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Abstract

The OPEP coarse-grained protein model has been applied to a wide range of applications since its 

first release 15 years ago. The model, which combines energetic and structural accuracy and 

chemical specificity, allows studying single protein properties, DNA/RNA complexes, amyloid 

fibril formation and protein suspensions in a crowded environment. Here we first review the 

current state of the model and the most exciting applications using advanced conformational 

sampling methods. We then present the current limitations and a perspective on the on-going 

developments.

INTRODUCTION

Proteins, DNA and RNA carry out a variety of biochemical and biological tasks. These 

systems are very challenging experimentally and numerically due to their number of degrees 

of freedom, and the wide range of relevant time scales from nanoseconds to days associated 
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with fluctuations about the native states, diffusion, folding and formation of harmful 

aggregates.

Classical atomistic molecular dynamics (MD) with explicit solvent and ions can 

complement experiments.1,2 With the specially MD-designed Anton computer, performing 

MD 100-500 times faster than the standard computer, it has been possible to break the 

millisecond barrier and gain insights on the mechanisms, thermodynamics and kinetics of 

the folding of diverse proteins with 10-80 amino acids.3 Anton has also proven useful in the 

development of allosteric inhibitors that target previously unknown binding sites.4 The 

dynamic processes of life at the molecular level require, however, knowledge of the 

structure, dynamics and thermodynamics of biomolecules in a crowded environment. 

Similarly, we cannot wait for faster computers to design engineered proteins with specific 

properties or new molecules able to interfere with protein-protein or protein-DNA/RNA 

complexes associated with disease functions as a result of sporadic mutations or genetic risk 

factors. For instance, neurodegenerative diseases such as Alzheimer, Parkinson, Huntington 

challenge our society.5 The V600E mutation in the BRAF protein is known to be 

responsible for 50% of melanoma cases,6 and women with mutations in the BRCA1 and 

BRCA2 genes have markedly elevated risks of breast and ovarian cancer.7

For all these reasons, it is necessary to design multiscale approaches, coarse-grained models 

and advanced sampling methods to converge rapidly to equilibrium and explore dynamics in 

the time scale of microseconds and beyond for large systems.

The development of coarse graining (CG) and multiscale modeling is not new. It was an 

exciting day for computational chemistry and biology when the 2013 Nobel Prize in 

Chemistry was awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for the 

“development of multiscale models for complex chemical systems.” Among their 

contributions, Levitt and Warshel pioneered CG protein simulation, with atoms grouped into 

larger units or beads and normal modes to move the system on the energy landscape.8 

Despite extensive efforts, coarse graining still remains a challenge and poses the problem of 

how to derive potentials for the selected number of beads that maintain the all-atom physical 

behavior in test tubes and cellular environments. Recently, two reviews summarized the 

state of coarse-graining of biomolecular systems so as to couple information from different 

scales.9,10 Marrink and Tieleman also presented the strengths and limitations of their CG 

Martini model, used for lipid membrane characterization, lipid polymorphism, membrane 

protein - lipid interplay, self-assembly of soluble proteins, and membrane protein 

oligomerization.11

The OPEP (Optimized Potential for Efficient protein structure Prediction) coarse-grained 

model with an implicit solvent model for soluble proteins in aqueous solution has evolved 

since its first version 15 years ago.12-24 This model which retains structural accuracy and 

chemical specificity is free of any biases in contrast to Martini that imposes secondary 

structure constraints. 11, 25, 26 While CG models have been developed by Sansom27,28 and 

Schulten29 for membrane proteins, Klein,30 Scheraga (UNRES),31-33 Baker (Rosetta),34,35 

Voth,36 Dokhloyan,37 Hall (PRIME),38 Lavery (PaLaCe),39 Zacharias (ATTRACT),40,41 

Feig (PRIMO),42 Shea,43 Papoian (AWSEM)44 and other scientists45-48 for soluble proteins, 
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to the best of our knowledge, none of these models except Martini has been applied to a 

wide range of problems. Here, we present the design principles of the model and the state-

of-the-art sampling techniques used. Furthermore this review provides an in-depth 

understanding on four timely topics in the chemical sciences.

The first topic is the self-assembly of amyloid proteins associated with neurodegenerative 

diseases. Alzheimer’s disease affects 24 million people and drug after drug has failed to 

slow its progression.49 The second topic is computer-assisted de novo design and structure 

prediction of peptides up to 52 amino acids, as they represent a source of novel antibiotics 

and therapeutics.50-52 To this end, we need a fast and accurate method able to play with he 

amino acid sequence. The third topic is RNA structure prediction which is still in its infancy 

compared to protein structure prediction.53 The small non-coding microRNA which regulate 

gene expression at a post-transcriptional level,54 or more generally all non-coding RNAs are 

increasingly attracting the attention of cancer investigators.55,56 The last topic concerns the 

effects of hydrodynamics and crowding which are mostly ignored in computer simulations 

and create a gap between the simulated and the real physics in the cell. We report an OPEP 

simulation of a system of unprecedented size and fully inclusive of hydrodynamic 

interactions, namely 18,000 flexible proteins and 70 million particles,57 a breakthrough 

compared to the largest simulation of 1000 rigid proteins ignoring hydrodynamics.58

Finally, we present the current OPEP limitations and we sketch some on-going 

developments or applications. These include for instance understanding the physics behind 

the difference in the stability of thermophilic and mesophilic proteins, determining the effect 

of external conditions such as shear flows on the dynamics, kinetics and thermodynamics of 

non-amyloid and amyloid proteins, and interacting directly on the CG model system using 

virtual reality to probe the mechanical properties of molecular structures.

Overall, the review gives a state-of-the-art account of the various subjects treated and a well-

balanced assessment of the current literature, comparing with previous computational results 

and experimental data when available.

Design principles of the OPEP model

Granularity—Various levels of granularity for amino acids have been developed ranging 

from two to six beads, and beyond. The OPEP CG model represents each amino acid by six 

centers of force: the side-chain is represented by a unique bead located at the center of mass 

of nonhydrogen atoms in the all-atom side chains of 2250 protein structures with sequence 

identity < 30%, while atomic resolution is used for the backbone that includes N, HN, Cα, C 

and O atoms. Proline is an exception represented by all its heavy atoms (Fig. 1A).20 The 

disulfide (S-S) bonds can be treated as two non-bonded beads or described at an atomic level 

using local terms. This OPEP CG strategy was chosen to represent a good compromise 

between energetic and structural accuracy and chemical specificity, even if this limits the 

use of large time steps compared to other CG models. Note that the Rosetta fragment 

assembly Monte Carlo program uses the same level of description in the first step of its 

hierarchical procedure.34,35
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Our level of granularity varies from the Martini model with coarse-grained solvent in which 

the main chain atoms of each residue are represented by a unique bead and, on average, four 

heavy side-chain atoms are represented by a single interaction center, with the exception of 

ring-like molecules.25,26 Our representation varies also from eight other CG models in 

implicit solvent: (i) Klein’s model where three to four heavy atoms are represented by a 

single CG bead. Most side-chains use one CG bead, except lysine and arginine with a 

hydrophobic and a hydrophilic site and the tyrosine, phenylalanine, and tryptophan residues 

represented by two, two, and three beads respectively,30 (ii) UNRES two-bead model with 

one unified bead for side-chain and the peptide center, p, located in the centers of Cα-Cα 

bonds,31-33 (iii) PRIMO using the Cα, Cβ and a combined CO particle for the backbone and 

one to several heavy side-chain atoms into CG sites,42 (iv) PRIME with the N, Cα, and 

carbonyl C backbone atoms and up to three side-chain beads,22 (v) Voth’s model with a Cα 

for the backbone and as many as four beads for the side-chains,36 (vi) ATTRACT with the 

N and O for the backbone and one or two beads for the side chains,40 though its most recent 

version is very similar to OPEP,41 (vii) AWSEM three-bead model with Cα, Cβ and O,44 

and (viii) PaLaCe with one to three beads for the main non-bonded interactions, combined 

with atomistic peptide groups and some side-chain atoms.39 Scientists are also developing 

CG models for soluble proteins in simplified explicit solvent,59 or atomistic soluble proteins 

with CG water models.60,61

Optimization Procedure and Analytical expression—There are multiple approaches 

to derive the bonded and non-bonded potentials.9-11 The first approach, followed by PaLaCe 

and PRIMO, uses Boltzmann inversion of conformational probability distributions derived 

from a static or dynamic protein structure data set. The second one is to derive a CG 

potential from forces generated by atomistic simulations, referred to as force matching.36 

The third thermodynamics-based approach consists of fitting and predicting free energies 

such as water/oil partitioning coefficients of the amino acid side-chain analogues 

(Martini),11 or density, surface tension (Klein)30 for the non-bonded interactions and by 

using the distributions of bonds, bending angles and dihedral angles from the Protein Data 

Bank (PDB,) to optimize the bonded interactions. Another approach is the factor expansion 

method where the pairwise potentials of mean force (PMFs) between side-chains are 

obtained from atomistic simulations, and the torsional, double-torsional, backbone-

electrostatic and correlation terms are fitted on quantum-mechanical ab initio 

calculations.31-33 Other methods for force field derivation and optimization include 

minimization of relative entropy38 and simulations to test whether hexapeptides form non-

amyloid or amyloid fibrils (PRIME)22 or proteins fold into their native states.62

The latest OPEP version uses a structure/thermodynamic/PMF approach, since the 

parameters and analytical forms are trained on bonded and non-bonded distances and angle 

distributions of native and non-native protein structures, are fitted to reproduce the 

experimental lowest free-energy conformations and the melting temperatures (TM) of a small 

set of peptides, and are derived from all-atom PMF simulations for the interactions between 

charged side-chains.23,24

The OPEP energy function is defined as a sum of local, non-bonded, and hydrogen bonding 

(H-bond) terms.15,21,24 All analytical expressions are given in Supplementary Material. The 
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local interactions include bond length, angle bending, and improper and proper dihedral 

angles. The improper torsions maintain the desired chirality of amino acids, and control the 

out-of plane motion of the C=O and N-H bonds about the peptide bond. All these terms were 

modeled on the analytical form of the AMBER63 force field with an additional term for the 

Φ,Ψ dihedral angles to render realistic Ramachandran plots.21,24 H-bonds of backbone 

atoms are accounted for by two- and four-body potentials, rather than Coulomb interactions. 

