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Abstract

Deciding how much evidence to accumulate before making a decision is a problem we and other 

animals often face, but one which is not completely understood. This issue is particularly 

important because a tendency to sample less information (often known as reflection impulsivity) is 

a feature in several psychopathologies, such as psychosis. A formal understanding information 

sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical 

paper, we consider evidence accumulation in terms of active (Bayesian) inference using a generic 

model of Markov decision processes. Here, agents are equipped with beliefs about their own 

behaviour – in this case, that they will make informed decisions. Normative decision-making is 

then modelled using variational Bayes to minimise surprise about choice outcomes. Under this 

scheme, different facets of belief updating map naturally onto the functional anatomy of the brain 

(at least at a heuristic level). Of particular interest is the key role played by the expected precision 

of beliefs about control, which we have previously suggested may be encoded by dopaminergic 

neurons in the midbrain. We show that manipulating expected precision strongly affects how 

much information an agent characteristically samples, and thus provides a possible link between 

impulsivity and dopaminergic dysfunction. Our study therefore represents a step towards 

understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference, 

and may cast light on why this process is disordered in psychopathology.
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Introduction

This paper considers the nature of evidence accumulation in terms of active (Bayesian) 

inference using the urn or beads task (Huq et al., 1988; Moritz and Woodward, 2005). In 

particular, we cast decision-making in terms of prior beliefs an agent entertains about its 

own behaviour. In brief, we equip agents with the prior belief that they will make informed 

decisions and then sample their choices from posterior beliefs that accumulate evidence 

from successive observations. In this paper, we focus on the formal aspects of this (Bayes) 

optimal evidence accumulation – using a generic scheme that has been applied previously to 

limited offer and trust games (Friston et al., 2013; Moutoussis et al., 2014; Schwartenbeck et 

al., 2014). This scheme is based upon approximate Bayesian inference using variational 

Bayes. Importantly, the neurobiological correlates of belief updating implicit in this model 

can be linked to various aspects of neuroanatomy and, possibly, dopaminergic discharges. In 

what follows, we introduce the particular generative model that underlies evidence 

accumulation in the urn task and show how the ensuing performance depends upon key 

model parameters, like decision criteria and precision of – or confidence in – beliefs about 

choices.

Evidence accumulation, in its various forms, has been the subject of much interest in 

cognitive neuroscience (Gold and Shadlen, 2007; Yang and Shadlen, 2007; Moutoussis et 

al., 2011; Hunt et al., 2012). Incorporating it within the broader framework of Bayes-optimal 

inference is of intrinsic interest particularly with respect to pathological conditions 

characterized by increased ‘reflection impulsivity’ (a decreased sampling of evidence prior 

to making a decision; (Kagan, 1966)). This has been much researched in schizophrenia, 

where abnormal behaviour often includes increased reflection impulsivity (Huq et al., 1988; 

Garety et al., 1991; Fear and Healy, 1997; Moritz and Woodward, 2005; Clark et al., 2006; 

Averbeck et al., 2011; Moutoussis et al., 2011). It is, however also important in other 

conditions such drug abuse, Parkinson’s disease and frontal lobe lesions (Djamshidian et al., 

2012; Lunt et al., 2012; Averbeck et al., 2013). By varying the parameters of the generative 

model entertained by the agent, our approach allows us to consider how inter-individual 

differences can arise in the context of approximately optimal inference – and to generate 

hypotheses relating behavioural abnormalities to underlying neuropathology (it also allows 

us to recover the underlying parameters governing observed behaviour). In particular, as 

disorders such as schizophrenia, Parkinson’s disease and drug abuse are characterised by 

aberrant dopaminergic function (Dagher and Robbins, 2009; Howes and Kapur, 2009), we 

focus on the effects of varying expected precision (which we assume to be encoded by 

dopamine) on reflection impulsivity.

