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We conducted a clinical trial to assess the feasibility and 
efficacy of CD33-directed chimeric antigen receptor-
modified T cells (CART-33) for the treatment of refrac-
tory acute myeloid leukemia (AML). A 41-year-old male 
patient with AML was enrolled and received a total of 
1.12 × 109 autologous CART-33 cells, of which ~38% 
were transduced with CAR. The CART-33 infusion alone 
induced rigorous chills and fevers; drastic fluctuations of 
his preexisting pancytopenia; elevated serum cytokine 
levels, including interleukin (IL)-6, IL-8, tumor necrosis 
factor-α, and interferon-γ; slight transient hyperbilirubi-
nemia within 2 weeks; a subsequent intermittent moder-
ate fever; and reversed fluctuation of the pancytopenia. 
A marked decrease of blasts in the bone marrow was 
observed on examination 2 weeks after therapy, and 
there was a gradual increase until florid disease progres-
sion occurred at 9 weeks after the cell infusion. These 
observations warrant further research on CART-33 treat-
ment in refractory AML and may spur efforts to extend 
the CART-33-induced tumor burden to the preparation 
of other intensive strategies, such as hematopoietic stem 
cell transplantation. This study is registered at www. 
ClinicalTrials.gov as NCT01864902.

Received 3 May 2014; accepted 25 August 2014; advance online  
publication 23 September 2014. doi:10.1038/mt.2014.164

INTRODUCTION
The treatment of relapsed and refractory acute myeloid leukemia 
(AML) remains challenging despite great improvements in inten-
sive chemotherapy and hematopoietic stem cell transplantation.1,2 
The development of tumor-associated antigen-directed cytotoxic 
agents or immunotherapies have increased the expectations for 
disease control in this patient population.3 CD33 is primarily 
expressed on multipotent myeloid precursors, unipotent colony-
forming cells, maturing granulocytes and monocytes, peripheral 
granulocytes, and resident macrophages.4–6 Gemtuzumab ozo-
gamicin (GO) is a recombinant humanized monoclonal antibody 
conjugated to the DNA-damaging toxin calicheamicin directed 

against the CD33 antigen, which is expressed on the leukemic 
cells of more than 90% of patients with AML.7,8 The data from 
some clinical trials on the efficacy of GO support the conclusion 
that CD33 is a valid target for some subtypes of AML, mainly in 
favorable and intermediate risk groups.9–11 Although clinical trials 
could demonstrate some benefit of combining GO with chemo-
therapy, the drug was withdrawn mainly because its benefits did 
not outweigh the adverse effects of the drug.

The experience with GO reflects the intrinsic heterogeneity 
of CD33 in AML. The diversity of individual leukemia types that 
have different cellular origins is of particular significance for ther-
apeutics that aim to cure AML and indicates that no approach is 
generally effective for all of the subtypes of leukemia. Recent clini-
cal trials have demonstrated that tumor-specific chimeric antigen 
receptor-modified T cell (CART)-based adoptive cell transfer may 
provide a curative approach for tumor therapy,12 particularly for 
B cell-lineage malignancies by targeting CD19.13–15 After CD33-
specific CART cells (CART-33) were shown to possess potent 
antileukemic activities in vitro and in vivo in a mouse model,16–18 
CART-33 was extrapolated to be promising for the treatment 
of AML patients. Because of the grade 3/4 toxicities frequently 
observed in patients treated with GO,10,19,20 efforts at further clini-
cal trials were inevitably stopped because of frightening safety 
concerns that are likely caused by irreversible on-target off-tumor 
adverse effects such as myelosuppression and severe hepatotoxic-
ity triggered by the in vivo persistence of CART-33 cells.

To test the safety and efficacy of CART-33 cells, we designed a 
clinical trial for patients with relapsed and refractory AML. One 
patient with long-term pancytopenia who was not considered for 
other types of cytotoxic chemotherapy was selected for the CART-
33 trial, and the results are reported in this manuscript.