The two-body term for each H-bond is the product of a 10-12 term dependent on the O-H 

distance by the square of the cosine of the N-H.. O angle.15,21 The four-body term takes the 

form of the product of two Gaussian functions each monitoring the existence of one H-bond 

on the basis of distance criteria, and represents a cooperative energy if tight conditions on 

sequence-separation, Δ, between four residues are verified. If (i, j) and (k, l) are the residues 

involved in the two H-bonds, Δ(ijkl) =1 if (k, l) = (i+1, j+1) (α-helix), or Δ(ijkl) =1 if (k, l) = 

(i+2 ,j−2) or (i+2, j+2) (β-sheets), otherwise Δ is set to 0. These conditions stabilize 

secondary structures, independently of the Φ, Ψ angles, but also any segment satisfying the 

conditions on ijkl.15,21,24

It is essentially the van der Waals potential that has evolved from OPEPv1 to OPEPv5 by 

distinguishing its form as a function of the center of forces.15,24 Each OPEP version does 

not have its own advantages, rather a new version is developed to solve unexpected failures 

of the previous version. In all versions, we use the 6-12 potential between the backbone 

atoms and between the backbone and side-chain atoms. In OPEPv3, the van der Waals 

energy between two side-chains was 6-12 if the interaction is hydrophobic or resulted from 

oppositely charged amino acids; otherwise an r−6 term was used.20 In OPEPv4, following 

our work on RNA, the r−6 term was replaced by r−8 for purely repulsive interactions; 

otherwise the 6-12 term was replaced by an analytical formulation to limit the energy values 

of the side-chains at longer distances. We also distinguished 11 side-chain – side-chain 

interactions depending on their sequence-separation to stabilize α-helices.23 From OPEPv4 

to OPEPv5, we only changed the ion pair interactions from all-atom PMF potentials, 

characterized by one minimum for the pairs Lys-Asp and Lys-Glu and two minima for Arg-

Asp and Arg-Glu.24

An overview of the optimization procedure is shown in the flowchart in Figure 2. The 

OPEPv1 and v2 parameters were adjusted by maximizing the energy gap between the native 

and misfolded states of six proteins, enabling the folding of 40 peptides of 12-46 amino 

acids consistent with NMR data in most cases.12-18 OPEPv3, which used a training and 

validating set of 13 and 16 proteins to optimize the parameters,20 was tested on a total of 11 

proteins of 12-56 amino acids by MD,21 REMD21-22 or metadynamics64 starting from 

random or NMR structures. OPEPv4 passed two tests: 17 proteins of 37–152 amino acids 

remained within 3.1 Å root-mean-square deviation (RMSD) from their native states after 

30-100 ns MD at 300 K, and REMD of five peptides with β-hairpin, α-helix or a WW 

domain, and REMD of the ccβ 51-residue peptide delivered structures consistent with 

experiment starting from random states.23

Finally, the OPEPv5 parameters were tested on structurally diverse proteins differing in the 

number of charged residues by REMD.24 These include two 13-residue α-helix and 16-

residue β-hairpin peptides and the ccβ-p2 peptide switching from a coiled-coil structure at 
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low T to amyloid fibrils at higher T and concentration. We also verified that MD preserved 

the structures of proteins with 37-75 residues at 300 K. The final test involved an 85-residue 

protein with 19 charged amino acids. Running REMD of 24 replicas, each of 300 ns, the 

predicted TM is 360 K vs. 336 K experimentally. Overall, the OPEPv5 parameters, by 

refining the packing of the charged amino acids, impact the stability of secondary structure 

motifs and the population of intermediate states during temperature folding/unfolding; they 

also improve the aggregation propensity of peptides.24

In OPEPv5, the ε0 value in kcal.mol−1 or well depth at the minimum is 3.89 for the Ile-Ile 

contact and 4.05 for a Lys-Glu salt-bridge. The ε0 value, at the minimum, of an 

intramolecular H-bond is 3.3 and 2.7 kcal.mol−1 for (i, i+4) and (i, j ≥ i+5) interactions vs. 

2.7 kcal.mol−1 for an intermolecular H-bond. The ε0 values of the 4-body H-bond terms are 

1.4 and 3.6 kcal.mol−1 for α-helices and β-sheets, and any segments satisfying the 

conditions on ijkl. The two-body H-bond terms are cut off at an O-H distance of 0.3 nm and 

an angle N-H-O < 90° and the energy is modulated by a switching function of CHARMM-

type65 from 0.25 to 0.3 nm. All other non-bonded interactions are cut off at 1.6 nm with a 

switching function starting at 1.3 nm.

Simulation Techniques—In what follows, we review the methods coupled to OPEP. 

These include the diffusion-controlled Monte Carlo (DCMC),12,16 the Activation-Relaxation 

Technique (ART-nouveau),66,67 molecular21 and Langevin dynamics,68 replica exchange 

(REMD)22 or Hamiltonian (H-REMD) MD,69 metadynamics,64,70 simulated tempering 

(ST)71, a greedy approach, 72,73 MUPHY57, and interactive MD simulations.

DCMC and ART: The basic idea of DCMC is to limit the search to conformations that are 

thermodynamically accessible from a given conformation in a reasonable time.12 In 

principle; one has to determine the nearest saddle point, the energy barrier and the 

contribution of entropy. Here, we assume that the motion results from the diffusion in (Φ,Ψ) 

space and the transition time scales as Θ2/D’η, where Θ is the angular deviation of the 

residue from one state to another, D’ is a diffusion parameter and η is related the ruggedness 

of the energy landscape. DCMC was used to fold 40 structurally diverse proteins.13-18,74-75

ART-nouveau goes one step beyond by generating non-biased pathways connecting adjacent 

local minima via exact first-order saddle points and was first developed for hard spheres.66 

Coupled to OPEP, the procedure works as follows (Fig. 1B). First, the system is deformed 

from its current minimum in a random direction (all atoms for a peptide up to 15 amino 

acids, and a subset of atoms for larger proteins or oligomers) until the lowest eigenvalue of 

the Hessian becomes negative, and the system is pushed along this direction while the 

energy is minimized in the orthogonal directions. Once the saddle point is reached, the 

system is relaxed to the other side of the barrier and minimized, and finally the move is 

accepted depending on the Metropolis criterion.67,76-85

The advantage of ART, as any activated methods,86-88 is that it is not sensitive to the energy 

barriers allowing the system to move rapidly on the energy landscape. Even if ART lacks a 

proper thermodynamics basis, in contrast to a discrete sampling method,89 ART-OPEP 

simulations revealed frustration in the energy landscape of the 60-residue protein A with 
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multiple funnels,85 consistent with global optimization of a 69-residue protein using basin-

hopping and genetic algorithms with Gō energy models.90 ART-OPEP also predicted 

conformations of the Aβ21-30 peptide consistent with NMR,83 and located new minima and 

mechanisms for amyloid oligomers that were validated experimentally.

Molecular and Langevin Dynamics: Newton’s equations of motion are integrated using 

the velocity-Verlet method. Each main atom has its standard mass while the side-chain 

beads have a mass equal to the total mass of their atomic constituents.21 MD runs are 

performed with a time step of 1 fs or 2 fs using the SHAKE algorithm.91 The system is first 

minimized and then heated to the desired temperature. Production runs in the NVT ensemble 

are performed either with Berendsen thermostat92 and a coupling parameter τ = 0.5 ps or the 

Langevin thermostat68 with a collision frequency γ = 1 ps−1. Note we found little variation 

in the equilibrium structures and heat capacity curves of two model monomer and trimer 

peptides using the two thermostats.68 Simulations can be performed either in a sphere with 

reflecting boundary conditions or in a box with periodic boundary conditions. Presently, the 

non-bonded interactions are updated at each time step, but the code can be easily improved 

in terms of CPU efficacy by using a multiple time step framework.

REMD and H-REMD: REMD simulations are carried out with a number of replica running 

in parallel and a temperature range dependent on the system size.22,93 For instance, we 

found that 8 replicas for 50 ns, 20 replicas for 600 ns and 22 replicas for 1200 ns are 

sufficient for the dimers of Aβ16-2294 and Aβ16-35,95 and the trimer of Aβ16-35,96 

respectively to reach equilibrium. An exponential temperature distribution is used and 

exchanges between two consecutive replicas are attempted every 5.0 to 7.5 ps, leading on 

average to an acceptance ratio of 30-40%.22 To enhance sampling, it is useful to combine 

REMD with a Hamiltonian exchange procedure,97 where we use at the highest temperature 

several replicas with reduced non-bonded energies.69

We assess convergence of the simulations near the physiological temperature by using 

different time intervals and metrics. These metrics are the distributions of the radius of 

gyration and end-to-end distances, the secondary structure along the amino acid sequence 

and the total number of clusters.95,98 Convergence is also verified by the curves of the heat 

capacity and conformational entropy using different time windows.95,99

ST: In simulated tempering, temperature is a dynamical variable taking discrete values Tn. 

Standard ST requires the determination of a priori unknown weight parameters to ensure a 

random walk in T space, the Helmholtz free energies at Tn.100,101 Recently, we developed 

an ST algorithm with on-the-fly weight determination. The weights are self-updated via a 

trapezoid rule during the run,71 eliminating the need of trial simulations,102 or complicated 

update schemes.103,104 The advantage of our ST method over REMD was demonstrated 

using OPEP on Ala20 and the Aβ16-22 trimer.101 The same efficiency is observed in explicit 

solvent for Ala10, the 20-residue Trp-cage and the 37-residue WW-domain starting from 

random states and deviating by less than 0.2 nm RMSD from the NMR structure after less 

than 700 ns (in preparation).
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Greedy Algorithm: This method differs from MC and genetic algorithms by growing a 

chain one fragment after another.105-107 Our procedure for structure prediction performs a 

rigid assembly of fragments of 4-residue length by superimposing the first three α-carbons 

of the new fragment onto the last three of the previously built structure. Our early version 

used forward (from N- to C-terminal) and backward (from C- to N-) operators to grow the 

chain.108,109 Our new version uses a zip operator to start the building process at any 

randomly chosen position, alternatively adding one residue at each side of the growing 

structure.110 At each position, the algorithm keeps 3000 states, the 1000 energetically best 

OPEP states and 2000 randomly selected ones in the pool of the remaining generated 

conformations.110

Metadynamics: Metadynamics is an advanced technique for enhancing sampling in MD 

simulations,70 with widespread applications in material science and chemical reactivity,111 

protein-drug recognition,112 protein aggregation,113 and allosteric pathways.114 Enhanced 

sampling is achieved by introducing an external, history-dependent bias potential affecting 

few selected degrees of freedom, usually referred to as collective variables (CVs). The bias 

is adaptively constructed as a sum of Gaussians deposited along the system trajectory in CV 

space to discourage the system from revisiting regions that have already been explored (Fig. 

