
Sequence analysis

Shifted Hamming distance: a fast and accurate

SIMD-friendly filter to accelerate

alignment verification in read mapping

Hongyi Xin1,*, John Greth2, John Emmons2, Gennady Pekhimenko1,

Carl Kingsford3, Can Alkan4,* and Onur Mutlu2,*

1Computer Science Department, 2Department of Electrical and Computer Engineering, 3Computational Biology

Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA and 4Department of Computer Engineering,

Bilkent University, Bilkent, Ankara 06800, Turkey

*To whom correspondence should be addressed

Associate Editor: Alfonso Valencia

Received on September 8, 2014; revised on December 1, 2014; accepted on December 23, 2014

Abstract

Motivation: Calculating the edit-distance (i.e. minimum number of insertions, deletions and substi-

tutions) between short DNA sequences is the primary task performed by seed-and-extend based

mappers, which compare billions of sequences. In practice, only sequence pairs with a small edit-

distance provide useful scientific data. However, the majority of sequence pairs analyzed by seed-

and-extend based mappers differ by significantly more errors than what is typically allowed. Such

error-abundant sequence pairs needlessly waste resources and severely hinder the performance of

read mappers. Therefore, it is crucial to develop a fast and accurate filter that can rapidly and

efficiently detect error-abundant string pairs and remove them from consideration before more

computationally expensive methods are used.

Results: We present a simple and efficient algorithm, Shifted Hamming Distance (SHD), which

accelerates the alignment verification procedure in read mapping, by quickly filtering out

error-abundant sequence pairs using bit-parallel and SIMD-parallel operations. SHD only fil-

ters string pairs that contain more errors than a user-defined threshold, making it fully com-

prehensive. It also maintains high accuracy with moderate error threshold (up to 5% of the

string length) while achieving a 3-fold speedup over the best previous algorithm (Gene

Myers’s bit-vector algorithm). SHD is compatible with all mappers that perform sequence

alignment for verification.

Availability and implementation: We provide an implementation of SHD in C with Intel SSE in-

structions at: https://github.com/CMU-SAFARI/SHD.

Contact: hxin@cmu.edu, calkan@cs.bilkent.edu.tr or onur@cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The emergence of massively parallel sequencing technologies, com-

monly called high-throughput sequencing platforms, during the past

decade triggered a revolution in the field of genomics. These plat-

forms enable scientists to sequence mammalian-sized genomes in a

matter of days, which has created new opportunities for biological

research. For example, it is now possible to investigate human gen-

ome diversity between populations 1000 Genomes Project

Consortium (2010, 2012), find genomic variants likely to cause dis-

ease (Flannick et al., 2014; Ng et al., 2010, and study the genomes

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 1553

Bioinformatics, 31(10), 2015, 1553–1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015

Original Paper

https://github.com/CMU-SAFARI/SHD
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
(HTS)
Ng etal.(2010);
(
),
http://www.oxfordjournals.org/

of ape species (Marques-Bonet et al., 2009; Prado-Martinez et al.,

2013; Scally et al., 2012; Ventura et al., 2011) and ancient hominids

(Green et al., 2010; Meyer et al., 2012; Reich et al., 2010) to better

understand human evolution.

However, these new sequencing platforms drastically increase

the computational burden of genome data analysis. In the first step

of data analysis, billions of short DNA segments (called reads) are

aligned to a long reference genome. Each read is mapped to one or

more sites in the reference based on similarity with a process called

read mapping.

Read mappers typically fall into one of two main categories: suf-

fix-array and backtracking-based (Delcher et al., 1999; Langmead

and Salzberg 2012; Li and Durbin 2010) or seed-and-extend-based

(Ahmadi et al., 2011; Alkan et al., 2009; Li et al., 2009; Rumble

et al., 2009; Weese et al., 2012). Suffix-array-based mappers use the

Burrows-Wheeler transformation (Burrows et al., 1994) and are effi-

cient at finding the best mappings of a read. Mappers in this cat-

egory use aggressive algorithms to build their candidate pools,

which may miss potentially correct mappings. Although mappers

in this category can also be configured to achieve higher sensitivity

by systematically inspecting all possible error scenarios of a read,

such configuration increases their execution times superlinearly

(Delcher et al., 1999; Langmead and Salzberg 2012; Li and Durbin

2010).