RESULTS
Phenotype, antitumor activities, and in vivo 
expansion of CART-33 cells
CART-33 cells were generated from the mononuclear cells of 
90 ml of the patient’s peripheral blood (PB). After 13 days of cul-
ture according to the cytokine-induced killer (CIK) cell culture 
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system as reported previously,21 the total cells reached a 19-fold 
expansion and were released for the infusions (Figure 1a). Of 
the infused cells, 95.64% were CD3+ cells principally composed 
of the CD8+ subset (83%), and 16.44% were characterized with 
the  central memory phenotype (CD45RO+/CD62L+/CCR7+; 
Figure 1b). Through the synchronous transfection verification of 
CAR.33-4-1BBζ-GFP, 38% of the CART-33 cells were expected to 
express CAR (Figure 1c). In addition, 14.76% of the infused cells 
were CD33 positive (Figure 1d).

With the exception of this patient, the immunophenotypes 
of CART-33 cells generated from two other AML patients and 
10 healthy donors were similarly observed and characterized 
(Supplementary Figure S1).

The CART-33 cells exhibited an approximately identical cyto-
toxic activity relative to nontransduced CIK (NT) cells against 
CD33− K562 cells (Figure 2a). By contrast, the prominent cyto-
lytic activities of CART-33 cells were observed in CD33+ HL60 
(Figure 2b) and primary AML blast cells with CD33 expression 
(Figure 2c), indicating the specifically ex vivo targeting cytotoxic-
ity of CART-33 cells on CD33+ cells, which was comparable to 
previously described results.16–18

Without any conditioning chemotherapy, this patient was 
administered a total of 1.12 × 109 CART-33 cells (1.07 × 109 of 
CD3+ cells; 4.25 × 108 of CAR+ cells) in escalating doses over a 
period of 4 consecutive days (1 × 108 on day 1, 1.2 × 108 on day 2, 
4 × 108 on day 3, and 5 × 108 on day 4, respectively). High levels of 
the CAR gene were reached rapidly in the PB and bone marrow 
after the infusions of the CART-33 cells, and the levels of CAR 
fluctuated between 3,501 and 207,764 copies per µg of DNA for at 
least 2 months in the PB (Figure 3).

Toxicities
Grade 4 chills and a high fever occurred 0.5–1 hours after each 
daily cell infusion, with the highest temperature reaching 42 
°C, and these high fevers were ameliorated overnight. The fever 
recurred on day 9 after the first day of cell infusion and evolved 
into a persistently high fever (Figure 4a). The patient’s febrile syn-
drome was largely improved and nearly reached normal 12 hours 
after the administration of first-dose etanercept (tumor necrosis 
factor (TNF)-α inhibitor) on day 12 (Figure 4a); the elevated 
serum levels of proinflammatory cytokines including interleukin 
(IL)-6, TNF-α, INF-γ, IL-10, and IL-8 decreased markedly 2 days 

Figure 1 Expansion, transfection efficiency, and phenotypic analysis of CART-33 cells. (a) Expansion (-fold) of the control NT (no transfection 
T cells) and CART-33 cells generated from the patient. The cells were cultured for ~13 days. (b) Comparison of the immunophenotypic analyses of 
the PBMNC, NT, and CART-33 cells. (c) The verified transfection efficiency of CART-33 cells by GFP. Left panel: optical microscope photographs show-
ing the CART-GFP cells of the patient after culture for 12 days. Right panel: expression of CAR-GFP in CART-GFP cells as assessed by FACS analysis. 
(d) CD33 expression on CART-33 cells as determined by FACS analysis. CART, chimeric antigen receptor-modified T cells; FACS, fluorescent-activated 
cell sorting; GFP, green fluorescence protein; PBMNC, peripheral blood mononuclear cell.
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after the anti-TNF-α treatment (Figure 5). No infectious signs 
were detected despite the patient’s long-term neutropenia (the 
white blood cell count ranged from 0.41 to 1.2 × 109 cells/l), and 
the patient experienced no relief from the 3-day prophylactic use 

of last-defense antibiotics. This patient suffered from slightly or 
moderately elevated serum levels of IL-6, TNF-α, and INF-γ for 
at least 2 months and experienced a spontaneous and intermit-
tent febrile syndrome, which mainly manifested as temperature 
fluctuations between 36.5 and 38.5 °C (Figure 4b).