We have chosen to focus on the urn task as a simple paradigm that emphasises evidence 

accumulation and has been used extensively to study impulsivity – especially in 

schizophrenia research. In the urn task, subjects are told that the urn contains beads or balls 

that are largely of one colour. The subject is allowed to make successive draws to decide 

which colour predominates. In the draws to decision version of the task, the subject has to 

answer as soon as they are certain. In the probability estimates version, the subject can 

continue to draw and change their answer. Interestingly, delusional patients ‘jump to 

conclusions’ in the first version, while they are more willing to revise their decision in light 
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of contradictory evidence in the second (Garety and Freeman, 1999). Jumping to 

conclusions may reflect a greater influence of sensory evidence, relative to the confidence in 

beliefs about the (hidden) state of the urn (Speechley et al., 2010; Moutoussis et al., 2011). It 

is this sensitivity to confidence or precision during evidence accumulation that we wanted to 

understand more formally.

Methods

An active inference model of evidence accumulation

We previously described a variational Bayesian scheme for updating posterior beliefs based 

upon a generic model of (finite horizon) Markovian decision processes (Friston et al., 2013). 

The inversion of this model – and the biological plausibility of the belief updates and 

message passing required for model inversion – has previously been discussed in terms of 

planning and perception (Friston et al., 2013; Schwartenbeck et al., 2014). A key aspect of 

this scheme is that choices are sampled from posterior beliefs about control states, which (by 

definition) possess a confidence or precision (inverse variability). Crucially, this means that 

both the beliefs and their precision have to be optimised to minimise variational free energy. 

In previous work, we showed how this optimisation can proceed using standard 

(approximate Bayesian) inference schemes and how these Bayesian update schemes might 

be realised in the brain. As we will see below, that the expected precision shares many 

features of dopaminergic firing and, heuristically, can be understood as the confidence that 

desired outcomes will follow from the current state.

In active inference, desired outcomes or goals are simply states that, a priori, an agent 

believes they will attain. This means that a particular policy is more likely (and therefore 

valuable) if it minimises the difference between expected and desired outcomes. We have 

previously discussed this difference or divergence in terms of novelty (entropy) and 

expected utility – where utility is defined as the logarithm of prior beliefs about final 

outcomes that an agent expects (Friston et al., 2013).

To understand how this formulation of choice behaviour pertains to evidence accumulation, 

all we need to do is to specify the generative model for an appropriate (e.g., urn) task. Once 

specified, one can then use standard (variational Bayes) inversion to simulate observed 

behaviour and examine the dependence of that behaviour on the key parameters of the 

generative model (the Matlab routines required to do this are available an academic freeware 

from http://www.fil.ion.ucl.ac.uk/spm). Furthermore, we can use the model to predict 

observed choice behaviour and therefore estimate model parameters to phenotype any given 

subject in computational terms (see appendix).

The generative model—The general form of the model is provided in Figure 1. This 

figure illustrates the dependencies among hidden states  and control states 

 that the agent uses to predict observations or outcomes . 

The equations on the left specify the model in terms of the joint probability over 

observations, the states causing these observations and γ, the precision of prior beliefs about 

these states. The form of the equations rests upon Markovian or independence assumptions 
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about controlled state transitions and can be expressed in terms of the likelihood (top panel), 

empirical priors (middle panels) and full priors (bottom panel).

The meaning of these variables is summarised on the right in terms of a directed acyclic 

graphical model. This illustrates the dependencies among successive hidden states and how 

they depend upon past and future control states. Note that future control states (alternative 

policies) depend upon the current state. This is because (the agent believes that) policies 

depend upon the relative entropy or divergence between distributions over the final state that 

are, and are not, conditioned on the current state (between empirical priors and full priors). 

The resulting choices depend upon the precision of beliefs about control states, which, in 

turn depend upon the parameters of the model. Finally, observed outcomes depend on, and 

only on, the hidden states at any given time. Given this generative model, one can simulate 

inferences about observed outcomes – and consequent choices – using standard (variational 

Bayes) schemes for approximate Bayesian inference.