Alternatively, seed-and-extend-based mappers build comprehen-

sive but overly large candidate pools and rely on filters and local

alignment techniques to remove incorrect mappings (i.e. potential

mappings with more errors than allowed) from consideration in the

verification step. Mappers in this category are comprehensive (find

all correct mappings of a read) and accurate (do not provide incor-

rect mappings), but waste computational resources identifying and

rejecting incorrect mappings. As a result, they are slower than suf-

fix-array-based mappers.

Fast and accurate filters, which detect and reject incorrect

mappings using cheap heuristics can increase the speed of seed-

and-extend mappers (by speeding up the verification procedure, Xin

et al., 2013) while maintaining their high accuracy and comprehen-

siveness. An ideal filter should be able to quickly verify the correct-

ness of a mapping, yet require much less computation than rigorous

local alignment, which precisely calculates the number of errors be-

tween the read and reference using dynamic programming methods.

More importantly, a filter should never falsely remove a correct

mapping from consideration, as this would reduce the comprehen-

siveness of the mapper.

Recent work has shown the potential of using single instruction

multiple data (SIMD) vector execution units including general-pur-

pose GPUs and Intel SSE Intel (2012) to accelerate local alignment

techniques (Farrar 2007; Manavski and Valle 2008; Szalkowski et

al., 2008). However, these publications only apply SIMD units

to existing scalar algorithms, which do not exploit the massive bit-

parallelism provided by SIMD platforms.

In this article, we present shifted hamming distance (SHD), a fast

and accurate SIMD-friendly bit-vector filter to accelerate the local

alignment (verification) procedure in read mapping. The key idea of

SHD is to avoid wasting computational resources on incorrect map-

pings by verifying them with a cheap, SIMD-friendly filter before

invoking canonical complex local alignment methods. Our studies

show that SHD quickly identifies the majority of the incorrect map-

pings, especially ones that contain far more errors than allowed,

while permitting only a small fraction of incorrect mappings to pass

SHD which are later filtered out by more sophisticated and accurate

filters or by local alignment techniques.

This article makes the following contributions:

• We show that for seed-and-extend-based mappers, most poten-

tial mappings contain far more errors than what is typically

allowed (Section 2).
• We introduce a fast and accurate SIMD-friendly bit-vector filter,

SHD, which approximately verifies a potential mapping with a

small set of SIMD-friendly operations (Section 3).
• We prove that SHD never removes correct mappings from con-

sideration; hence, SHD never reduces the accuracy or the com-

prehensiveness of a mapper (Section 3).
• We provide an implementation of SHD with Intel SSE (Section 3)

and compare it against three previously proposed filtering and

local alignment implementations (Section 4), including an SSE

implementation of the Smith–Waterman algorithm, swps3

(Szalkowski et al., 2008); an implementation of Gene Myers’s

bit-vector algorithm, SeqAn (Döring et al., 2008) and an imple-

mentation of our Adjacency Filtering algorithm, FastHASH (Xin

et al., 2013). Our results on a wide variety of real read sets show

that SHD SSE is both fast and accurate. SHD SSE provides up to

3� speedup against the best previous state-of-the-art edit-dis-

tance implementation (Döring et al., 2008) with a maximum

false-positive rate of 7% (the rate of incorrect mappings passing

SHD).

2 Motivation

Read mappers identify locations within a reference genome where

the read and the reference match within a user-defined error (i.e. in-

sertions, deletions or substitutions) threshold, e. In practice, e is usu-

ally 5% of the read length, but most aligners can be configured to

return only the best mapping (the mapping with the fewest errors).

As seen in Figure 8 (in Supplementary Materials), most potential lo-

cation mappings tested by seed-and-extend based mappers are incor-

rect (having more errors than allowed); in fact, when e ¼ 5% of the

read length, more than 98% of mappings are incorrect. Since align-

ment is the primary computationally intensive task performed by

seed-and-extend-based read mappers (Xin et al., 2013), it is crucial

that incorrect mappings be rejected efficiently.