Beginning on the second day after the CART-33 infusion, 
nearly concurrent exacerbation of the patient’s preexisting pan-
cytopenia was observed. The patient’s pancytopenia fluctuated 
through an inverse relationship with the degree of his fever 
(Figure 4a,b). Two episodes of decreases in the complete blood 
count occurred after the infusions of the escalated doses of CART-
33 cells. The first episode occurred just after the cell infusions on 
days 3–5, and the second episode occurred on days 8–12. For sup-
portive care, the patient accepted platelet transfusions on days 3, 
4, 11, and 12 and red blood cell transfusions on days 5, 6, and 11. 
After the early acute phase, red blood cells and platelets needed to 
be transfused approximately once weekly because of the patient’s 
persistent pancytopenia. The frequency of blood transfusions 
appeared to be shortened compared with the frequency of trans-
fusions before the CART-33 therapy. After 2 weeks, the number of 
neutrophils in his PB stably recovered to a level approaching that 
observed before the CART-33 infusions and fluctuated around his 
previous scope (the white blood cell count ranged from 0.77 to 

Figure 2 Cytotoxic activity of CART-33 and PBNMC from the patient. Cytotoxic activity of the PBMNC, NT (no transfection T cells) and CART-33 
cells obtained from the patient using the following target cells: (a) K562 cell line (human chronic myelogenous leukemia cell lines, CD33−), (b) HL-60 
cell line (human promyelocytic leukemia cells, CD33+), and (c) autologous blasts (primary acute myeloid leukemia cells from the patient with CD33+). 
The results are shown at effector:target (E:T) ratios of 1:1, 5:1, 10:1, 20:1, and 40:1. (d) Cytotoxic activity of the following effector cells obtained from 
the patient: NT and CART-33 were cultured for 12 days, the PBMNCs obtained from the PB of the patient before and after the CART-33 cell infusion, 
the target cells were K562 and HL-60, and the results are shown at an E:T ratios of 10:1. The cytotoxic activity was evaluated through a 24-hour 
carboxyfluorescein succinimidyl ester staining assay. All of the data are represented as the means of triplicate values, and the error bars represent the 
SEMs. CART, chimeric antigen receptor-modified T cells; PBMNC, peripheral blood mononuclear cell.
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Figure 3 CART-33 copies persistent in the peripheral blood and the 
bone marrow as assessed by quantitative polymerase chain reaction 
(Q-PCR). Quantitative real-time PCR was performed on genomic DNA 
harvested from the patient’s PBMNCs and bone marrow collected before 
and at the indicated serial time points after the CART-33 cell infusion. 
Primers specific for the transgene were used. CART, chimeric antigen 
receptor-modified T cells; PBMNC, peripheral blood mononuclear cell.
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1.35 × 109 cells/l), although neutropenia always persisted in this 
patient.

With the exception of a slight transient hyperbilirubinemia 
(with a peak value of 30 mmol/l) within 2 weeks of cell treat-
ment and with sufficient alkalization and hydration treatments 
before and during the first 2 weeks of cell therapy, there were no 
significant alterations of other serum biochemical indexes reflect-
ing cytolysis in vivo, such as electrolytes, lactate dehydrogenase, 
creatinine, and urea nitrogen, detected during the 10-week hospi-
talization of this patient starting from the time of the cell therapy.

Clinical response
Consistent with the flow cytometry analyses, Wright’s staining of a 
bone marrow sample showed a marked decrease in the blast ratio 
from the prior >50% to <6% detected 2 weeks after the CART-33 
treatment. The later detections showed a gradual increase in the 
blast ratio: 22% at 3 weeks, 27% at 5 weeks, and nearly 70% at 9 
weeks (Supplementary Figure S2). The results from fluorescent-
activated cell sorting analyses demonstrated the positive expres-
sion of CD33 on blasts at every time point, and adjacent changes 
to morphological observations in the blast ratios in the bone 
marrow were detected (Figure 6). Considering this finding in 
combination with the persistent high copy number of CAR mol-
ecules and the preponderant cytotoxic activities of lymphocytes 
isolated from patient’s PB at serial time points after CART-33 
infusions against CD33+ HL-60 over lymphocytes isolated before 
CART-33 treatment (Figure 2d), we propose that this patient 
developed CART-33-mediated cytotoxic activity escape of the  

in vivo renascent CD33+ blasts. This patient subsequently devel-
oped florid disease progression and gave up all treatments; he died 
13 weeks after the CART-33 infusion at our institution. Active 
bone marrow hyperplasia and cells in multiple developing stages 
of lineages were observed in each aspiration, and stripped nucleus, 
cytoplasmic swelling, and membrane budding in the involved cell 
lineages were frequently observed after the CART-33 therapy, 
possibly implying that CART-33 triggered an immune attack on a 
subset of CD33+ cells (Supplementary Figure S2).