1C). If the CVs capture all the slow, relevant degrees of freedom of the system, 

metadynamics provides a correct estimate of the system free-energy surface. An appropriate 

application of metadynamics requires the identification of a limited yet effective set of CVs. 

This may represent an intimidating task when dealing with extremely complex molecular 

processes. This limitation can be circumvented by combining metadynamics with replica 

exchange methods.115 This scheme, where several metadynamics runs are performed using 

the same CV set at different temperatures and are swapped following a Metropolis criterion, 

has been applied to assess the quality of the OPEPv3 potential with respect to the all-atom 

OPLS and AMBER99SB force fields in explicit solvent.64 Using two β-hairpin and α-helix 

peptides and an intrinsically disordered peptide, and by comparing the free energy surfaces 

(FES), the free energy differences between the folded and unfolded states and between the 

folded state and the transition state, we found remarkable agreement between the OPEP FES 

at 345-360 K and those using all-atom calculations in explicit solvent at 300 K.64 This 

information was used to improve the model during the refinement of OPEPv4 and OPEPv5.

MUPHY: This name refers to a way to embed molecules of generic complexity in a 

hydrodynamic solvent. The interaction of proteins with the surrounding solvent implies 

accounting for the hydrodynamic interactions exerted between particles of the 

macromolecules. As one particle moves in space, it creates a velocity field in the 

environment that acts on other particles, therefore generating effective, solvent-mediated 

interactions. One way to include hydrodynamics is the Brownian Dynamics technique 

developed by McCammon.116 However, because hydrodynamic interactions are in principle 

long-range, the basic technique has a computational cost proportional to cube of the number 

of particles, so that it is computationally extremely difficult even to handle a small set of 

proteins in suspension.

Sterpone et al. Page 8

Chem Soc Rev. Author manuscript; available in PMC 2015 May 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The MUPHY software has been developed to study generic biofluidics systems117 and, in 

order to specialize to protein suspensions, has implemented OPEP.57 MUPHY handles the 

dynamical evolution of generic fluids and particles treated via the dual mechanism, a mesh-

based Lattice Boltzmann method for fluids, and specialized versions of MD for particles.117 

Indeed, a powerful alternative to McCammon’s method is provided by explicitly solving for 

the evolution of the solvent, as encoded by the Navier-Stokes equations, by using the Lattice 

Boltzmann (LB) numerical method.118 In this approach, the coupling between fluid and 

particles takes place via specifically designed kernels based on kinetic modeling, 

significantly distinct from methods based on macroscopic hydrodynamics. Such a 

methodology is genuinely multiscale as it entails different levels of physical description 

(such as field-based for the fluid and particle-based for the proteins) within a single unifying 

framework.119

In LB, the solvent is described via the “populations”  representing the probabilities 

of finding solvent molecules at a given position  and time t and moving along a discrete 

direction p. The populations, represented over a mesh, evolve as: 

, where 

 is the discrete Maxwell-Boltzmann 

equilibrium, associated to the weight Wp and discrete speed , with n = Σp fp and 

 being the fluid density and velocity, respectively. The term Δfp is 

proportional to the drag force exerted by the fluid on the particle and vice versa, being a 

bidirectional of fluid and particles according to the action-reaction principle. Thus the drag 

force, together with a stochastic force, is included in the particles’ evolution besides the 

mechanical forces stemming from the OPEP force field.

The fluid-proteins concurrent evolution can be specialized to hybrid situations, such that the 

hydrodynamic interactions are decomposed into intra- and intermolecular components, the 

first ones evaluated analytically and the second ones handled via an under-resolved version 

of the LB fluid. Such a decomposition proves further advantageous in terms of CPU 

efficiency as it ideally balances the cost of computing intra- and intermolecular 

hydrodynamic interactions.120 Finally, MUPHY is fully parallel and distributes the 

computational load on multiple cores or multiple Graphical Processing Units (GPUs).

Interactive Molecular Dynamics (IMD): Using our previously developed MDDriver 

software library,121 we rendered the CG simulation engine interactive by implementing the 

IMD network protocol and interactive steering modules. Using a TCP (transmission control 

protocol) network socket, any IMD-protocol-aware frontend is able to connect to the 

running OPEP/Hire-RNA simulation engine and inject additional user-forces to drive the 

experiment. For initial validation, we used both our custom UnityMol122 and the more 

widely distributed VMD123 frontends. Simulation and frontend may be run on the same 

machine or remotely to optimize performance and fluidity.
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OPEP applications

Though OPEP was used to explore large-scale motions, such as the pathways from the holo 

to the apo states of two EF-hand proteins,124 or the conformations of 8-20 amino acid 

loops,125 we focus here on the following timely topics: self-assembly of amyloid proteins, 

structure prediction of linear and disulfide bonded cyclic peptides, thermodynamic 

properties of RNA, and protein dynamics in a crowded environment with hydrodynamics. 

Table 1 gives a summary of the different systems simulated with OPEP indicating the 

methodology adopted and the total time lengths.

Understanding the self-assembly of amyloid proteins—Alzheimer’s disease (AD) 

is marked by atrophy of cerebral cortex and loss of cortical and subcortical neurons. 

Autopsy 75 reveals accumulation of amyloid plaques and numerous neurofibrillary tangles 

made of filaments of the phosphorylated tau proteins. The major constituents of plaques are 

made of the amyloid-β (Aβ) peptides of 40 and then 42 amino acids formed from the 

amyloid precursor protein via the actions of the β- and γ-secretases.126 But many truncated 

variants, such as Aβ1-30 and Aβ1-26, and Aβ with proteolytic removal of D1 and A2 and 

subsequent cyclization of E3 to a pyroglutamate, have been detected by mass spectrometry 

in human AD brains.127,128 The human Aβ1-42 sequence, designated Aβ42, is 

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA with a charged N-

terminus (A1-K16) and two hydrophobic patches L17-A21 (central hydrophobic core, CHC) 

and A30-A42 (C-terminus) separated by a hydrophilic patch E22-G29. Despite many 

clinical trials, drug after drug has failed to slow the progression of AD for three main 

reasons.49

While the experimental sigmoidal kinetics of amyloid formation with a lag-phase can be 

accounted for by means of primary classical nucleation theory (CNT) and/or secondary 

(fragmentation or lateral) nucleation processes,129,130 we lack information on the topology, 

structure and size of the primary nucleus (N*).

Secondly, though the low molecular weight (LMW) Aβ40/42 aggregates are the most 

critical players in the pathology, we have little information on their structure, rate and extent 

of formation. Due to their high aggregation propensity, the LMW oligomers are not 

amenable to solution nuclear magnetic resonance (NMR) and X-ray crystallography. As a 

result, only low-resolution structural data from circular dichroism (CD),131 Fourier 

transform infrared spectroscopy (FTIR),132 ion-mobility mass spectrometry (IM-MS),133 

solid-state NMR,134 pulsed hydrogen-deuterium exchange coupled to MS,135 transmission 

electron (TEM) and atomic force microscopies (AFM) are available.136 The final Aβ40/42 

products are insoluble and only solid-state NMR models are available. While fibrils of 

synthetic Aβ40/42 peptides display perfect U-shaped forms with β-strands spanning the 

CHC and the C-terminus, and the N-terminus disordered, fibrils of AD-brain derived Aβ40 

peptides show deformed U-shaped states and, remarkably, the structure varies from one 

patient to another.137 A common feature of all fibrils is the inter-digitation of the side-

chains, the so-called steric zipper.138

Thirdly, though the general consensus is that drugs are given too late,49 we lack the 

structures of Aβ40/42 peptides with known inhibitors of aggregation and toxicity, paving the 
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way for the design of specific drugs with the highest affinities for Aβ40/42 oligomers. 

Overall, OPEP simulations have played a significant role to complement experiment on five 

aspects.

(1) Independently of the force field and the sampling method, self-assembly starts 

by a hydrophobic collapse and the formation of molten oligomers, which is 

modulated by the degree of hydrophobicity of the peptide. Then, the H-bonds 

drive the system to highly flexible and transient β-rich oligomers.139-141 These 

β-rich oligomers have various topologies, and we were the first using OPEP 

simulations to (i) observe assemblies with various sheet-to-sheet pairing 

angles79,81,94 that were confirmed by structures of macrocyclic β-sheet 

mimics,142 and other force field calculations,43,140,141 (ii) evidence β-barrels 

(Fig. 3A)79,143 that were validated by the X-ray structure of a toxic hexamer of a 

11-residue amyloid peptide (Fig. 3B),144 (iii) predict formation of antiparallel 

double stranded poly-L-glutamine nanotubes with 22 residues per turn (Fig. 

3C),145 reminiscent of the water-filled model proposed by Perutz,146 and (iv) 

identify reptation moves of the β-strands in the late steps of aggregation78 that 

were validated by FTIR147 and atomistic simulations.140,148

(2) The aggregates of 7- to 20-mers of GNNQQNY, NNQQ, Aβ16-22, KFFE and 

NHVTLSQ using OPEP are mostly amorphous and consist of a heterogeneous 

ensemble of β-rich states.99,149-153 In all systems, the transition at the melting 

temperature involves a change in the distributions of oligomer and β-sheet sizes, 

but mixed parallel/antiparallel (P/AP) β-strands dominate.99 This β-strand 

mismatch, observed with various force fields,38,139,154 provides strong evidence 

that one limiting-factor for fibril formation is the transition from mixed P/AP to 

fully P or AP strands. This was confirmed by bias-exchange metadynamics of 

18Val8 and 18Aβ35-40 peptides in explicit solvent, where the crossing of the 

highest free energy involves the transition from mixed P/AP to P β-strands that 

can be accompanied by the formation of the steric zipper.113,155

(3) A fundamental question pertains to the size of the primary nucleus, N*. 

