data were filtered to remove single peptide identifications, along

with proteins not satisfying a 1% FDR cutoff. In addition, proteins

corresponding to genes not expressed in primary BMMs were

removed (Ramsey et al, 2008; Gold et al, 2012). Using correlated

quantitative information, we identified 79 promoter-associated

proteins in the ligand-stimulated experiments. We used a 1.5-fold

cutoff as described in the Results to subdivide proteins by their

ligand dependency and their LXR dependency. A detailed descrip-

tion of this methodology is available in the Supplementary Materials

and Methods.

GO enrichment and network analysis

GO enrichment analysis was performed using DAVID (P < 0.01)

(Huang da et al, 2009). All expressed transcripts from unstimulated

mouse primary BMMs (Ramsey et al, 2008; Gold et al, 2012) were

used as background to calculate enrichment. Protein–protein

network analysis was performed using ingenuity pathway analysis

(Ingenuity) and GeneMANIA (Mostafavi et al, 2008), filtering for

only physical associations. The network was filtered to include only

LXR-dependent regulators and their associations with the immune

system.

Quantitative RT–PCR

Total RNA was isolated using TRIzol Reagent (Life Technologies)

according to manufacturers’ protocol. RNA was reverse transcribed

using random primers and Superscript II (Life Technologies) accord-

ing to manufacturers’ protocol. cDNA was analyzed by real-time

PCR using Taqman Gene Expression assays (Life Technologies)

(Supplementary Table S3). Data were acquired using a 7900HT Fast

Real-Time PCR System (Life Technologies) and were normalized to

Eef1a1 transcript expression within individual samples.

Reporter assays

Abca1-luciferase was constructed by amplifying the 53,173,035–

53,172,714 regulatory sequence (same sequence used for PE-QMS)

from mouse gDNA and cloning it into pGL3-basic (Promega).

Ncoa5-ΔNT was designed by removing the NH2-terminal 840 nt

from the full-length cDNA (Thermo Scientific). RAW 264.7

macrophages were transfected using Lipofectamine 2000 (Life Tech-

nologies) according to manufacturers’ protocol. Cells were lysed

with 1× passive lysis buffer, and luciferase assays were analyzed on

a GloMax 96 Microplate Luminometer (Promega). All luciferase

activity was normalized to co-transfected Renilla luciferase and to

the pGL3-basic empty reporter construct.

Chromatin immunoprecipitation (ChIP) assays

1.5 × 107 BMMs were crosslinked with 1% formaldehyde in PBS

for 10 min at room temperature, quenched with 125 mM glycine

for 5 min at room temperature, and then washed 3× with ice cold

PBS. Cells were scraped, pelleted, and lysed in RIPA buffer (10 mM

Tris, pH 7.4, 140 mM NaCl, 0.1% SDS, 1% Triton X-100, 1%

Na-deoxycholate). Extracts were sonicated 5 × 1 min using an

Ultrasonic Processor 130 W at 3 W and 35% output. NCOA5

(A300-790A; Bethyl Laboratories), RNAPII unmodified/pSer5

(05-623; Millipore), RNAPII pSer2 (ab5095; Abcam), rabbit IgG

(sc2027; Santa Cruz Biotechnology), or mouse IgG antibodies

(sc2025; Santa Cruz Biotechnology) were pre-conjugated to Protein G

Dynabeads (Life Technologies) in 0.5% BSA in PBS and used to

immunoprecipitate sheared chromatin complexes overnight.

Complexes were washed twice with Wash Buffer I (20 mM Tris,

pH 7.4, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA),

once with Wash Buffer II (10 mM Tris, pH 7.4, 250 mM LiCl,

0.5% NP-40, 0.5% Na-deoxycholate, 1 mM EDTA), and once with

TE (10 mM Tris, pH 8.0, 1 mM EDTA) or washed three times

with RIPA buffer and once with TE. Complexes were eluted

twice with 1% SDS in TE at 65°C for 15 min, and eluates were

combined. Protein was digested, and crosslinks reversed (40 mM

Tris, pH 8.0, 10 mM EDTA, 240 mM NaCl, 25 lg Proteinase K) at

55°C for 2.5 h and then 65°C overnight. DNA was PCR-purified

(Qiagen) prior to qPCR analysis using SYBR Green (Life Technologies)

(Supplementary Table S3).