Figure 2 illustrates the cognitive and functional anatomy suggested by the variational 

Bayesian inversion of the generative model above. Here, we have associated the Bayesian 

updates of expected hidden states with perception, of expected control states with action 

selection and, finally, expected precision with evaluation. The forms of these updates show 

that sufficient statistics from each set of variables are passed among each other until 

convergence to an internally consistent (approximately Bayes optimal) solution. In terms of 

neuronal implementation, this might be likened to the exchange of neuronal signals via 

extrinsic connections among functionally specialised brain systems. In this (purely iconic) 

schematic, we have associated perception (inference about the current state of the world) 

with the prefrontal cortex, while assigning action selection to the basal ganglia. Crucially, 

precision has been associated with activity in dopaminergic projections from ventral 

tegmental area and substantia nigra that, necessarily, project to both cortical (perceptual) and 

subcortical (action selection) systems. See (Friston et al., 2013) for further details.

The ABC of evidence accumulation—Figures 1 and 2 show that the generative model 

(and associated belief updating) is specified by three sorts of matrices. The first A 
constitutes the parameters of the likelihood model and encodes the probability of an 

outcome, given a hidden state. The second, B(ut) specifies the probabilistic transitions 

among hidden states that depend upon the current control state. Finally, the vector C 
encodes the prior probability that a final outcome will be observed – where the logarithm of 

this probability corresponds to the utility of each final (hidden) state. The Q matrix is a 

function of these parameters (Friston et al., 2013) and represents the value of a particular 

policy from the current state – as measured by the relative entropy or divergence between 

the distribution over final states under that policy and the desired distribution encoded by the 

utility. This leads to the question of what these three sets of parameters look like for the urn 

task.

The first thing that needs to be resolved is the nature of hidden states. In this paper, we will 

assume hidden states have four attributes or dimensions that contain all the necessary 

information to define the utility of final states. We will assume that all attributes of hidden 

states are available for observation apart from the (hidden) state of the urn, which can 

FitzGerald et al. Page 4

Neural Comput. Author manuscript; available in PMC 2015 May 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



contain a preponderance of red or green balls. These attributes include the total number of 

draws, the total number of green balls, the decision (undecided, red or green) and the true 

state of the urn (a red urn or a green urn). Notice that the size of this state space is much 

smaller than the number of possible outcomes; in the sense that it grows quadratically with 

the number of draws (as opposed to exponentially). Equipped with this state space, it is now 

relatively simple to specify the (A,B,C) of the model:

Figure 3 illustrates these contingencies. (A) Upper panel: this shows the likelihood mapping 

from hidden states to observations. This mapping simply says that for every observed state 

there are two hidden states – one for the red urn and one for the green urn. (B) Middle panel: 

this shows for every control state there is a probability transition matrix. Here, there are 

three control states: wait, choose red or choose green. If the agent waits, the number of 

drawn balls increases by one and the number of green balls can either stay the same or 

increase. The probability of these alternatives depends upon whether the hidden state is a red 

or a green urn. If the agent decides, then the hidden state jumps from an undecided to a red 

or green decision – having seen k green balls out of n balls. (C) Lower panel: prior beliefs 

about policies or sequences of control states are based upon goals encoded by their utility.

Here, utility reflects an informed decision – defined as a log odds ratio of greater than τ = 3, 

when comparing the probability of observed outcomes under the appropriate hidden state, 

relative to the alternative. Simple binomial theory shows that this ratio is just ±(2k−n)ρ, 

where ρ = ln(p)−ln(1−p) reflects the imbalance in the proportion p of red or green balls in 

the urn (in this paper p = 0.85). Note that when 2k = n or ρ = 0, the log odds ratio is zero. In 

other words, when half the drawn balls are green, or the urn contains an equal number of red 

and green balls, the log odds ratio is always zero. Here, κ = 4 controls the sensitivity to a 

significant odds ratio which is taken to mean a log odds ratio of three or more, 

corresponding to an odds ratio of 20 to 1 – roughly analogous to a p-value of 0.05. Having 

specified the generative model, with standard gamma priors on precision of P(γ∣m) = Γ(α = 

4, β = 1), we can now use the variational Bayesian updates in Figure 2 to simulate responses 

to any sequence of draws.