Many mechanisms have been proposed to efficiently calculate

the edit-distance of strings and filter out incorrect mappings. These

mechanisms can be divided into five main classes: (i) dynamic pro-

gramming (DP) algorithms, (ii) SIMD implementations of DP algo-

rithms, (iii) bit-vector implementations of DP algorithms, (iv)

Hamming distance calculation and (v) locality-based filtering mech-

anisms. Notice that although mechanisms in both (ii) and (iii) are

different implementations of (i), we separate them into two catego-

ries because they use different optimization strategies: while mech-

anisms in (ii) faithfully implement the DP algorithm in a SIMD

fashion, mechanisms in (iii) use a modified bit-parallel algorithm to

calculate a bit representation of the DP matrix (Myers 1999). Full

descriptions of each strategy are provided in Supplementary

Materials, Section S1.3.

In this article, we choose three representative implementations

from (ii), (iii) and (v): swps3 (Szalkowski et al., 2008), SeqAn

(Döring et al., 2008) and FastHASH (Xin et al., 2013) (for detailed

analysis, see Supplementary Materials S1.3). These mechanisms

were not designed as SIMD bit-parallel filters and are either fast or

accurate (can filter out most incorrect mappings) but not both.

Conversely, we designed SHD to leverage bit-parallelism and SIMD

instructions to achieve high performance while preserving high

accuracy.

1554 H.Xin et al.

(
);
(
);
(
);Prado-Martinez etal.(2013
(
);
(
);Meyer etal.(2012
(
);
(
);Delcher etal.(1999
(
);
(
);Rumble etal.(2009);Ahmadi etal.(2011);Li etal.(2009).
(
Li and Durbin(2010);
(
);Delcher etal.(1999).
.,
)
(
(
);
(
);Farrar(2007
paper
Shifted Hamming Distance
paper
-
(
(
);
(
3x
(
.,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
(
,
employ
(
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
1
paper
(
(
),
(
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
On the other hand

3 Methods

Overview
Our filtering algorithm, SHD, uses simple bit-parallel operations

(e.g. AND, XOR, etc.) which can be performed quickly and effi-

ciently using the SIMD architectures of modern CPUs. SHD relies

on two key observations:

1. If two strings differ by e errors, then all non-erroneous charac-

ters of the strings can be aligned in at most e shifts.

2. If two strings differ by e errors, then they share at most eþ1

identical sections (Pigeonhole Principle, Xin et al., 2013).

Based on the above observations, SHD filters potential mappings

in two steps:

1. Identify basepairs (bps) in the read and the reference that can be

aligned by incrementally shifting the read against the reference.

2. Remove short stretches of matches identified in step 1 (likely

noise).

We call these two steps shifted Hamming mask-set (SHM) and

speculative removal of short-matches (SRS), respectively. In the re-

mainder of this section, we describe these two steps, then analyse

SHD in terms of false negatives (defined as correct mappings that

are falsely rejected by SHD) and false positives (defined as incorrect

mappings that pass SHD).

3.1 Shifted Hamming Mask-Set (SHM)
SHM aligns basepairs in the read and the reference by horizontally

shifting the read against the reference. SHM is based on the key ob-

servation that if there are no more than e errors between the read

and the reference, then each non-erroneous basepair (bp) in the ref-

erence can be matched to a basepair in the read within ½�e;þe� shifts

from its position. Thus, if there are more than e basepairs in the read

that failed to find a match in the reference, then there must be more

than e errors between the read and the reference, hence the potential

mapping should be rejected.

Based on this observation, SHM verifies a potential mapping in

two steps. First, SHM separately identifies all basepair matches by

calculating a set of 2eþ1 Hamming masks while incrementally

shifting the read against the reference (one Hamming mask per

shift). Each Hamming mask is a bit-vector of ‘0’s and ‘1’s represent-

ing the comparison of the read and the reference, where a ‘0’ repre-

sents a bp match and a ‘1’ represents a bp mismatch

(implementation details of computing Hamming masks using bit-

parallel operations are provided in Supplementary Materials S1.1).

Figure 1 illustrates the production of these Hamming masks for a

correct mapping. Once found, SHM merges all basepair matches to-

gether through multiple bit-wise AND operations.

In SHM, to tolerate e errors, 2eþ 1 Hamming masks must be

produced where: e Hamming masks are calculated after incremen-

tally shifting the read to the left by 1 to e bps; e Hamming masks are

calculated by incrementally shifting the read to the right by 1 to e

bps; one additional Hamming mask is calculated without any shift-

ing. By incrementally shifting the read in SHM, all basepairs be-

tween the read and the reference of a correct mapping (except the

errors) are brought into alignment with at least one matching bp of

the read and identified in one or more of the 2eþ 1 masks, as shown

in Figure 1.