DISCUSSION
As targeted CD33 therapy for CD33+ AML, GO has been reported 
to have clear benefits by several clinical trials,9–11 and CART-33 
cell therapy has been shown to have potent antileukemic activity 
in experimental studies.16–18 To a large extent, concerns for pos-
sible serious adverse events dampened the attempts of the clini-
cal application of CART-33 cells in AML patients.22 In this study, 
we demonstrated a comparable in vitro antileukemia activity of 
CART-33 cells with that found in previous reports and reported 
their first clinical use for the treatment of one chemotherapy 
refractory advanced AML patient. The infusion of CART-33 
alone cells led to marked disease degradation in the early stage, 
indicating a potent in vivo cytotoxic effect of CART-33 on CD33+ 
blasts. However, CD33+ leukemic cells gradually augmented until 
a florid progression was observed in the later stage of cell therapy. 
The evidence of a persistent high level of CAR molecules in vivo 
and the maintenance of the cytotoxic activity of lymphocytes iso-
lated from the patient’s PB on CD33+ HL-60 cells recapitulated 

Figure 4 Changes in the complete blood count and body temperature during and after the CART-33 cell infusion. (a) The left panel shows the 
alterations in the WBC count and body temperature, and the right panel shows the changes in the platelet count, hemoglobin level, and the patient’s 
body temperature during the first 2 weeks of cell treatment. (b) Changes in the temperature and WBC count 2 weeks later. CART, chimeric antigen 
receptor-modified T cells; WBC, white blood cell.
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a possible escape mechanism for CD33-directed therapy against 
leukemic cells with low CD33 expression. Importantly, even 
though only one case was completed, the lack of uncontrollable 
clinical toxicities observed in this patient after CART-33 infusion 
may be more encouraging for the application of CART-33 treat-
ment in AML patients.

In addition to those toxicities related to the tissue distribu-
tion of the targeted antigen, a systemic inflammatory response 
syndrome or cytokine storm or cytokine release syndrome has 
been repeatedly reported with CART cell infusions, the severity 
of which is tightly correlated with the tumor burden and is always 
accompanied by tumor lysis.13–15 This effect is likely attributable 
to the release of high levels of inflammatory cytokines, particu-
larly TNF-α, IL-6, and interferon (IFN)-γ. In this trial, the sharply 
synergetic elevations of multiple serum cytokines were observed 
in the early stage after the CART-33 cell infusions and occurred 
coordinately with high fever and drastic blast degradation. 
Although it is still disputable whether the blockage of cytokine 
release syndrome through the use of anti-TNF-α and/or anti-IL-6 
treatment would blunt the in vivo cytotoxic activity of CART cells, 
at least in this patient, we observed the relief of cytokine release 
syndrome after the use of etanercept (TNF-α inhibitor) followed 
by a gradual augmentation of CD33+ leukemic cells in bone mar-
row in the later stage of the CART-33 therapy.

Nearly 30% AML patients who were administered GO 
in previous clinical practice experienced more than grade  

3 hyperbilirubinemia, and 9% experienced grade 3 or 4 alanine 
transaminase level abnormalities and even hepatic veno-occlusive 
disease.23,24 Death events have also been reported to be directly 
associated with liver failure after GO treatment.24 Furthermore, 
evidence of CD33 expression on Kupffer cells and hepatocytes 
raised the safety concerns of CD33-targetted treatment and eclipse 
further attempts.25 In this report, only a transient hyperbilirubi-
nemia within 2 weeks of CART-33 infusion was observed in this 
patient. In our opinion, this event should not be simply explained 
as a fortunate escape of possibly severe liver toxicity induced by 
CART-33. Evidence from studies using experimental animals 
explicitly demonstrated that there was no lymphocytic infiltration 
within mouse liver tissue after treatment with CIK cells, whereas 
mice treated with splenocytes showed strong lymphocytic infiltra-
tion surrounding the bile ducts.26 Further evidence revealed that 
the reduced acquisition of homing molecules to CIK cells did not 
allow their settling down in the liver. Just the transient trafficking 
of CIK cells through liver likely does not result in severe immune 
attack on the target cells.