Recently, two atomistic simulations in explicit solvent and one OPEP simulation 

have provided insights into N*. In the first study, an effective nucleus size on 

the order of 14 was proposed for 18 Val8 peptides by metadynamics.113 In the 

second atomistic study, the aggregation of 16Aβ37-42 peptides was investigated 

by REMD,156 and the population of 4-5 fully P β-strands, consistent with the 

fibril structure, was 1-2% at 300 K. Whether N* is around 15 for Aβ37-42 as for 

the Val8 system cannot be determined, due to finite-size effects and the fact that 

fibril formation is under kinetic and not thermodynamic control as evidenced 

experimentally157 and by Langevin dynamics of a mesoscopic model.48 Using 

unbiased MD-OPEP, we investigated the onset of aggregation in a 20-mer of 

GNNQQNY.158 Running 16.9 μs at 280 K and 300 K, we showed that 

aggregation follows the CNT and N* is 4-5 at 280 K and 5-6 at 300 K. The 

kinetics of growth cannot be fully described by the CNT, however, because 

there are important rearrangements after the nucleus is formed, as the aggregates 

attempt to optimize their organization.158
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OPEP simulations do not systematically show fibril formation. One reason 

found for the peptide spanning the residues 144–153 of the prion protein is that 

oligomerization is not thermodynamically favorable, in agreement with a 

turbidimetric experiment.23 Another reason is the presence of a proline which 

can either destabilize the β-strand conformation of the monomer and totally 

prevent aggregation, or reduce the packing of β-sheets rendering fibril formation 

a slow process,80,150 consistent with experiments.159 Overall, many factors, in 

addition to pH and T, modulate amyloid formation (N* size, fibril topology and 

lag-phase) ranging from the energy landscape of the monomer,43,48,160 the 

entropy of the loops161 or the intrinsic disorder of the whole peptide,162,163 to 

the supersaturation of the protein solution.164,165

(4) The solution NMR structure of the Aβ42 monomer reveals weak β-strand 

propensities at the CHC and the residues I31–V36 and V39–I41, and turns at 

D7–E11 and F20–S26.166 NMR relaxation data reveal that Aβ42 is more rigid at 

the C-terminus than Aβ40. IM-MS reports a collision cross-section of 1256 Å2 

for Aβ42 dimers.133 Using different preparation methods, CD leads to a β-strand 

between 12% and 25% and an α-helix between 3% to 9% at 295 K, pH 7 and 

day 0, i.e. for an heterogeneous ensemble of oligomers.131,133 Remarkably, the 

Aβ40-D23N peptide forms fibrils with in-register antiparallel and parallel β-

sheets under quiescent and strong agitations, respectively.157

To get insights into Aβ flexibility, we determined the free energy landscapes of 

the monomers167 and dimers168 of Aβ40, Aβ42, and with D23N using H-

REMD-OPEP. We found that if the three monomeric alloforms are mostly 

disordered, in agreement with experimental data166 and confirmed by all-atom 

simulations,169-171 they display distinct morphologies. Aβ42 and Aβ40-D23N 

have higher β-strand propensities at residues 30–42 than Aβ40. D23N changes 

the Aβ40 structures; the residues 1–16 becoming more independent of the rest of 

the protein,167 which may explain in part why the kinetics and the final products 

vary between Aβ40 and Aβ40-D23N under quiescent agitation. Our results on 

the dimers showed that Aβ42 has a higher propensity than Aβ40 to form β-

strands at the CHC and residues 30-42, explaining the higher Aβ42 aggregation 

kinetics.168 In none of the systems we observed any parallel β-sheet structure 

between the two CHC’s. D23N impacts the free energy landscape by increasing 

the population of states with higher β-strand propensities at the C-terminal and 

antiparallel β-sheet between the two C-termini, and this motif could be 

important in the nucleation of Aβ40-D23N toward parallel β-sheets. Our results 

also revealed many configurations stabilized by N-terminal interactions168 that 

were observed by single-molecule atomic force spectroscopy172 and all-atom 

REMD simulations.173

(5) Based on the microcrystal structure of Aβ16-21 fibrils with the dye Orange G, 

Eisenberg designed compounds that reduce toxicity by preventing fragmentation 

of the Aβ42 fibrils without binding to the oligomers.174 Despite many 

experimental attempts, scientists have not succeeded to provide the structures of 

Aβ40/42 monomers or Aβ40/42 oligomers with inhibitors. Using a shorter 
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fragment, Segal solved the NMR structure of NQTrp bound to the Aβ12-28 

monomer, revealing three dominant binding sites between NQTrp and the 

Aβ18-21 region.175 As a first step toward understanding the interaction of Aβ 

oligomers with NQTrp we focused on the Aβ17-42 peptide also found in AD 

plaques and used a multiscale procedure.96 Our extensive OPEP-REMD 

simulation of the Aβ17-42 trimer, followed by all-atom docking of five 

molecules on the most populated Aβ structures, showed that NQTrp is a more 

favorable inhibitor than EGCG, 2002-H20 and resveratrol. In agreement with 

the NMR structure of NQTrp/Aβ12-28,175 NQTrp binds to Aβ through the side 

chains of F19 and F20 and the main chain atoms of F19-E22. Our simulations 

reveal, however, many transient binding sites (Fig. 3D),96 consistent with all-

atom REMD of the Aβ1-42 dimer with 2NQTrp,176 indicating that the design of 

more efficient drugs targeting the Aβ42 dimer is not an easy task.

Fast and Accurate 3D Peptide Structure Prediction—Peptides have regained 

considerable interest as they represent alternative ways to design therapeutics, vaccines or 

molecular probes. However, fast and accurate peptide structure determination remains a 

long-standing goal in structural biology and peptide engineering.34 Pep-Fold is an 

innovative approach aimed at de novo structure prediction of linear and disulfide bonded 

cyclic peptides with 9-52 amino acids (aa).177-178 Pep-Fold relies on a Hidden Markov 

Model derived structural alphabet (SA) of 27 letters to describe proteins as series of 

overlapping fragments of four aa.179 The SA letters can be assimilated to a generalized 

secondary structure, extending the number of states from 4 (α-helix, coil, turn or bend, and 

β-strand) to 27, but not all transitions are possible between two consecutive letters. The Pep-

fold procedure consists in three steps. First, Pep-fold predicts a limited set of SA letters at 

each position from the sequence, and then performs a progressive assembly of the prototype 

fragments associated with each selected SA letter using our greedy algorithm108-110 driven 

by OPEP. As Pep-Fold uses a rigid assembly, we found necessary to smooth the OPEP side 

chain - side chain potential.177 The third step refines the CG models by Monte-Carlo before 

generating all-atom models and performing a clustering of all models returned by the 

simulations.

Pep-Fold1 efficiency was shown on 24 linear peptides of 9-25-aa in aqueous solution and 

neutral pH by predicting lowest-energy states with a mean 2.5 Å RMSD from the NMR 

rigid cores (RC, excluding the flexible parts).110 Pep-fold2, which revisited the prediction of 

the SA letters from the sequence and considers several filters to generate a variety of SA 

trajectories, was tested on peptide lengths up to 36-aa.178 The server allows the biologists or 

chemists to define S-S bonds or any residue-residue contact. Using 34 peptides with one to 

three S-S bonds, the best Pep-Fold2 models had a RMSD of 2.7 Å from the full NMR 

structures. Using 37 linear peptides, Pep-Fold2 located lowest-energy states with a 3 Å 

RMSD from the NMR RCs. We also showed the gain in the identification of the native state 

by filtering the Pep-Fold2 models using the backbone proton chemical shifts easily available 

from 2D NMR.180

Finally, Pep-Fold2 was compared to the state-of-the-art Rosetta program on 56 peptides with 

25-52-aa.180 Rosetta starts sampling with a CG model and fragment assembly MC, and then 
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through successive steps, selects models for all-atom refinement.18-19 By using a total of 

200 Rosetta and Pep-fold runs for each peptide, and a new Binet-Cauchy (BC) score,181 the 

mean BC score of the best models (lowest RMSD with respect to NMR) generated by 

Rosetta and Pep-fold are 0.83 and 0.87 (in preparation). While Rosetta generates high 

quality models (BC score > 0.9) for 34 targets vs. 29 for Pep-fold, suggesting that Pep-fold 

could benefit from an all-atom sampling refinement, Pep-fold generates near-native or 

native states for 53 peptides vs. 49 for Rosetta (BC score > 0.6). Fig. 4 shows the predicted 

structures of four peptides.

Pep-Fold is freely available as a web server110,178 and has proven to be very useful by many 

scientists for different applications that can be broadly classified into six categories. The 

first application is predicting the conformations of protein fragments.182 Structural 

characterization of the C-terminal 27-aa tail of HIV gp41 remained relatively limited and 

contradictory. Pep-Fold tail models showed conserved α-helix structures despite significant 

sequence variations among diverse clades, and this is supported by CD.183 3D models of the 

N-terminal 20-aa of human cytochrome c and several cytochrome c2 variants from R. 

capsulatus were also generated by Pep-Fold and helped understand why the insertion of an 

alanine residue between Phe11 and Cys15 and substitution of residues Glu8 and Glu10 are 

critical for heme attachment by the mitochondrial protein holocytochrome c synthase.184 

Pep-Fold was also used to generate protein N- and C-terminal conformations.185 Certain 

immune-driven mutations in HIV-1, such as those arising in p24Gag, decrease viral 

replicative capacity. In HIV-1 subtype B, the p24Gag M250I mutation is a rare variant, while 

in subtype C, it is a relatively common minor polymorphic variant (10 to 15%). The 

structural implications of M250I were predicted by Pep-Fold to be greater in subtype B 

versus C, providing a potential explanation for its lower frequency and enhanced replicative 

defects in subtype B.186 In addition, Pep-fold was used to model protein loops187 or protein 

linkers.188,189 A study on the linkers in a new class of modular alpha-amylases showed that 

the Pep-fold conformations are diverse, but match the data obtained from small-angle X-ray 

scattering.189

The second application is related to protein–peptide interaction in general, fundamentally 

important for signal transduction, transcription regulation and protein degradation.190-194 

Wu used Pep-Fold to generate the structures of 13 peptides of 20-aa as initial structures for 

short MD and showed a very good correlation between the experimental and the calculated 

MM-PB/SA binding free energies for the peptides interacting with the vascular endothelial 

growth factor A.191 Kumar used the Pep-fold conformations of several 20-aa peptides to 

explore their binding mechanisms to calmodulin,192 Chopra used Pep-Fold for the design of 

a peptide able to bind to Bacillus anthraxis toxin-antitoxin module,193 while Stegman used 