The Hamming masks are merged together in 2e bit-wise AND

operations. When ANDing Hamming masks, a ‘0’ at any position

will lead to a ‘0’ in the resulting bit-vector at the same position.

When aligned with a match, a bp produces a ‘0’ in the Hamming

mask, which masks out all ‘1’s in any other Hamming masks at the

same position. Therefore, the final bit-vector produced after all bit-

wise AND operations are complete is guaranteed to contain ‘0’s for

all non-error basepairs; as a result, the number of ‘1’s that remain in

the final bit-vector provides a lower bound on the edit-distance be-

tween the read and the reference. Since correct potential mappings

must have e or fewer errors, SHM can safely filter mappings whose

final bit-vector contains more than e ‘1’s, without any risk of remov-

ing correct read mappings.

3.2 Speculative Removal of Short-Matches (SRS)
SHM ensures all correct read mappings are preserved; however,

many incorrect mappings may also pass the filter as false positives.

For example, the read in Figure 2 is compared against a drastically

different reference using SHM with an error threshold of two

(e¼2). Despite the presence of substantially more than two errors,

the final bit-vector produced by SHM does not contain any ‘1’s, as if

there were no errors at all. In SHM, ‘0’s in the final bit-vector are

considered to be matches and ‘1’s are considered to be errors. In this

example, most basepairs in the reference find a match within two

shifts of the read, so the read and the reference are considered simi-

lar enough to pass the filter.

The false-positive rate of SHM increases superlinearly as e in-

creases. Consider a random read and the reference pair, where each

basepair in the read and reference are generated completely

randomly (having 1/4 probability of being either A, C, G or T).

The probability that a bp in the reference does not match any

Fig. 1. An example of applying SHM to a correct mapping, which contains

two deletions. All matching basepairs are identified in the Hamming masks

as 0s and are merged together using bit-wise AND operations

Shifted Hamming distance 1555

:
Shifted Hamming Distance (
),
 +
(
)).
)
z
negatives1
positives2.
Shifted Hamming mask-set (SHM)
 +
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
.1
1
 to
 to
 =

neighboring bp in the read during any of the 2eþ 1 Hamming masks

of SHM (hence rendering a ‘0’ at its position in the final bit-vector)

is ð3=4Þ2eþ1, which decreases exponentially as e increases.

Therefore, when e is large, most basepairs in the reference find

matches in the read during SHM, even if the read and the reference

differ by more than e errors.

Some of the incorrect mappings that pass SHM can still be iden-

tified by checking if the read and the reference share large sections

of identical substrings. According to our second observation, two

strings that differ by e errors will share no more than eþ1 identical

sections. These identical sections are simply the bp segments

between errors. In fact, the goal of the entire local alignment (edit-

distance) computation is to identify these identical sections and the

errors between them. When basepairs of an identical section are

aligned in SHM, all basepairs of this identical section in the read

simultaneously match all basepairs in the reference, which produces

a contiguous streak of ‘0’s in the Hamming mask (blue-highlighted

region in Figure 1). Other ‘0’s in the Hamming masks (unhighlighted

‘0’s in the Hamming masks) that are not produced by an identical

section represent only individual bp matches, which are not part of

the correct alignment (the alignment produced by the local align-

ment computation) of the mapping. We call these ‘0’s spurious, as

they conceal mismatch errors and give the false impression that the

read and the reference have a small edit distance, even when they

differ significantly.

We propose a heuristic, SRS, which aims to remove spurious

‘0’s. SRS uses one important observation: identical sections are typ-

ically long (�10 bps) while streaks of spurious ‘0’s are typically short

(<3 bps). This insight is confirmed empirically through experiments,

but is also supported by theory. Given that for most mappers e is in

general less than 5% of the read length L, the average length of an

identical section is greater than 16 bps for, say, L¼80.

(lsec� L
0:05Lþ1 � 16). The probability that a streak of n ‘0’s will be

spurious (i.e. part of a random alignment between basepairs) is

ð1=4Þn. For streaks where n is greater than 3 bps, the probability of

being spurious is below 1%.

Using this insight, we replace all streaks of ‘0’s in the Hamming

masks that are shorter than three digits with ‘1’s. We call the ‘1’s

that replace the ‘0’s (i.e. amended from ‘0’s) as amended ‘1’s.