It has been documented that CD33 expression is not restricted 
to the myeloid lineage and exists in two different splicing vari-
ants (CD33M and CD33m).22 Expression of the CD33 antigen 
can also be detected in a subpopulation of activated T cells.27,28  In 
agreement with the previous observation, CD33+ T cells were also 
detected in CART-33 cells. Unexpectedly, CD33+ cells, which were 
anticipated to be eliminated by CART-33 cells via a postulated 

Figure 5 Changes in the various cytokine levels after CART-33 cell infusion. The serum levels of the indicated cytokines were serially measured 
starting on the first day of the CART-33 infusion to the indicated time point. CART, chimeric antigen receptor-modified T cells; IFN, interferon; 
IL, interleukin; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
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fratricide mechanism, were still present in the final infused cells. 
Multiple and complex mechanisms may be involved in the CART-
33 cell-mediated cytotoxic activity exemption of CD33+ lympho-
cytes. One conceivable interpretation is the low affinity of scFv for 
the CD33 antigen; thus, only cells with a high expression of CD33 
are recognized and eliminated. Additionally, it remains unknown 
whether the lack of the extracellular ligand-binding variable 
Ig-like domain disrupts the binding of scFv to CD33m.

Factually, CD33 is not a highly abundant antigen even in 
AML blasts and is typically even lower in immature cell subsets.28 
Although it is difficult to clinically demonstrate a quantitative 
relationship between CD33 expression abundance and efficacy of 
CD33-directed therapy, as demonstrated in several clinical trials 
that involved the usage of GO,29 in vitro experimental studies have 
shown an inverse correlation between CD33 antigen saturation 
and GO-induced cytotoxicity.30 The patient enrolled into our trial 
showed a rapid degradation of CD33+ blasts after the CART-33 
infusion followed by a gradual augmentation, and these progres-
sion indicated the development of CD33-directed immune attack 
anergy. A selected proliferation of leukemic cells with low satura-
tion of CD33 expression under the persistent stress of CART-33 

cells in vivo cannot be excluded because tumor heterogeneity 
and/or phenotypic evolution are always proposed to be common 
events that contributed to the resistance of leukemic cells to the 
administrated agents.31,32

Myelosuppression is the most common safety concern in 
CD33-directed clinical trials. As reported by the previous clini-
cal studies,24 nearly all patients who received GO treatment had 
grade 3/4 toxicities of neutropenia and thrombocytopenia due to 
invariable myelosuppression. For clinical safety, we consciously 
selected one AML patient with long-term pancytopenia to enter 
our CART-33 trial. As described in our results (Figure 3), com-
pared with his preceding levels, this patient only had a transient 
marked decrease of three-lineage blood cells within 2 weeks of 
the CART-33 infusions. The subsequent neutrophil recovery, their 
fluctuation around his former scope, and the active bone marrow 
hyperplasia suggested that irreversible myelosuppression may not 
have resulted from CART-33 treatment. A normal myeloid com-
partment with low CD33 expression may survive and then com-
pensate for the loss of a compartment with high CD33 expression 
in the later stage of CART-33 infusions. Despite only one case was 
completed, the observations from this patient undoubtedly make 

Figure 6 FACS analysis for bone marrow aspirates. The cells in the D gate represent the blast population count corresponding to 61.66, 9.48, 
28.24, 33.83, and 84.95%, respectively, of the total nucleated cells in the bone marrow aspirates collected at the indicated time points before and 
after the CART-33 infusions. CART, chimeric antigen receptor-modified T cells; FACS, fluorescent-activated cell sorting.
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us rethink that irreversible myelosuppression and neutrophil defi-
ciency may not be an unbridgeable hurdle for CART-33 therapy.