Pulldowns, immunoprecipitation, and immunoblots

Recombinant GST and GST-LXRa proteins were expressed from the

pGEX4T vector (GE Healthcare) and purified from isopropyl-b-D-
thiogalactoside (IPTG; 2 mM)-induced E. coli BL21(DE3)pLysS

using glutathione-Sepharose beads (GE Healthcare). Full-length and

mutant Ncoa5 cDNAs were generated by PCR, cloned into pEF6-V5-

His (Life Technologies), and transcribed/translated in vitro using

the TNT T7 Quick Coupled System (Promega) according to manu-

facturer’s protocol. In vitro translated proteins (5 ll) were then incu-

bated with 2.5 lg GST proteins pre-bound to glutathione-Sepharose

beads for 2 h at 4°C. Beads were washed 3× with NETN Buffer

(50 mM Tris, pH 8.0, 100 mM NaCl, 0.1% NP-40, 1 mM EDTA) and

boiled in LDS Sample Buffer (Life Technologies) to elute complexes

prior to Western blot analysis. For IPs, RAW 264.7 macrophages

stably expressing Protein C-tagged LXRα were maintained in

complete RPMI plus 10 lg/ml blasticidin. The Protein C tag

construct was generated and kindly provided by Adrian Ozinsky.

Co-IPs were performed from nuclear extracts. Due to the Protein C

tag, EDTA was omitted from all buffers except elution buffer.

Protein C-agarose affinity matrix (Clone HPC4; Roche Applied

Science) was used for IPs. Protein was eluted using 5 mM EDTA

and analyzed by Western blotting. Antibodies used for Western
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immunoblotting were NCOA5 (A300-790A; Bethyl Laboratories),

LXR (sc1000; Santa Cruz Biotechnology), ABCA1 (ab18180;

Abcam), V5-Tag (MCA1360; AbD Serotec), and tubulin (Clone

DM1A; Sigma-Aldrich). Blots were imaged using a CCD camera

(FluorChem E; Protein Simple) and quantified using AlphaView SA

software.

Retroviral infections

miR-30-based shRNAs were designed as described (Paddison et al,

2004), based on siRNA sequences from Thermo Scientific, and

cloned into the LMP retroviral vector (Dickins et al, 2005)

(Supplementary Table S3). A non-silencing negative control

sequence was used to ensure specificity (Thermo Scientific).

Retrovirus was prepared by transfecting the Phoenix Ecotropic

packaging cell line (Kinsella & Nolan, 1996) with the above

constructs using Lipofectamine 2000 (Life Technologies). After

48 h, viral supernatant was removed, 0.44 lm filtered, and used

to infect day 2 BMMs. Infections were supplemented with 6 lg/ml

polybrene (Millipore) and 50 ng/ml rhM-CSF and performed for

2 h at 1,800 rpm at 32°C, then for another 2 h at 37°C. Viral

media were replaced with complete RPMI media for another 72 h,

and then, infected cells were selected with 5 lg/ml puromycin

(Invivogen) for 5 days. For overexpression studies, Ncoa5 cDNA

was cloned into the LMP retroviral vector and infections were

performed in day 4 BMMs as indicated above. Infected cells were

harvested on day 7.

Cholesterol efflux assays

Macrophages were labeled with 1 lCi/ml [1,2,3H(N)]-cholesterol

(Perkin Elmer) in RPMI containing 0.2% BSA, 50 ng/ml MCSF,

5 lg/ml puromycin, and 2 lg/ml acyl-coenzyme A cholesterol acyl-

transferase (ACAT) inhibitor (Sandoz 58-035; Sigma) for 24 h.

Macrophages were washed and equilibrated in RPMI containing

0.2% BSA, 5 lg/ml puromycin, and 2 lg/ml ACAT inhibitor

for 6 h. Stimulations with vehicle, 1 lM T0901317, or 1 lM
T0901317 + 6 lg/ml PolyIC were performed simultaneously with

equilibration. Efflux was measured following wash and incubation

for 4 h with equilibration media containing 10 lg/ml mouse APOA1

protein (IgG Fc tagged; Life Technologies) or IgG protein (Meridian

Life Science) as a control. Supernatants were clarified by centrifuga-

tion, and one-fifth measured by liquid scintillation counting. Cells

were lysed in 0.1 N NaOH + 0.2% SDS and 1/20 measured by liquid

scintillation counting. After adjusting for dilutions, percent efflux

was calculated by dividing the 3H-cholesterol effluxed to the media

by the total 3H-cholesterol present in the cells and media. Specific

efflux to APOA1 was calculated in response to each agonist by

subtracting out any background efflux to IgG.

Statistical analysis

All error bars are presented as standard error of the means. Statisti-

cal significance of means was calculated using the two-tailed

Student’s t-test, using a cutoff of P < 0.05. The one exception to this

was the GO enrichment analysis, where we used a cutoff of P < 0.01

in a modified version of the Fisher’s exact test called the EASE score

(Huang da et al, 2009).

Raw data deposition

All raw proteomics data were deposited in Peptide Atlas under the

identifiers PASS00515, PASS00516, and PASS00517.

Supplementary information for this article is available online:

http://emboj.embopress.org
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