Amended ‘1’s do not affect the final bit-vector of the SHM as they

are “transparent” during AND operations. The potential trade-offs

and reasoning for choosing three as our threshold for SRS is dis-

cussed in Section 3.3. Note, the incorrect mapping which passed

SHM in Figure 2 is identified and correctly rejected using SRS in

Figure 3.

Since SRS amends all short streaks of ‘0’s, even the ones pro-

duced by correct alignments of basepairs, it could cause correct read

mappings to be mistakenly filtered, as shown in Figure 4. To avoid

this possibility, SRS counts the number of errors in the final bit-

vector more conservatively than SHM. Each streak of ‘1’s in the

final bit-vector could be the outcome of multiple streaks of amended

‘1’s. However, ‘0’s are changed only if they are two-or-fewer-bit ‘0’

streaks and are surrounded by ‘1’s. In the worst case, multiple

Fig. 3. The incorrect mapping from Figure 2 is filtered correctly by SRS, since

most of its short streaks of ‘0’s are turned into amended ‘1’s. Amended ‘1’s

transparent during the AND operations

Fig. 2. An example of an incorrect mapping that passes SHM. In this example,

during the bit-wise AND operations, short streaks of ‘0’s at different locations

in the Hamming masks overwrite (mask out) any ‘1’s in other Hamming mask

that are at the same locations. As a result, the final bit-vector of SHM is full of

‘0’s. With SRS, streaks of ‘0’s that are shorter than three are marked as spuri-

ous and are subjected to removal later on

1556 H.Xin et al.

,
 +
speculative removal of short-matches (
),
(basepairs
 basepairs
 basepairs
 =
().
.,
.
 basepairs
.,

back-to-back short identical sections that are separated by single

errors can be mistakenly overwritten into a long streak of ‘1’s (e.g.

1001001!11111111). As a result, the number of errors covered by

a streak of ‘1’s (e1) of length l1 after SRS is e1 ¼ 1þ ½ðl1 þ 1Þ=3�.
The streak of four ‘1’s in the final bit-vector of Figure 4 is now

counted as only two errors rather than four and the correct mapping

passes the filter. Using this counting scheme, we ensure all correct

mappings will pass through the filter, while still identifying and

removing read and reference pairs with errors up to 5% of the read

length (results are provided in Section 4).

SRS can be implemented using SIMD-friendly operations. As we

explain in Supplementary Materials, the ability to implement SRS

with SIMD instructions is crucial for the high performance of SHD,

as it enables computing SRS in constant time with few instructions:

both overwriting of short streaks of ‘0’s and counting the number of

errors of streaks of ‘1’s can be computed in constant time using

SIMD packed shuffle operations. See Section 1.3 in Supplementary

Materials for details.

Combined with SHM, SRS and SHM form the two-step filtering

algorithm SHD, which guarantees that correct read mappings are

preserved, while quickly removing incorrect mappings with simple

bit-parallel operations.

3.3 Analysis of SHD
3.3.1 Pseudocode

The pseudocode of SHD is shown in Algorithm 1. Overall, SHD com-

putes 2eþ 1 Hamming masks (ComputeHammingMask), with e of

them computed with the read incrementally shifted to the left; e of

them computed with the read incrementally shifted to the right, and

one computed without any shifts. Each Hamming mask is then pro-

cessed by SRS to amend short streaks of ‘0’s into ‘1’s (SRS_amend).

Finally, all Hamming masks are merged together into a final bit-vec-

tor through bit-wise AND operations and a lower bound of errors is

computed from the final bit-vector (SRS_count). Details of imple-

mentations of ComputeHammingMask, (SRS_amend) and SR

S_count are discussed in Supplementary Materials.

3.3.2 False Negatives

SHD never filters out correct mappings; hence, it has a zero false-

negative rate. As we discussed in Section 3.2, identical sections lon-

ger than 3 bps are recognized and preserved in the final bit-vector by

SHD. Identical sections shorter than 3 bps are amended into ‘1’s;

however, SHD counts ‘1’s in the final bit-vector conservatively,

ensuring correct mappings are not filtered.

3.3.3 False Positives

SHD does allow a small portion of incorrect mappings to pass the

filter as false positives. This is acceptable since SHD is only a filter.