It should be finally mentioned that less than 40% of the final 
infused T cells in this patient were CAR-positive cells, more than 
60% of infused cells were nontransfected. Given the cytotoxic 
activity possessed by the cells without CAR expression against 
CD33+ blast cells as shown in Figure 2, we postulated that the 
observed toxicities such as fever and cytokine elevation after 
cell infusion, especially in the early stage, should be at least par-
tially induced by the nonspecific cytolytic effect of infused cells, 
although the adverse effects such as transient and easily control-
lable fever during the infusion term of CIK cells were only rarely 
observed in patients with hematopoietic malignant diseases, and 
the clinical response can be obtained in few relapsed patients just 
after repeated infusions of CIK cells.21,33,34

Even the toxicities and clinical response induced by CART-33 
cell infusion should be further determined in more AML patients 
in this still-opened clinical trial, based on our preliminary obser-
vations of this patient, we propose that CART-33 infusions 
served as a short-term problem-resolving approach that may be 
more suitable as a debulking and/or immune hit strategy for the 
treatment of relapsed and refractory AML patients and that this 
approach should be followed by an intensive chemotherapy regi-
men or hematopoietic stem cell transplantation.

MATERIALS AND METHODS
Patient. A 41-year-old male with an allergic constitution manifesting 
fever and skin rash in reaction to multiple agents presented initially with 
pancytopenia and was diagnosed with AML-M2 in June 2011. The flow 
cytometry results showed that the blasts were positive for CD33, CD117, 
and CD38 and partially positive for CD56, CD13, and HLA-DR. This 
patient had a normal karyotype and a NPM1 mutation but did not have 
a FLT3-ITD mutation. He obtained complete remission after one cycle of 
standard MA (mitoxantrone and cytarabine) induction. The postremis-
sion treatment included one cycle of MA (mitoxantrone and cytarabine), 
three cycles of HIDAC (high-dose intermittent ARA-C), one cycle of DA 
(daunorubicin and cytarabine), and one cycle of IA (idarubicin and cytara-
bine). His leukemia recurred 3 months after his last chemotherapy session 
in February 2013, with the amount of blasts in the bone marrow rising 
from 17 to >50% even after he underwent one cycle of the CAG (aclaci-
nomycin, cytarabine, and granulocyte colony stimulating factor) regimen. 
Given his prior standard treatment and persistent pancytopenia, other 
intensive chemotherapy regimens were not further considered before he 
enrolled into this trial. After providing informed consent, he was admitted 
for autologous CART-33 cell therapy in July 2013.

Clinical design and protocol eligibility requirements. The proto-
col (ClinicalTrials.gov identifier NCT 01864902) was approved by the 
Institutional Review Board at the Chinese PLA General Hospital. No com-
mercial sponsor was involved in the study. The enrolled patients provided 
written informed consent according to the Declaration of Helsinki.

The patients were eligible if they were diagnosed as having relapsed 
or refractory CD33-positive AML by the criteria of the National 
Comprehensive Cancer Network AML Guidelines (Version 1.2012) and 
if they were not candidates for stem cell transplantation.

Autologous PB mononuclear cells (PBMNCs) were collected from 
50–90 ml of the patient’s blood for the production of the CART-33 cells. 
The patient received a total of at least >1.0 × 107 CD3+ cells per kilogram 
of body weight, of which at least >10% were transduced (>1.0 × 106 cells 
per kilogram of body weight) split into 3–5 consecutive daily i.v. infusions 
in escalating doses. No postinfusion cytokines were administered. Bone 

marrow examinations with immunophenotyping were performed at least 
once monthly after the CART-33 cell infusion. The toxicity was assessed 
during and after the infusion according to the National Institutes of 
Health Common Terminology Criteria for Adverse Events Version 3.0 
(http://ctep.cancer.gov/). The clinical responses were assessed according 
to the National Comprehensive Cancer Network criteria.

Modification and expansion of CD33-specific T cells
Vector production. The DNA sequence of the scFv domain targeting 
the CD33 antigen was derived from AM402974.1 (GeneBank number). 
The CAR.33-4-1BBζ vector harboring anti-CD33 scFv, human CD8α 
hinge and transmembrane domains, and human 4-1BB and CD3ζ sig-
naling domains was generated. The cassette was cloned into a lentiviral 
backbone. A pseudotyped, clinical grade lentiviral vector was produced 
according to current good manufacturing practices with a three-plasmid 
production approach.