Finally, sampling costs can be incorporated into prior beliefs by subtracting a penalty n · w 

from the utility of each state in the C matrix, where w is the fixed cost of drawing a further 

ball. We ignore sampling cost (w = 0) unless otherwise stated.

Results

A simulated game

Figure 4 shows the results of simulated eight draw game: the upper right panel shows the 

inferred hidden states as a function of trial or draws. In this example, all the draws returned 

green balls apart from the fourth ball, which was red. The image bar on the right of the 

graph indicates those final states that have a high utility or prior probability. Here, the agent 

was prevented from deciding until the last draw, when it chooses green. We delayed the 

decision to reveal the posterior beliefs about policies shown on the upper right: the solid 

lines correspond to the posterior expectation of waiting (blue) or deciding (red or green 

respectively). The dotted lines show the equivalent beliefs at earlier draws. We see here that 

FitzGerald et al. Page 5

Neural Comput. Author manuscript; available in PMC 2015 May 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



beliefs about decisions fluctuate as evidence is accumulated with an increasing propensity to 

choose green as more green balls are drawn. Notice that an initial increase in the posterior 

probability of choosing green decreases after a red ball is drawn on the fourth draw; 

however, it recovers quickly with subsequent green draws. These probabilities are based 

upon the posterior expectations about policies that are shown in the middle two panels. The 

allowable policies are shown on the left and, in this example, considered decisions at all 

eight draws. The corresponding posterior expectations are shown in the middle right panel in 

image format. It can be seen that there is a progressive increase in the expected probability 

of the eighth policy – that corresponds to a green choice on the penultimate draw.

The lower panels show the expected precision over trials. The lower left panel shows the 

precision as a function of variational updates (eight per trial), while simulated dopamine 

responses are shown on the lower right. These are the updates after deconvolution with an 

exponentially decaying kernel of eight updates. The interesting thing about these simulated 

responses is that there is a positive dopamine response to the occurrence of each subsequent 

green ball – with the exception of the fourth (red) ball that induces a transient decrease in 

expected precision. Intuitively, these changes in expected precision reflect the confidence in 

making an informed decision, which increases with confirmatory and decreases with 

contradictory evidence. This is reminiscent of dopaminergic responses to the omission of 

expected rewards, if we regard a green ball as the expected outcome under posterior beliefs 

about the world. Indeed, the most pronounced (phasic) increase in precision occurs after the 

eighth draw – after which the agent declares its decision.

Cognitive phenotypes—In the above simulations, we assumed particular values for the 

priors on precision, the threshold τ = 3 defining an outcome as informative and other model 

parameters. Clearly, there are a whole range of Bayes optimal behaviours (where optimality 

is defined relative to the agent’s generative model), depending upon the values of these 

parameters (Mathys et al., 2011). The premise behind this sort of modelling is that one can 

characterise any given subject in terms of parameters – that generally encode their prior 

beliefs. In this section, we look at some characteristic behavioural expressions of changes in 

key model parameters.

Figure 5 illustrates the effects of increasing threshold criterion for decision – top row: τ = (0,

…8) and prior precision – middle row: α = (2,…8) on the propensity to make an early 

decision. The upper panels show the probability of deciding as a function of the number of 

draws (latency) when increasing the log odds ratio criterion that is regarded as having a high 

utility. The left panel shows the effects in terms of the probability of deciding given no 

previous decision, the middle panel shows the corresponding distribution over latencies to 

decide, and the right panel shows the cumulative probability of making a decision. 