Incorrect mappings that pass SHD are discarded later by more rigor-

ous edit-distance calculations. Below, we describe two major sources

of false positives, both of which are related to the threshold of the

SRS (the minimal length of a streak of ‘0’s that will not be amended

by SRS).

First, long streaks of spurious ‘0’s are not identified by SRS.

Although less likely, long streaks of ‘0’s can still be spurious

Fig. 4. Correct short streaks of ‘0’s might also get overwritten by SRS. To

avoid filtering out correct mappings, SRS counts the errors of a streak of ‘1’s

in the final bit-vector conservatively, always assuming it was overwritten by a

short streak of correct ‘0’s

Shifted Hamming distance 1557

.,
 →
.
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
Shifted Hamming Distance (
),
Shifted Hamming Distance (
)
(),
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
three
three

(i.e. identical substrings between the read and the reference that do

not belong to the correct alignment between the read and the refer-

ence). Long spurious streaks of ‘0’s in an incorrect mapping can

mask out real errors (‘1’s in other Hamming masks) and produce a

mostly ‘0’ final bit-vector even though the read and the reference dif-

fer by more errors. We can increase the SRS threshold beyond three

bps, which amends longer streaks of ‘0’s, to reduce such false

positives.

Second, SRS may underestimate the number of errors while

examining the final bit-vector. SRS always assumes the worst case

where any streak of ‘1’s in the final bit-vector is the result of amend-

ing short streaks of spurious ‘0’s, despite the possibility it could be a

sequence full of real errors. When counting streaks of ‘1’s, SHD only

assigns the minimal number of errors required to produce the pat-

tern (e.g. 1001111!11111111!1001001 three errors counted

when five errors are present). By always assuming the worst case,

SHD may underestimate the number of errors in the final bit-vector

and let incorrect mappings pass the filter. Although using a smaller

SRS threshold would help filter out such false positives, it would

also let long streaks of spurious ‘0’s pass the filter as we described in

the previous paragraph. As a result, a carefully chosen SRS threshold

should consider both factors: it should neither be too small to omit

long spurious ‘0’s nor should it be too large to underestimate the

number of errors. Figure 5a shows this dilemma, as the false-positive

rate first drops and then slowly increases as SRS threshold increases.

In this article, we chose three as our SRS threshold because: 1, the

false-positive rate of SHD drops below 2% (with the configuration

of e¼3) at three and remains steady afterwards and 2, with Intel

(a)

(b)

Fig. 5. A sweep of the false positive rate of SHD, against variant allowed error

rate [(a), under a fixed SRS threshold of three bps] and variant SRS thresh-

olds [(b), under a fixed allowed error rate of 3%], respectively. The sweep is

produced with the first one billion potential mappings analyzed by mrFAST

when it maps the read set ERR240728 from the 1000 Genomes Project (1000

Genomes Project Consortium 2012) under an error threshold of 3 bps

Table 1. Benchmark data, obtained from the 1000 Genomes Project Phase I (1000 Genomes Project Consortium 2012)

ERR240726_1 ERR240726_2 ERR240727_1 ERR240727_2 ERR240728_1

No. of Reads 4031354 4031354 4082203 4082203 3894290

Read Length 101 101 101 101 101

ERR240728_2 ERR240729_1 ERR240729_2 ERR240730_1 ERR240730_2

No. of Reads 43894290 4013341 4013341 4082472 4082472

Read Length 101 101 101 101 101

Fig. 6. The execution time of SHD, SeqAn, swps3 and FastHASH (AF) with dif-

ferent error thresholds (e) across multiple read sets

1558 H.Xin et al.

.,
.,
 →
 →
3
5
paper
 =

SSE platform we are only able to provide an efficient implementa-

tion of SHD with an SRS threshold no-more-than three (further ela-

borated in Supplementary Materials).

A sweep of the false-positive rate of SHD against variant

allowed error rate (error threshold divide by read length) is shown

in Figure 5b. While the false-positive rate of SHD increases with

larger allowed error rate, at 5% error rate (which is the upper limit

of most available mappers (Ahmadi et al., 2011; Alkan et al., 2009;

Delcher et al., 1999; Langmead and Salzberg 2012; Li and Durbin

2010; Li et al., 2009; Rumble et al., 2009; Weese et al., 2012), the

false-positive rate of SHD is only 7%, indicating a high accuracy

(> 93%) of the filter.