Pep-fold prior to docking onto peptidyl-prolyl cis/trans isomerase PPIL1, a component of 

the human spliceosome.194

The third domain of application is the design of immunogenic peptides. Peptides play many 

roles in immunology, yet none are more important than their role as immunogenic epitopes 

driving the adaptive immune response against infectious disease.195 Peptide epitopes are 

mediated primarily by their interaction with major histocompatibility complexes (T-cell 

epitopes) and antibodies (B-cell epitopes). In this context, Wingren reported the first 
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detailed analysis of antibody–peptide interaction characteristics, by combining large-scale 

experimental peptide binding data with the structural analysis of eight human recombinant 

antibodies and numerous peptides using Pep-fold, targeting tryptic mammalian and 

eukaryote proteomes.196

Another application concerns antiviral peptides (AVP) and vaccines. Pep-Fold contributed 

to the design of peptides inhibiting in vitro the Influenza A virus197 or other viruses198,199 

and is now defined in AVPdb, a server allowing the design of AVP.200 Pep-fold was also 

used to design a DNA vaccine against human papillomavirus causing cervical cancer.201

Although OPEP has been optimized for aqueous solution, Pep-fold has been used on 

peptides in an apolar milieu,202-204 and in particular on antimicrobial peptides (AMP) 

regarded as one of the most promising alternatives to antibiotics affected by resistance 

mechanisms. Using in silico predictions including Pep-Fold and in vitro assays led to the 

discovery of potential AMPs with high activity and low toxicity from the entire human 

genome.204

Finally, Pep-fold has been found useful in understanding the solvent-dependent CD 

spectrum of a 24-aa peptide corresponding to the tubulin-binding site of the neurofilament 

light subunit205 and the effect of gold nanoparticle conjugation on peptide structure and 

dynamics.206 Pep-fold has been used in various design situations: new molecules for 

induction of bone formation,207 peptides binding lipids,208 peptides coating carbon 

nanotubes,209 and a peptide-based Hsp90 inhibitor leading to a novel anticancer agent210 

that will enter preclinical trials conducted on patients with breast cancer, prostate cancer and 

skin cancer. To date, there is only one case of conflict between Pep-Fold and in vitro results. 

While Gautam designed 15-aa peptides with coil-turn CD, Pep-Fold predicts β-hairpins, but 

the experimental conditions (pH and ionic strength) are not reported.211

A framework for RNA and DNA coarse-grained models—In many vital cellular 

processes, especially in regulatory functions related to transcription and translation, proteins 

interact with nucleic acids. We recently developed a nucleic acid CG model, called Hire-

RNA/DNA, by following the physical principles used for OPEP, in order to better 

understand the thermodynamics and dynamics of RNA/DNA.

The most widely used all-atom force field for nucleic acids is undoubtedly AMBER with 

ff99 achieving a good agreement with experiment for DNA double helices.63 The 

parameters are, however, constantly adjusted to better represent non-canonical structures in 

loops and bulges,212 and a new parameterization obtained by reproducing known 

thermodynamic and kinetic measurements of RNA monomers and dimers was just reported 

allowing de novo folding of three hyperstable RNA tetraloops to 1–3 Å RMSD from their 

experimental structures.213 Folding a single stranded RNA free of any biases remains, 

however, a computer challenge for nucleotide (nt) lengths > 20.61

Different strategies are applied to go beyond all-atom simulations and they can be organized 

into three categories:214 homology modeling, hybrid and ab initio methods. Homology 

modeling works well, if one can find a good template in the NDB, but this is typically not 
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the case for single stranded RNAs.215,216 Hybrid methods based on knowledge-based 

energy functions vary from fragment reconstruction (MC-Fold and MC-Sym),217 fragment 

assembly (FARNA)218 to multiscale approaches relying on 2D structure predictions, CG 3D 

models based on the fragments selected from the NDB followed by all-atom 

minimization,219 or junction topology prediction and graph modeling followed by all-atom 

refinement.220 However, the best 2D structure prediction algorithms reach only 60% 

accuracy.221 Another bottleneck is the low population of non-canonical Watson-Crick (WC) 

base pairs in the NDB, and the prediction of pseudo-knots and junctions. This problem is 

also faced by ab initio CG force fields, built from atomistic simulations222,223 and electronic 

structure calculations223 or by using experimental data to assign parameters,224-226 e.g., 

iFold,225 or derive statistical potentials,227-229 e.g., NAST227. Most methods were recently 

evaluated in RNA-Puzzles and predicted a dimer of 46-nt with a RMSD from 0.34 to 0.69 

nm, a 100-nt square of double-stranded RNA with a RMSD from 0.23 to 0.36 nm, and a 86-

nt riboswitch domain with a RMSD from 0.72 to 2.3 nm.35

Following OPEP, our CG model has an energy function derived from physical intuition and 

parameters based on known structures. Among all CG models, our CG representation has 

the highest resolution, with an explicit representation of the heavy atoms of the sugar-

phosphate backbone (P, O5’, C5’, C4’ and C1’), one bead for pyrimidine bases (C and U) 

and two beads for the purine bases (G and A), see Fig. 5. For comparison, the NAST,227 

iFold225 and Xia228 models have 1, 3 and 5 beads, respectively. Note OH is not treated 

explicitly and therefore the distinction between RNA and DNA in our models is done solely 

on different equilibrium angles and torsions, with some angles and torsions allowed for one 

molecule but inaccessible to the other, and different base pairs, with DNA making only a 

subset of all RNA base pairs.230

The particles in Hire-RNAv1231 interact via standard local terms for covalent bonds, bond 

angles and dihedral rotations, an electrostatic repulsion between phosphate groups, a 

modified Lennard-Jones potential for long range van der Waals interactions as used in 

OPEPv4-v5 and base pair terms. Base pairing is the most crucial interaction and we treat it 

with more detail than all other top-down ab initio models. A two-body term, as in OPEP, 

depends on the relative distance and angles formed by two base beads interacting through 

their WC sides, see Westhof’s classification.232 All the bases can form, and not just A-U and 

G-C, with different strengths. A three-body repulsive term prevents different bases to 

simultaneously interact, even though transient multiple pairs can form, and a four-body 

term, as in OPEP, helps stabilize pairs of consecutive bases.

With Hire-RNAv1, we folded two RNA of 26- and 40-nt into hairpins from fully extended 

states by MD (Fig. 5). Running REMD, we showed that the NMR configuration is the most 

populated structure at low T.231 In a second study, we slightly modified the form of the two-

body and four-body terms for base pairs and with Hire-RNAv2, we examined the assembly 

of DNA and RNA duplexes by REMD.233 For the two RNA and the DNA consisting of 36- 

and 24-nt, we calculated the heat capacity curves and found one transition from an 

assembled state (RMSD of 0.18-0.26 nm with respect to the crystal structure) to 

disassembled states (Fig. 5). In principle, RNA could fold on itself and form a hairpin, but 

this is not a favorable free energy state for our nt sequences. The melting temperatures we 
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find for the three systems deviate at most by 17 K from the values obtained by the HyTher 

algorithm, a reference in the field.234 Overall, the same energetic parameters perform well 

for single- and double-stranded systems of 40-nt, and based on our algorithm generating an 

all-atom model from a CG state (Fig. 5), we showed the equivalence of MD results using 

AMBER ff99 with explicit ions and water starting from our REMD-predicted and the 

experimental structures for both RNA and DNA.233

Simulations of protein suspensions with hydrodynamics—In the last few years 

macromolecular crowding has been the subject of several investigations since it has crucial 

implications on cell functioning.235,236 There is increasing evidence that macromolecular 

crowding exerts large effects on the protein mobility, association and stability.237,238 It is 

generally thought that crowding serves as a means of confining proteins in space, where 

enzymatic activity is undertaken. Also, data suggest that at high concentrations proteins non-

specifically enhance association rates, with in vivo and in vitro rates and equilibria differing 

by orders of magnitude. Macromolecular crowding also affects hydration structure and 

dynamics,239 and protein conformational change.240 Evolution has fined-tune microtubule-

based motor proteins to deliver cargoes rapidly and reliably throughout the cytoplasm by 

having molecular properties that prevent them from forming traffic jams.241

Hydrodynamic and excluded volume interactions are likely the two main factors that 

account for the large reduction of protein diffusivity in crowding conditions.242 While 

hydrodynamics interactions do not alter the equilibrium distribution of states of a system, 

they potentially affect the local dynamics as well as the escape from metastable states 

characterizing the spatially and energetically heterogeneous crowded system. For example, 

hydrodynamics has a primary role on the transport properties, as for the translational and 

rotational diffusivities, and in general the importance on the dynamics of suspensions is well 

known. Along with simulations, diffusional data can be accessed experimentally via quasi-

elastic neutron scattering, single molecule tracking, fluorescence correlation spectroscopy 

and fluorescence-recovery-after-photobleaching,243 so the multiscale approach can be 

directly compared with in vitro and in vivo data.

One large-scale MUPHY/OPEP application is offered here to illustrate the potentiality of the 

coupling of the CG force field with hydrodynamics interactions. A large system composed 

of 17576 Rat1 yeast proteins in solution is simulated at 300 K for 30 ns. Rat1 is a 666-aa 

protein that functions primarily in the nucleus and plays an important role in 

transcription.244 Altogether we consider a system of 70 million particles, each Rat1 having 

4013 particles. To account for the solvent, a hybrid LB/Brownian Dynamics scheme with a 

time step of 1 fs was used on the Titan supercomputer, exploiting 17576 GPUs in 

parallel.120 The highest volume fraction considered (40%) emulates the crowding conditions 

found in the cytoplasm, typically with 20-30% of the cytoplasmic volume occupied by 

proteins, nucleic acids and other macromolecules. As a result, the distance between proteins 

is comparable to the size of the proteins.235

During the evolution of the Rat1 suspension, proteins move and tumble together. Fig. 6 

shows the typical protein configuration in the suspension, in particular by highlighting the 

hydrodynamic “bubble” that each protein carries along, representing the isosurface of 
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constant velocity surrounding proteins. Each bubble is further distorted and connected with 

those generated by neighboring proteins. Visual inspection of the flow streamlines reveals 

that, as proteins move, they generate a substantial accompanying drain on the solvent. Even 

at physiological concentrations, the streamlines travel mostly undisturbed over several 

protein sizes, that is, distant proteins effectively experience solvent mediated mutual 

interactions.

Crowding is generally thought to induce sub-diffusive and slow dynamics on the short 

timescale and diffusive dynamics at longer times.245 In principle, the coherent long-ranged 

organization of the solvent flow field can act on the suspension as a lubricant, in order to 

facilitating the protein motion. On the other hand, the hydrodynamic field can interfere with 

the protein motion, since viscous dissipation can drain momentum away from the 

suspension.