Increasing the threshold or evidence required for a confident decision in general delays the 

decision. Interestingly however, early on in the game, agents with very high thresholds are 

more likely to decide than agents with intermediate thresholds. This follows from a low 

expected precision, because (they believe) it is unlikely that they can make a confident 

decision. It is relatively unlikely, for example, that all eight balls will be one colour – and 

the agent knows that at the beginning of the game.
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This highlights the nature of precision and its intimate relationship with utility. Put simply, 

precision reports the confidence in optimistic beliefs about outcomes and choice. Any 

evidence that precludes a high utility outcome renders those optimistic beliefs untenable and 

therefore their precision falls. Heuristically – in terms of minimising surprise or free energy 

– this is like accepting a goal cannot be achieved and telling yourself you did not really 

know if you could have achieved it anyway.

The middle panels show the equivalent effects upon beliefs when increasing the (scale 

parameter of) prior precision. As confidence about policies increase, there is again a 

tendency to wait for more evidence. This reflects the fact that the relative utility of making 

an informed and correct decision becomes greater, relative to making an incorrect decision. 

Notice that even with very low precisions, it is always better to wait for as many draws as 

possible – to ensure the greatest number of possible outcomes. This reflects the entropy or 

novelty part of the relative entropy or divergence that makes policies valuable 

(Schwartenbeck et al., 2013). The effect of varying prior precision on impulsivity is 

particularly interesting, given the proposal that precision is encoded by dopaminergic 

activity in the midbrain and the fact that dopaminergic abnormalities are implicated in a 

number of psychopathologies (Everitt and Robbins, 2005; Howes and Kapur, 2009; Steeves 

et al., 2010; Adams et al., 2013).

The costs of accumulating extra information are an additional factor that agents must 

consider when modelling their environment. These can be implicit, for example the extra 

effort or attentional resources required to perform the task for longer, or explicit, as in 

formulations of the urn task – in which subjects are penalised for each extra bead they 

choose to draw. From the perspective of active inference, this penalty is simply a prior belief 

that the agent will decide sooner rather than later. Figure 5 (bottom row) shows the effects of 

increasing costs on postponing decisions. Costs were varied from w = (0, … , 1/8). As 

expected, when the cost of accumulating more information increases, the agent tends to 

choose earlier.

Discussion

We have considered evidence accumulation from the perspective of active inference using a 

recently proposed framework for inference within the context of Markov decision processes 

(Friston et al., 2013). Here, agents expect to make informed decisions, and sample 

information in order to fulfil this belief. We show that by simply specifying three matrices 

(the ABC of evidence accumulation) it is possible to simulate plausible behaviour in the 

widely used urn task. Our model also provides testable predictions about the relationship 

between the outcomes of specific trials and expected precision, which we hypothesise is 

encoded by activity in the dopaminergic midbrain. In addition, we briefly show how varying 

the parameters of an agent’s generative model leads to different (but, from the agent’s 

perspective) equally optimal patterns of behaviour. This framework allows us to consider 

how changes in model parameters might induce reflection impulsivity, which characterises a 

number of psychopathologies such as schizophrenia (Huq et al., 1988; Garety et al., 1991; 

Fear and Healy, 1997; Moritz and Woodward, 2005; Clark et al., 2006; Corcoran et al., 

2008; Moutoussis et al., 2011).
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The distinction between optimal inference conditioned on an agent’s model of the 

environmental contingencies and that conditioned on the ‘true’ contingencies (as known to 

the experimenter) is important to stress. This distinction allows normal and pathological 

variations in behaviour to result from inferential processes, which are themselves equally 

close to optimal. This reconciles a Bayesian view of cognition with the fact that human 

behaviour is, in many situations, manifestly non-optimal relative to the true nature of the 

environment. Prior work has considered how variations in observed behaviour can result 

from optimal inference, when the parameters governing estimates of environmental 

volatility (Mathys et al., 2011; Vossel et al., 2013) and sensory precision (Adams et al., 

2012; Brown et al., 2013) are altered. The simulations presented here thus join an 

increasingly large literature seeking to explain inter-individual differences in terms of 

optimal inference.