4 Results

We implemented SHD in C, using Intel SSE. We compared SHD

against three edit-distance calculation/filtering implementations,

they are: SeqAn (Döring et al., 2008), an implementation of Gene

Myers’s bit-vector algorithm (Myers 1999); swps3 (Szalkowski et

al., 2008), a Smith-Waterman algorithm (Smith and Waterman

1981) implementation; and FastHASH (Xin et al., 2013), an

Adjacency Filtering (AF) implementation. Both SeqAn and swps3

are also implemented with SSE and all implementations were config-

ured to be single threaded.

We used a popular seed-and-extend mapper, mrFAST (Alkan

et al., 2009), to retrieve all potential mappings (read-reference pairs)

from 10 real datasets from the 1000 Genome Project Phase I (1000

Genomes Project Consortium 2012). Table 1 lists the read length

and read size of each set. Each read set is processed using multiple

error thresholds (i.e. e from 0 to 5 errors).

We benchmarked all four implementations using the same poten-

tial mappings (i.e. seed hits) produced by mrFAST for a fair com-

parison of the four techniques. Figure 6 shows the execution time of

the four techniques with different error thresholds across multiple

read sets. Notice that when the indel threshold is zero, SHD reduces

to bit-parallel Hamming distance. A detailed comparison against

bit-parallel Hamming distance implementation is provided in

Supplementary Materials, Section S1.3.

Among the four implementations, SHD is on average 3� faster

than SeqAn and 24� faster than swps3. Although SHD is slightly

slower than FastHASH (AF) when e is greater than two (e.g. 2:5�
slower when e¼5), SHD produces far fewer (on average, 0:25�)

false positives than FastHASH (seen in Figure 7). Note, the speedup

gained by SHD diminishes with greater e. This is expected since

the number of bit-parallel/SIMD operations of SHD increases for

larger e.

Figure 7 illustrates the false-positive rates of SHD and

FastHASH (AF). SeqAn and swps3 both have a 0% false-positive

rate, compared with SHD which has a 3% false-positive rate on

average. That being the case, SHD is only a heuristic to filter poten-

tial mappings while both SeqAn and swps3 must compute the exact

edit distances of the potential mappings.

As we discussed in Section 3.3, the false-positive rate of SHD in-

creases with larger e. Nonetheless, the false-positive rate of SHD at

e¼5 is only 7%, much smaller than the false-positive rate (50%) of

FastHASH (AF) as Figure 7 shows.

With these results, a mapper can selectively combine multiple

implementations together to construct an efficient multi-layer filter/

edit-distance calculator. For instance, a mapper can attach SHD

with FastHASH, to obtain both the fast-speed of FastHASH and the

high accuracy of SHD. A mapper can also combine SHD

with SeqAn to obtain 100% accuracy without significantly

sacrificing the speed of SHD. Of course, there are many possibilities

to integrate SHD into a other mappers, but a comprehensive study

of this topic is beyond the scope of this article and is part of our

future work.

5 Conclusion

Most potential mappings that must be verified by seed-and-extend-

based mappers are incorrect, containing far more errors than what

is typically allowed. Our proposed filtering algorithm, SHD, can

quickly identify most incorrect mappings (through our experiment,

SHD can filter 86 billion potential mappings within 40 min on a sin-

gle thread while obtaining a false-positive rate of 7% at maximum),

while preserving all correct ones. Comparison against three other

state-of-the-art edit-distance calculation/filtering implementations

revealed that our Intel SSE implementation of SHD is 3� faster than

SeqAn (Döring et al., 2008), the previous best edit-distance calcula-

tion technique.

Funding

This study is supported by NIH Grants (HG006004 to O. Mutlu

and C. Alkan, and HG007104 to C. Kingsford) and a Marie Curie

Career Integration Grant (PCIG-2011-303772) to C. Alkan under

the Seventh Framework Programme. C. Alkan also acknowledges

support from The Science Academy of Turkey, under the BAGEP

program.

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium (2010) A map of human genome variation

from population-scale sequencing. Nature, 467, 1061–1073.