In the following, we illustrate simulation data for the Rat1 suspension for the translational 

diffusion coefficients that pertain to the short-time dynamics (10 ns). The diffusion 

coefficient is shown in Fig. 7 and is evaluated via the integration of the protein center of 

mass velocity autocorrelation function. For the sake of comparison, experimental data on the 

translational coefficient obtained by quasi-elastic neutron scattering for the bovine serum 

albumin protein are also shown.

On the considered timescale, diffusion shows anomalous behavior, in the sense that the 

effective mean square displacement does not scale linearly with time but is rather 

subdiffusive (data not shown). As Fig. 7 shows, the translational diffusion coefficients 

provide similar, although systematically larger values than the experimental ones, probably 

related to the larger temporal scale accessed by the simulation as compared to the one 

pertinent to the scattering spectra (3.5ns < τexpt < 5 ns).246 This temporal window exceeds 

the hydrodynamic one, which arises from the propagation of vorticity over the protein linear 

size (~100 ps) and slightly slows down the protein self-diffusion. The drop of the 

translational diffusion coefficient for volume fractions comprised between 10% and 30% 

signals the onset of caging effects on account of steric interactions. At larger volume 

fractions the diffusivity drops to one order of magnitude smaller than that at the high-

dilution value, with proteins possessing some residual mobility. Analysis of the trajectories 

of the macromolecules, in particular by focusing on the intermolecular contacts, highlights 

that during their erratic encounters proteins display structural heterogeneity, with several 

non-specific and specific interactions. Heterogeneity reflects the presence of small clusters 

made of two or three proteins, together with the presence of isolated (singlet) proteins. At 

the same time, the simulations show a certain dispersion of the diffusion coefficient 

increasing with the level of volume fraction.

On the structural side, crowding conditions are usually considered to stabilize protein 

structures, due to the concomitant presence of specific and non-specific intermolecular 

interactions. At the same time, entropic effects due to the suppression of available space can 

destabilize the macromolecular scaffolding. Simulations of the Trp cage protein in cavity-

like environments highlighted the thermodynamic shifts induced by polar (destabilizing) vs. 

non-polar (stabilizing) interactions between the protein and the confining surface.237b It was 
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also reported that, when confined in a reverse micelle, atomistic fluctuations are 

reduced.237c Fig. 7 reports the Rat1 RMS fluctuations from their initial states. As crowding 

induces a larger number of intermolecular contacts, a mild destabilization of the proteins 

takes place, in agreement with recent experimental247 and computational studies237d on 

other proteins. However, the Rat1 system shows that the enhanced fluctuations do not 

induce substantial departures from the initial structures and are in the conventional range of 

values. Analysis of the whole ensemble of proteins (Rg inset, Fig. 7) shows that a small 

heterogeneity of structures is detected at the highest volume fraction considered, indicating 

that the presence of small clusters in the suspension does not trigger partial unfolding of the 

molecules.

This simulation of unprecedented size made possible by a multiscale methodology, bringing 

together the OPEP CG and a consistent treatment of the hydrodynamic interactions, is a first 

step towards simulating the real physics in the cell. The coupling of proteins and solvent 

reveals the interplay between specific and non-specific intermolecular interactions, and the 

role of hydrodynamic forces on the structural and diffusional properties of proteins in 

crowded environments (in preparation).

OPEP Limitations

The OPEP force field has several limitations, as is the case for any other CG or all-atom 

force field. Some are easy to alleviate and are the subject of on-going projects. Other issues 

are more delicate. It is important to be aware of the strengths, weaknesses, and limitations so 

as to use OPEP for the right questions.

Buffer Conditions and pH—We can block the N-terminus by an acetyl group (CH3-CO) 

and the C-terminus by an NH2 group, or block one end while the other is in its zwitterion 

form. Alternatively, the proteins can be in their zwitterion forms. The charged residues are 

parameterized for neutral pH. This means the N-terminus is NH3
+, the C-terminus is CO2

−, 

the Arg and Lys residues are treated as positively charged (NH3
+), the Glu and Asp residues 

are treated as negatively charged (CO2
−), and the His residues are neutral. So, OPEP can be 

safely used only in the pH range of 6-7. The pH effect can be illustrated on the Aβ12-24 

peptide forming amyloid fibrils very rapidly at pH ≤ 5 and very slowly at pH 8.4 using the 

same in vitro conditions.248 Another aspect to be known is that the non-bonded parameters 

have been parameterized in “normal” aqueous solution. So we expect deviations with 

experiments at high ionic strengths or buffers made of H2KPO4 and adjusted with H2SO4, or 

with DMSO.

Non-natural Amino Acids and Small Molecules—OPEP has been extensively tested 

for the 20 standard natural L-amino acids, but D-amino acids can be used as well. The three-

proteinogenic amino acids occurring in all kingdoms of life, selenocysteine, pyrrolysine and 

N-formylmethione, cannot be treated. S-S bonds can be treated at a bead level using a 6-12 

potential when folding peptides with Pep-Fold, or described at an atomic level using 

standard local terms and Amber parameters for the bond angles and dihedral angles. While 

the N-methylated amino acids have been parameterized using quantum mechanics 

calculations,129 many non-canonical amino acids cannot be used. These include peptoids,249 
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β-amino acids for designing antibiotics where the amino group is bonded to the β carbon 

rather than the α carbon,250 γ-amino acids where the amino group at the third carbon atom is 

after the carboxyl carbon atom, such as γ-aminobutyric acid the most important 

neurotransmitter in the central nervous system,251 side chains with cyclo-hexyl groups to 

design inhibitors of Aβ40/42 aggregation,252 and Aβ40/42 with a pyroglutamate.127 For all 

these systems, it is now straightforward within the framework of the OPEPv5 code to derive 

effective potentials and forces from all-atom simulations.24 Generating OPEP parameters for 

small drugs is out of reach since the explicit representation of H-bond donors or acceptors is 

an essential requirement of the rule of “five”,253 but we can imagine a multi-resolution 

method on the fly with an all-atom representation of the protein and the drug in the regions 

of interest.

Effective Time Scale and Long-time Dynamics—In OPEP, the solvent contributions 

are treated through effective non-bonded interactions and a single bead replaces most side 

chains. So why does OPEP use 2 fs for integrating the equations of motion? For comparison, 

Deserno uses 100 fs with a resolution model of four beads,46 Klein 25 fs, Martini 

simulations 20-40 fs,11 Shea 10 fs with a three-bead model,43 PaLaCe and UNRES 5 and 

4.9 fs,39,33 PRIMO 4 fs,42 and Voth uses 2 fs.36 The reason is that OPEP explicitly 

represents the N-H bond and its vibrational mode254,255 at 3600 cm−1 which limits the time 

step for conserving the total energy in the NVE ensemble. The second reason is that 

augmenting the time step to 3-4 fs by changing the mass of the hydrogen atom would 

introduce dynamics perturbations compared to all-atom simulations.

Using an all-atom force field in implicit solvent, Rao showed that folding of three peptides 

is accelerated by two orders of magnitude.256 The relationship between the OPEP-MD 

simulation time and the experimental time varies with the system. Poly-L-alanine and poly-

L-proline have the same number of degrees of freedom in OPEP and in an all-atom model, 

while poly-L-valine has not. The implicit solvent and CG side chains do not affect the 

motions uniformly and even if dynamics were investigated by Langevin simulations, we 

would miss important dynamical contributions as a result of the momentum transfer that 

would occur through the solvent. Overall, our experience suggests a 5- to 10-fold speed-up 

compared to all-atom MD in explicit solvent, and the OPEP-generated dynamics cannot 

totally reflect the dynamics in explicit solvent. The OPEP-MD time is therefore smaller than 

the CG-DMD time37,38 and the Martini-MD11 time, preventing the self-assembly of large 

oligomers of Aβ42257 or diphenylalanine258 peptides using reasonable computer time.

Short-time Dynamics—Using multiple MD trajectories of 30-100 ns at 300 K, the RMS 

deviations of all proteins are 0.15 nm higher than in all-atom MD simulations in explicit 

solvent,23-24 though all-atom force fields do not describe similarly the folded259 or 

unfolded260 proteins. While the secondary structures are well preserved and display RMS 

fluctuations consistent with NMR, the loops display higher mobility. This results from their 

intrinsic flexibility and the simplified side chains, but more importantly from the absence of 

interactions between the loop residues and the solvent. As is the case for all-atom and CG 

force fields, OPEP has limitations in describing the vibrational modes.255,261,262
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Thermodynamic Properties—The heat capacity and the melting temperature play a 

major role in relating microscopic and macroscopic properties of proteins. Their accurate 

predictions by simulations remain a significant challenge due to the complex and dynamic 

nature of protein structures, their solvent environment, and conformation averaging. 

Constructing the heat capacity curves, CV, as a function of T from REMD, ST or 

metadynamics simulations is an easy task using PTWHAM263 or MBAR.264 OPEPv5 was 

optimized to fit the experimental TM of a β-hairpin (297 K).24 Using the same parameters, 

the monomer of the ccβ-p2 monomer has a calculated TM of 275 K and a α-helix content of 

70% fully consistent with the Agadir program. Experimentally, the peptide displays a α-

helical CD signal at 277 K, suggesting a TM within 290-300 K. Finally, we predicted a TM of 

360 K vs. 336 K experimentally for the 85-residue HPr protein. Although a larger test set of 

proteins is needed, there is a systematic deviation of ± 25 K between the OPEPv5 calculated 

and experimental melting temperatures.

Four points are worth noting: (i) few CG models report TM values. While earlier UNRES 

simulations found TM of 1000 K,31 the last UNRES version reports 297 and 317 K for the 

trpzip1 and trpzip2 peptides vs. 323 and 345 K experimentally.33 No other systems are, 

however, available for validation. Note that by using OPEPv4 parameters, we found a TM of 

360 K for trpzip2.23 In contrast, Voth’s model finds TM values 120 K lower than 

experiments for trpzip2 and Trp-cage, 36 (ii) OPEPv322 and other calculations265 showed 

that an overestimation of TM can result from the absence of a desolvation energy barrier; (iii) 

even all-atom force fields in explicit solvent overestimate TM by 30–40 K,3 and (iv) due to 

this TM shift, we recommend to start with a minimal T of 260 K for ST- or REMD-OPEP 

simulations.