Previous modelling work has considered behaviour on the urn task in terms of Bayesian 

inference (Averbeck et al., 2011; Moutoussis et al., 2011), or presented approaches to 

evidence accumulation during perceptual decision-making that bear similarities to that taken 

here. Huang and Rao formulate evidence accumulation as a Partially Observable Markov 

Decision Process, solved using dynamical programming (in this case value iteration) (Huang 

and Rao, 2013). Drugowitsch et al. take a similar approach, to produce a hybrid model 

combining dynamic programming with drift diffusion models to capture collapsing bounds 

(Drugowitsch et al., 2012). Deneve also considers evidence accumulation in the light of 

optimal inference, focussing particularly upon the necessity to infer the reliability of sensory 

information (a consideration that is less pressing in the urn task that we consider here, but 

crucial in perceptual decision-making paradigms such as the random-dot motion task) 

(Deneve, 2012). Our approach differs from – and extends – these models in a number of 

crucial respects. By considering behaviour in terms of active inference, we were able to 

specify planning and behaviour as purely inferential processes, obviating the need to include 

a value function over and above the agent’s beliefs about the world. This effaces the 

distinction between reward and non-reward based decision-making, as exemplified by the 

time course of expected precision, which shows reward prediction error-like dynamics even 

in absence of reward. Our model also goes beyond previous work in that we consider how 

the agent actually performs inference, namely through (Variational Bayesian) message 

passing. Variational inference is both efficient and neurobiologically plausible, and also 

motivates natural, if simplified, hypotheses about how the brain regions encodes different 

quantities in the model, an essential step in relating impulsivity to underlying 

neuropathology.

Variational Bayes mandates a partition between different classes of model parameters (the 

mean field approximation), each of which are updated only according to the expectations of 

the parameters in the other subsets (Attias, 2000; Beal, 2003). This motivates and explains 

both functional segregation (Zeki et al., 1991) (since subsets are conditionally independent 

of one another) and functional integration (Friston, 2002) (since updating requires message 

passing between subsets) (Friston, 2010). The particular structure of our model suggests a 

natural (though necessarily caricatured) assignment of observed, hidden and control states to 

sensory, prefrontal and striatal regions respectively (Figure 2). It also requires that expected 

precision over control states be encoded by a system that projects widely and reciprocally to 
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– and has a modulatory (multiplicative) effect upon – regions supporting perception and 

action selection (Figure 2) (Friston et al., 2014). This profile fits easily with characteristics 

of the dopaminergic system, which heavily innervates the striatum and prefrontal cortex 

(Seamans, 2007), and exerts a modulatory influence on postsynaptic potentials (Smiley et 

al., 1994; Krimer et al., 1997; Yao et al., 2008; Friston et al., 2012). Despite its advantages, 

variational inference is only an approximation to Bayes-optimal inference, and under certain 

conditions may diverge significantly from true optimality. This has the potential to furnish 

interesting predictions about behaviour, something that could usefully be explored in future 

work.

At the same time we note that the fundamentally interactive nature of message-passing 

between functional modules in our model may relate to the multiple, specific brain modules 

known to be affected by disorders resulting in reflection impulsivity. In psychosis research, 

for example, it has long been hypothesized that dopaminergic abnormalities affect, and are 

exacerbated by, impaired prefrontal cortical function (Laruelle, 2008). Indeed, while gross 

measures of reflection impulsivity such as draws-to-decision are normalized by 

antidopaminergic therapy (Menon et al., 2008), the finer statistical structure of decision 

making in the Urns task is not (Moutoussis et al., 2011). This is likely to reflect the fact that 

remission from psychosis in people with schizophrenia compensates function by increasing 

some parameters, such as the decision threshold parameter κ, and possibly the gross 

statistics of precision (γ), but it may not normalize the fine structure of the cortical-

subcortical interactions that would normally compute γ. In support of this, recent imaging 