Fig. 7. The false-positive rates of SHD and FastHASH (AF) with different error

thresholds (e) across multiple read sets

Shifted Hamming distance 1559

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
(
);
(
);
al.(2009);Delcher etal.(1999);Alkan etal.(
);Weese etal.(2012);
(
);Ahmadi
(
1
)
()
(
(
(
(
(
-
(
ten
data sets
(
.,
.,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu856/-/DC1
1
.,
 =
)
to
 =
in order
paper
 minutes
(
6 Availability and ImplementationWe provide an implementation of SHD in C with Intel SSE instructions at: https://github.com/xhongyi/SHD_code. 7 Acknowledgements
:
g
.

1000 Genomes Project Consortium (2012) An integrated map of genetic vari-

ation from 1,092 human genomes. Nature, 491, 56–65.

Ahmadi,A. et al. (2011) Hobbes: optimized gram-based methods for efficient

read alignment. Nucleic Acids Res., 40, e41.

Alkan,C. et al. (2009) Personalized copy number and segmental duplication

maps using next-generation sequencing. Nat. Genet., 41, 1061–1067.

Burrows,M. et al. (1994) A block-sorting lossless data compression algorithm.

Technical Report 124, Digital Equipment Corporation.

Delcher,A.L. et al. (1999) Alignment of whole genomes. Nucleic Acids Res,

27, 2369–2376.

Döring,A. et al. (2008) Seqan an efficient, generic cþþ library for sequence

analysis. BMC Bioinf., 9, 11.

Farrar,M. (2007) Striped Smith-Waterman speeds database searches six times

over other SIMD implementations. Bioinformatics, 23, 156–161.

Flannick,J. et al. (2014) Loss-of-function mutations in slc30a8 protect against

type 2 diabetes. Nat. Genet., 46, 357–363.

Green,R.E. et al. (2010) A draft sequence of the Neandertal genome. Science,

328, 710–722.

Hyyro,H. et al. (2005) Fast bit-vector algorithms for approximate string

matching under indel distance. In: Vojts,P. et al. (eds.) SOFSEM, Liptovský

Ján, Slovakia, Vol. 3381, Lecture Notes in Computer Science, pp. 380–384.

Springer.

Intel (2012) Intel architecture instruction set extensions programming refer-

ence. Technical Report 319433-014, Intel.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with bow-

tie 2. Nat. Method, 9, 357–359.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics, 26, 589–595.

Li,R. et al. (2009) SOAP2: an improved ultrafast tool for short read alignment.

Bioinformatics, 25, 1966–1967.

Manavski,S.A. and Valle,G. (2008) CUDA compatible GPU cards as efficient

hardware accelerators for Smith-Waterman sequence alignment. BMC

Bioinf., 9 Suppl 2, S10.

Marques-Bonet,T. et al. (2009) A burst of segmental duplications in the gen-

ome of the African great ape ancestor. Nature, 457, 877–881.

Meyer,M. et al. (2012) A high-coverage genome sequence from an archaic

denisovan individual. Science, 338, 222–226.

Myers,G. (1999) A fast bit-vector algorithm for approximate string matching

based on dynamic programming. J. ACM, 46, 395–415.

Ng,S.B. et al. (2010) Exome sequencing identifies MLL2 mutations as a cause

of kabuki syndrome. Nat. Genet., 42, 790–793.

Prado-Martinez,J. et al. (2013) Great ape genetic diversity and population his-

tory. Nature, 499, 471–475.

Reich,D. et al. (2010) Genetic history of an archaic hominin group from

Denisova Cave in Siberia. Nature, 468, 1053–1060.

Rumble,S.M. et al. (2009) Shrimp: accurate mapping of short color-space

reads. PLoS Comput. Biol., 5, e1000386.

Scally,A. et al. (2012) Insights into hominid evolution from the gorilla genome

sequence. Nature, 483, 169–175.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–195.

Szalkowski,A. et al. (2008) SWPS3—fast multi-threaded vectorized Smith-

Waterman for IBM Cell/B.e. and x86/SSE2. BMC Res. Notes, 1, 107þ.

Ukkonen,E. (1985) Finding approximate patterns in strings. J. Algorithms.

Ventura,M. et al. (2011) Gorilla genome structural variation reveals evolu-

tionary parallelisms with chimpanzee. Genome Res., 21, 1640–1649.

Weese,D. et al. (2012) Razers 3: faster, fully sensitive read mapping.

Bioinformatics, 28, 2592–2599.

Xin,H. et al. (2013) Accelerating read mapping with FastHASH. BMC

Genomics, 14, S13.

1560 H.Xin et al.