A second aspect to be aware of is that the OPEP heat capacities above TM, are smaller than 

the experimental values. This is not surprising since three major terms account for the 

absolute heat capacity of a protein: one first term depending on the covalent structure and 

the contributions from all internal vibrational modes; a second term arising from non-

covalent interactions of the 2D and 3D structures; and a third term from hydration. For a 

typical globular protein in solution the heat capacity at 25°C is given by the covalent 

structure term (85%) and the hydration term (15%). In contrast, the change in heat capacity 

upon unfolding results from the increase in the hydration term (95%) and then the loss of 

non-covalent interactions (5%).266 Simplified side chains and the implicit solvent in OPEP 

make it difficult therefore to estimate the hydration contribution accurately above TM. 

Although free energy differences may fit experimental data, a breakdown of free energies 

into enthalpies and entropies can be reliable for the backbone, but is not accurate for the side 

chains. We can however envision running a number of all-atom simulations in explicit 

solvent from a selected list of poses in the folded and unfolded states.

On-Going Projects and Developments

Physics behind thermophilic and mesophilic proteins—The capability of OPEP to 

simulate protein folding/unfolding and temperature melting makes the model a powerful tool 

to study the elementary stabilizing forces in biomolecules. In this regard, proteins from 

thermophilic organisms are ideal study-cases. These proteins are stable and functional up to 
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100°C.267,268 While the general mechanisms that sustain such an extreme behavior remain 

to be determined, some molecular peculiarities have been singled out. A comparative 

structural analysis indicates that short loops are important motifs for stability269 and de novo 

protein design based on the ROSETTA force field successfully predicted enhanced stability 

of proteins with minimal loops.270 At the level of chemical composition, thermophiles have 

a systematic higher population of charged amino acids and salt-bridges, thus optimized 

electrostatics are thought to be a key ingredient for enhanced stability. Optimizing these 

interactions at the protein surface, based on the simplified Kirkwood-Tanford electrostatic 

model, allowed the design of proteins with increased stability.271 However playing with 

electrostatics is not always an effective route to enhance stability, because mutations 

designed to introduce ion pairs can compromise stability due to the large desolvation penalty 

associated with buried ionic groups.272-274

The OPEPv4 model was used to explore the thermal stability of two homologues, the G-

domains of EF-Tu and 1α proteins. These 200-aa domains were simulated by REMD using 

24 replicas spanning 260-580 K, each for 300 ns. The specific heats of unfolding, reported 

in Fig. 8, show two main peaks. Though convergence is not reached, remarkably, the curve 

of the hyper-thermophilic protein is systematically shifted to higher temperatures (see 

horizontal arrows) mirroring its enhanced thermal stability. The calculated shift between the 

two homologues is 35 K, comparing favorably with the experimental difference of 40 K. 

Extended simulations and tests with OPEPv5 that includes improved potentials for salt 

bridges are in progress.

This preliminary result shows that OPEP with REMD can shed light on the intriguing 

problem of thermal stability. First, it is possible to obtain at a reasonable computational cost 

the melting temperature of homologues either by monitoring the peak of the heat capacity or 

by reconstructing the stability curve, ΔGf/u =−kT·ln (pu/pf), where pf(u) is the probability to 

occupy the folded and unfolded states. This latter strategy could be crucial to understand the 

thermodynamic mechanism sustaining protein activity at high temperatures. 268,275-277

The extensive sampling of conformations in both the folded and unfolded states then would 

provide key information on the protein flexibility at ambient condition and the presence of 

motifs in the unfolded state. Moreover, the decomposition of the free energy gap into 

enthalpy and entropy, here clearly limited by the nature of the CG to the behavior of the 

backbone, could provide extra information on the stability mechanism.278-280

Effect of shear flow on protein folding and amyloid formation—It has been 

reported that hydrodynamic interactions accelerate collapse during polymer coil-to-globule 

transition281 or protein folding,282-283 and affect the kinetics of lipid membrane self-

assembly.284 Thanks to the MUPHY/OPEP coupling it is now possible to explore the 

behavior of proteins under shear flows. Assessing the effect of shear flow on the stability of 

proteins is of interest for biotechnological applications because proteins might be degraded 

due to filtering or injection processes.

Thus far, experimental studies have reached contradictory conclusions about the minimal 

shear-rate  needed to perturb globular proteins.285 Computational studies have also tackled 
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this problem using simplified (generally Gō-like) models and showed that under strong 

uniform or elongation flow, proteins do unfold.283 However, the minimal shear-rate 

generating unfolding or the necessary time for cumulating shear stress remains an open 

issue.285 We are applying OPEP to shed light on theses issues. In Fig. 9 we present 

preliminary results of the MD-OPEPv5 dynamics of a β-hairpin peptide in a strong laminar 

shear flow, . We see that after a few nanoseconds the peptide suddenly 

unfolds as marked by the RMSD increase, and explores several configurations that extend 

along the velocity gradient.

A systematic study of shear-induced unfolding is appealing also for probing mechanical 

stability as compared to atomic force spectroscopy experiments; in the former case the drag 

force is sensed in different locations due to the thermal motion of the protein while in the 

latter the external pulling applies only along the end-to-end distance axis. Moreover, as for 

the glycoprotein Ibα receptor, conformational change induced by shear flow can be essential 

for function, i.e. the binding to the cofactor.286

The effect of shear was also appreciated in the context of amyloid fibril formation.287-290 

For instance, it has been observed that in an uniform laminar flow generated in a Couette 

cell, Aβ1-40 sample forms fibrils within 15 hours at 37°C while in the absence of shear, the 

process requires at least 1 month.288 This acceleration corresponds to a decrease of the 

activation barrier of 4.3 kT or the loss of one hydrogen bond per monomer in solution.288 A 

possible mechanism for the effect of shear is that it may lead to the alignment of aggregates, 

which in turn facilitates their assembly into fibrils. It was further probed that changing the 

nature of the shear flow, i.e. a heterogeneous field generated by a magnetic stirrer bar, 

enhances the formation of protofibrils and the growth of fibrils288 and affects the rate of 

fragmentation.290 We are investigating the shear-induced effects on amyloid peptides using 

OPEP.

Buffer- and pH-dependent OPEP force field—We are currently using all-atom MD 

simulations and Boltzmann inversion to generate salt-bridge potentials between Lys, Arg 

and Asp and Glu as a function of pH. Similarly, we are deriving OPEP potentials for 

polypeptides at various high ionic strengths and in buffers made of H2KPO4, H2SO4 and 

DMSO so as to mimic as closely as possible the in vitro conditions used to form amyloids. 

These potentials will be useful for Pep-fold predictions.

Hire-RNA version 3—To predict complex RNA topologies, two features are critical. The 

first is electrostatics, RNAs being highly charged and ions playing important roles in the 

structures and thermodynamics. Many models consider ion screening at long distances 

between phosphate groups via the Debye-Hückel treatment of electrostatic interactions. 

Other models go more into details by considering either one layer of explicit ions 

surrounding RNA, referred to as ion condensation,291 some implicit “structural ions”,228,292 

or explicit ions and solvent.293 In Hire-RNAv3, we added a Debye-Hückel term and the 

screening parameter is being calibrated against experimental melting temperatures of 

duplexes as a function of ionic concentrations. We are also exploring the presence of explicit 

ions.
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The second issue is the treatment of non-canonical W-C interactions never taken into 

account by ab initio models. Our new force field allows two bases to interact on all sides, 

giving rise to about 30 recognition motifs, each one with its specific geometry and strength. 

Overall, Hire-RNAv3 consists of local terms, excluded volume, ionic screening 

electrostatics, a proper stacking interaction depending on base position and orientation, and 

terms accounting for both canonical and non-canonical interactions on the three base sides 

and also for the co-planarity of the interacting bases (in preparation).

With Hire-RNAv3, we are now able to predict complex RNA structures. As a first 

benchmark, we studied three systems starting from fully extended states: a 22-nt pseudo-

knot, a 49-nt telomerase triple-helix pseudo-knot, and a 79-nt riboswitch with a kissing loop. 

For the 22-nt RNA, we recovered the native state by running 1.2 μs ST simulation with 15 

discrete temperatures from 300 to 450 K (Fig. 10). With a REMD simulation of 64 replicas, 

each for 0.5 μs, we recovered the native topology of the 49-nt RNA with a small shift of the 

base pairs, however. For the 79-nt riboswitch, we implemented the possibility of including 

some restraints. Information about base pairing is easily obtained by preliminary NMR data 

and is not sufficient to assign the full 3D structure. Imposing 4 restraints in the three helices, 

we were able to fold this molecule to its NMR topology by a MD trajectory of 0.6 μs at 300 

K and recovered the kissing hairpin configuration, although the guanine ligand was not 

considered (Fig. 10).

Virtual reality and interactive simulations—The use of haptic manipulations of 

molecular models has been well described.294-295 The technical requirements are modest; 

and it is nowadays easy to setup interactive simulations.296 Even quantum chemistry 

applications are within reach.297 For the manipulation of complex biological assemblies, 

coarser methods are preferable and have been exploited notably for fitting models into 

experimentally determined envelopes.298 Generally speaking such approaches build on the 

idea to render accurate molecular models more real and tangible to the scientists.299

We previously pointed out that CG models play a particular role in virtual interactive 

experiments.121,300 CG descriptions represent an excellent compromise between simulation 

speed and biological fidelity. Furthermore our experience suggests that CG-level simulations 

are generally more robust with respect to user interactions than computations carried out at 

an all-atom level.

OPEP and Hire-RNA are of particular interest in this context and provide original features 

that we could not address previously, due to their relatively high resolution of the backbone 

representation and the presence of directional bonded terms. Both OPEP and Hire-RNA 

simulation engines were extended for interactive manipulation as described in the methods 

section. Here, we will mainly brush over the potential benefits of such an approach and 

restrict ourselves to present a very first, simple toy application, as the validation of this 

recent MDDriver/IMD implementation is still ongoing.

Generally speaking, the interactive approach opens up perspectives to guide simulations via 

user input, for example using a haptic device, within a dedicated graphical environment. 

Hence, the user feels an immediate force feedback by a straightforward combination of 

Sterpone et al. Page 24

Chem Soc Rev. Author manuscript; available in PMC 2015 May 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



classical molecular modeling and virtual reality. An instant benefit is to gather an intuitive 

understanding of the causal relationship between the theoretical model and its chemically 

and biologically relevant properties.

These hands-on investigations echo recent experimental ventures into the mechanical 

properties of molecular structures, and can be associated with the term mechanochemistry. 

Experiments, such as AFM pulling and allosteric spring probes, can be reproduced on the 

fly. Multiple forces may be applied simultaneously to reproduce complex deformations and 

assemble or disassemble several molecules. Such an interactive exploration can provide 

insight into the key interactions that govern the mechanical properties of molecular 

structures and is a unique tool to probe mechanochemistry at a molecular level.