Generation and expansion of CAR T cells. The PBMNCs collected in 
cell preparation tubes (BD Biosciences, San Jose, CA) were purified from 
the whole blood according to the manufacturer’s recommendations. The 
lentiviral transduction was performed after 2 days of T cell culture. The 
CAR T cells were subsequently prepared using the expansion procedure 
of CIK cells as we reported previously.21 Briefly, the cells were cultured 
in GT-T551 medium and activated by the addition of antihuman CD3 
monoclonal antibody (Takara, Japan), recombinant human IL-2 (rhIL-2; 
Peprotech, Rocky Hill, NJ), and recombinant human interferon (IFN)-γ 
(Peprotech). The cells were transferred from the coated flasks to fresh 
flasks after 4 days. Fresh medium and 1,000 U/ml rhIL-2 were added every 
3 days. The composition and purity were assessed by fluorescent-activated 
cell sorting on days 10–11. The cells were then harvested and termed as 
CART-33 cells. The green fluorescence protein (GFP) harboring vector 
CAR.33-4-1BBζ-GFP was constructed to be used for the verification of 
the transduction efficiency.

Flow cytometry. The following antihuman antibodies were used to stain 
the cell surface markers to establish the cell phenotype: CD4-fluorescein 
isothiocyanate (FITC), CD8-phycoerythrin (PE), CD3-chlorophyll pro-
tein complex (PerCP), CD56-allophycocyanin (APC), CD33-PE, CD65-
FITC, CD45RO-FITC, CD62L-APC, and CCR7-PerCP. The antibodies 
and isotype-matched monoclonal antibodies were purchased from BD 
Biosciences. The data acquisition was performed using a FACSCalibur flow 
cytometer (BD Biosciences).

Cytotoxicity assays. The cytotoxic activities of the primary PBMNC, con-
trol NT CIK cells, and the CART-33 cells were determined by staining with 
carboxyfluorescein succinimidyl ester (ALEXIS Biochemicals, San Diego, 
CA) after 6 hours of incubation. The targets were tested on the CD33+ 
HL60, CD33− K562 cell lines, and primary AML blast cells with the expres-
sion of CD33 molecules. The target cells labeled with carboxyfluorescein 
succinimidyl ester (2 × 105) were cocultured in triplicate with target cells 
at effector to target (E:T) ratios of 40:1, 20:1, 10:1, and/or 5:1, in complete 
medium alone. After 6 or 12 hours of coculture, the cells were stained with 
PE-labeled Annexin V and 7AAD using an Annexin V-RPE kit (Southern 
Biotech, Birmingham, AL) according to the manufacturer’s instructions. 
The cells were subjected to apoptotic and necrotic analyses by fluorescent-
activated cell sorting. The amount of cell death was calculated according 
to the following equation: death rate = (control sample)/control × 100%.

Quantitative PCR. The PBMNCs collected serially after the T-cell infu-
sions were isolated by Ficoll density gradient centrifugation, and the 
genomic DNA was extracted using a QIAamp DNA Blood Mini Kit 
(Qiagen, Valencia, CA). The standard consisted of 10-fold serial dilutions 
of purified scFv:plasmid DNA starting at 107 copies/μl, with each sample 
containing 1 µg of preinfusion PBMNC DNA to control for the back-
ground signal. The negative control was preinfusion PBMNC genomic 
DNA. A 153-bp (base pair) fragment containing portions of the CD8a 
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chain and the adjacent 4-1BB chain was amplified using the forward 
primer 5′-GGTCCTTCTCCTGTCACTGGTT-3′ and the reverse primer 
5′-TCTTCTTCTTCTGGAAATCGGCAG-3′. Primers that amplify a frag-
ment of the β-actin gene (TaqMan B-actin Detection Reagent Kit; Applied 
Biosystems, Foster City, CA) were used as an internal control and for the 
normalization of DNA quantities. Quantitative real-time PCR was per-
formed in triplicate with 1 µg of DNA in each reaction using SYBR qPCR 
Mix in a 7900HT Sequence Detection System (Applied Biosystems).

Cytokine measurements. Serum IL-2, IL-6, IL-10, IL-8, IL-12p70, IL-12/
IL23p40, IFN-γ, TNF-α, and vascular endothelial growth factor levels were 
batch analyzed using a BD Biosciences microbead sandwich immunoassay 
according to the manufacturer’s instruction. Briefly, analyte concentration 
was determined using a standard curve prepared with each assay.

SUPPLEMENTARY MATERIAL
Figure S1. Phenotypic analyses of PBNMC, NT, and CART-33 cells.
Figure S2. Morphology of bone marrow smears.
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