We previously carried out such investigations at a CG level using elastic network models as 

in the studies of the SNARE complex,121 RecA nucleofilament301 and dystrophin fibril.302 

Such spring-based CG models do however preclude any significant changes in the 

underlying molecular structure that may occur upon tension, a limitation that we are able to 

lift using OPEP.

In order to illustrate these enhanced possibilities, we interactively manipulated a Hire-RNA 

model of an RNA hairpin (Fig. 11). By pulling on one or both ends of the structure, it is 

fairly easy to control the successive detachment of the base pairs. When the added external 

forces are released, the structure may either progressively return to the initial hairpin state or 

feature a base shift. This reversible process takes place on the order of a few hundred 

picoseconds, depending on how much the ends were torn apart. This numerical experiment 

provides insight on how the hairpin behaves under such stress, similarly to what can be 

probed experimentally with optical tweezers.303

One apparent caveat is the relatively short time step (0.1 to 2 fs) and/or low temperature 

(100 K) that have to be used to reduce vibrations in order to allow for accurate manipulation. 

This inconvenience could be lifted by adding the ability to interactively change these 

parameters during the virtual experiment: using low time-step/temperature values when 

selecting and applying the forces, then going back to standard values to observe the resulting 

effects. This kind of simple manipulation can be useful to quickly probe features of the force 

field or to generate non-trivial starting structures. When carried out more rigorously, the 

approach may be used to interpret experimental results.

Future extensions of the interactive approach similar to those previously reported298,302 will 

enable the use of OPEP and Hire-RNA models to integrate low-resolution experimental 

data, from small-angle X-ray scattering (SAXS) or Cryo-EM, where both the force field and 

the user intuition will guide the refinement.

Conclusions

We have presented some of the good applications of OPEP and what OPEP-based 

simulations can tell us about the structures, dynamics, kinetics and thermodynamics of 

single proteins, amyloid fibril formation, proteins in a crowded environment with 

hydrodynamics and RNA/DNA complexes. Whether OPEP can reproduce the effects of a 
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single mutation on protein energy landscapes remains to be determined.163,304 Compared to 

the nine CG models described in this report, the OPEP CG strategy with inclusion of the 

amide hydrogen allows generating more accurate melting temperatures than Voth’s model 

consistent with experimental values and all-atom simulations with growing accuracy of the 

force fields. OPEP is also free of any bioinformatics-based information (AWSEW), 

restraints on the backbone (ATTRACT, Klein’s model and MARTINI) and has been 

extensively used on amyloid and non-amyloid systems in contrast to the PRIME, PRIMO, 

UNRES and Palace systems. The main OPEP disadvantage is that it can only use 2 fs time 

step. OPEP is coupled to many unbiased advanced conformational sampling methods and 

interactive virtual reality approaches. We have briefly sketched the main on-going 

applications and developments. Others, that have just started, include flexible protein/protein 

and protein/RNA-DNA docking with the necessity to couple the protein and nucleic acid 

force fields, and the use of the basin hopping method to locate the global energy minimum 

and calculate disconnectivity graphs to visualize the energy landscape.305 All these studies 

will help improve the OPEP parameters and gain a better understanding of how living 

systems function, and how these functions can be perturbed by internal or external factors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
OPEP CG model and enhanced sampling methods. (A) We use the peptide Ala-Lys-Phe-

Pro-Val in its zwitterion form to show the details of the backbone and the side-chains. (B) 

The Activation-Relaxation Technique connecting local minima by first-order saddle points. 

(C) Example of a metadynamics simulation in a one-dimensional landscape with multiple 

metastable minima separated by energy barriers. Top panel: System trajectory in CV space 

as a function of simulation time. Bottom panel: Progressive filling (colored lines) of the 

underlying potential (black line) by bias. In both the panels color code is used to measure the 

simulation time. The system starts in the basin A1 and it is pushed by the bias to overcome 

the free-energy barriers and to visit basin B1 (t~100) and basin C1 (t~1500). In the second 

half of the simulation, the system can easily sample the whole landscape and the bias can be 

used to estimate the underlying free-energy surface.
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Fig.2. 
Flowchart depicting the OPEP force field parametrization scheme.
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Fig.3. 
Amyloids. (A) The β-barrel of the β2m(82-87) peptide as predicted by OPEP.79,143 (B) The 

hexamer of the KV11 peptide consisting of six antiparallel β strands forming a barrel as 

determined by X-ray crystallography.144 (C) The predicted OPEP antiparallel double 

stranded poly-L-glutamine nanotube.145 (D) Two binding modes of the NQTrp drug to the 

Aβ17-42 trimer as predicted by our multiscale simulation. The yellow balls indicate the 17th 

amino acids and the drug is shown with all-atoms.96 Top view also shows all atoms of A21 

and E22; bottom view shows all atoms of E22 (blue) and V39 (green).
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Fig.4. 
Structure predictions superposed on the experimental structures. (A): Best Pep-fold model of 

the peptide code PDB 1n0a (11-aa, BC score = 0.94) with one S-S bond; (B): Best Pep-fold 

model of the peptide 1e0m (37-aa, BC score = 0.88). In (A) and (B), we show the all-atom 

representation of some side chains; (C) and (D): Best Pep-fold and Rosetta models of the 

peptide 2j8p (49-aa, BC scores = 0.93 and 0.88) superposed on the 20 NMR structures and 

showing the flexibility of one extremity. Green: experimental conformations.
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Fig.5. 
Hire-RNA model. Top, Left: Representation of a Guanine nucleotide with 7 beads. Top, 

Right: MD of the 36-nt 1N8X hairpin with Hire-RNAv1 recovering the native structure from 

a fully extended state. Secondary structure of the hairpin is shown on the right. Bottom, 

Left: Heat capacity plot of a 36-nt RNA duplex with HiRE-RNAv2. Bottom, Right: With 

our reconstruction algorithm, the predicted all-atom structure behaves similarly to the 

experimental structure using all-atom MD in explicit solvent.
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Fig.6. 
MUPHY/OPEP suspension. (A) Snapshot highlighting the Rat1 proteins and the solvent 

velocity field shown in transparency. (B) A zoom showing the Rat1 secondary structures 

and the local solvent velocity field. (C) Flow streamlines generated by three selected 

proteins in the suspension in a single timeframe.
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Fig.7. 
MUPHY/OPEP results. Left: Translational diffusion coefficients at various volume fractions 

(black circles) are compared to the experimental data of bovine serum albumin246 (red 

squares). The diffusion coefficient is normalized by the value at virtually zero volume 

fraction, and the solid line is a guide to the eye. Inset: Histogram of diffusivity stemming 

from the ensemble of proteins. Right: RMS fluctuations from the crystallographic structure 

at 40% volume fraction (black curve). Structures with maximal (red) and minimal (blue) 

departures from the average value are shown. Secondary structure is indicated as a lower bar 

with colour green (turn), yellow (β-strand), magenta (α-helix) and white (coil). Inset: 

Histogram of Rg values.
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Fig.8. 
Specific heat of unfolding Cv for the mesophilic (green) and hyperthermophilic (red) 

domains of the EF-Tu and 1α proteins, respectively calculated from OPEP-REMD 

simulations. The structural homology of the two proteins is highlighted in the bottom right 

panel. The presence of two main peaks in the Cv profile is caused by the unfolding events of 

different secondary structure motifs. In a single two-state model, the Cv is expected to show 

a single peak at the melting temperature TM at which the population of the folded (pf) and 

unfolded (pu) states are equal. The melting temperature indicates the zero of the stability 

curve, see the upper inset graph. Several mechanisms can cause the increase of the TM of 

thermophiles, i.e. the upshift, the right shift or the broadening of the curve.268,275-277.
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Fig.9. 
Time evolution of the RMSD and snapshots of a β-hairpin peptide (PDB code 1PGB, 

fragment 41-56) simulated in laminar shear flow. The velocity gradient is generated along 

the Z direction and corresponds in our simulation to a shear rate of . We show 

the detailed structures of the peptide prior to unfolding (I) and at various unfolding stages 

(II-IV), with the velocity field represented in background and a colour scale given in the top 

of the figure.
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Fig.10. 
Hire-RNAv3 results. Left, Folding of the 22-nt pseudo-knot (2G1W) using ST simulation 

with the predicted state (blue) superposed on the NMR structure (yellow). The RMSD with 

respect to the NMR structure over time is shown. Right, MD-predicted structure of the 79-nt 

guanine riboswitch 1Y26 (blue) superposed on the experimental structure (yellow) using our 

four restraints (in red). In both panels the secondary structure of the system is shown on the 

right.
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Fig.11. 
Interactive force unfolding of an RNA hairpin modelled by Hire-RNA. Visualization and 

interaction were performed within VMD. Starting from an initial folded conformation (top 

left), the user tears apart both ends by applying forces (blue arrows) on the C4’ beads of the 

end bases. Two scenarios were observed after releasing the forces, either the structure 

refolds and returns to a full hairpin state (1) or a base shift occurs (2). A cumulated view of 

simulation snapshots is shown on the very right, coloured from white (start of the 

simulation) to black (final snapshot). The end base C4’-C4’ distance curve over time is 

shown for both experiments.
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Table 1

Summary of the different systems studied with the CG force field.

Applications Methodology used Total Time References

Αβ1-40, Αβ1-42, HT-REMD 70.0 μs 167

WT(D23N) monomers and dimers 97.5 μs 168

Trimers of Αβ17-42 and interactions with drugs REMD 16.4 μs 96

Aggregation of 3- to 20-mers of amyloid fragments MD
ART

REMD

30.0 μs
no

120.0 μs

149, 150, 152
80,150

23, 68, 99, 149-153

Size of the primary nucleus for fibril formation MD
REMD

33.8 μs
90.0 μs

158
99, 153

Peptide Structure Prediction and Conformations of protein fragments PEP-FOLD no 177, 178, 180, 182-189

Protein-peptide interactions PEP-FOLD no 190-194

Design of immunogenic and antiviral peptides PEP-FOLD no 195-201

Impact of macromolecules and hydrodynamics MUPHY/OPEP no this work

RNA and DNA folding MD, REMD, ST 85.0 μs 231, 233, this work

Thermophilic and mesophilic proteins REMD 72.0 μs this work

Impact of shear flow MUPHY/OPEP 30 ns this work

Virtual reality Interactive MD 0.2 ns this work
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