and lesion studies of the Urns task (Furl and Averbeck, 2011; Lunt et al., 2012) highlighted 

the importance of a lateral-prefrontal – parietal network in preventing hasty decisions, even 

in the absence of psychosis. This was contrasted with activation of a network involving the 

ventral striatum and a variety of cortical areas associated with the actual decision to stop 

sampling further information. Along similar lines, relatively subtle hasty decision making in 

the Urns task in Parkinson’s disease has been attributed to ventral striatal 

hyperdopaminergia while more severe deficits associated with impulsive-compulsive 

syndromes in parkinsonism have been attributed to cortico (-striatal) pathology 

(Djamshidian et al., 2012).

The hypothesis that dopamine encodes expected precision is also supported by the 

characteristic time course of expected precision during evidence accumulation, which shows 

a pattern similar to that observed in dopaminergic neurons in response to omitted and 

expected reward (Schultz et al., 1997; Cohen et al., 2012). Consistent with this, it has been 

shown that activity in the ventral tegmental area increases during performance of the urn 

task – relative to a control condition – and that this activity peaks at the time of decision 

(resembling the peak phasic activity just prior to choice in our model (Figure 4)) (Esslinger 

et al., 2013). We have also recently shown, in the context of a limited offer game, that 

midbrain activity strongly reflects trial-by-trial fluctuations in expected precision 

(Schwartenbeck et al., 2014). A large body of work seeks to explain (phasic) dopamine 

function in terms of reinforcement learning, and reward prediction errors in particular 

(Schultz et al., 1997; Frank et al., 2004; O’Doherty et al., 2004; Waltz et al., 2007) though 

see (Shiner et al., 2012). Given that the urn task involves inference (on hidden states) rather 

than learning (about model parameters), a putative role of dopamine in learning is unlikely 
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to be of direct relevance here. Moreover, although expected precision will undoubtedly 

influence learning as well as inference, the model considered here does not treat learning, 

and it is thus difficult to draw direct comparisons with existing literature on dopamine and 

reward learning. This is an issue we intend to explore in future, by incorporating parameter 

learning within out framework.

A link between dopamine and precision is of particular interest here given that both 

dopaminergic abnormalities and increased reflection impulsivity are known to be features of 

schizophrenia (Moritz and Woodward, 2005; Howes and Kapur, 2009; Moutoussis et al., 

2011). In our scheme, reducing prior precision leads to earlier decisions (Figure 5), which 

suggests that impaired dopaminergic neuromodulation may underlie the increased 

impulsivity observed in patients with schizophrenia. To our knowledge this is the first 

hypothesis which provides a mechanistic explanation for how impulsivity emerges out of a 

likely pathophysiology in schizophrenia. We intend to explore this in future empirical work, 

but note that explaining increased impulsivity in terms of decreased precision fits nicely 

with previous work by Moutoussis et al. These authors suggested that increased impulsivity 

in schizophrenic patients arises not from increased sensitivity to the costs of gathering new 

information, but rather from increased stochasticity (what they describe as ‘cognitive noise’) 

in planning and choice behaviour (Moutoussis et al., 2011). This is exactly what our scheme 

predicts. Our findings also bear a striking resemblance to previous work suggesting that 

behavioural differences across three different tasks between impulsive and non-impulsive 

Parkinson’s disease patients can be explained by increasing uncertainty about obtaining 

future rewards (Averbeck et al., 2013). In one sense, the main contribution of the work 

presented here is to provide a principled framework within which to understand findings of 

this sort – and to derive plausible and testable hypotheses about the pathophysiology that 

may underlie them.

An interesting phenomenon highlighted by our simulations is the degeneracy of reflection 

impulsivity, when this is simply taken to mean hasty decision-making. Since the amount of 

information sampled prior to making a decision can be altered by several parameters in the 

agent’s generative model (Figure 5), there is no one-to-one mapping between reflection 

impulsivity as a behavioural trait and the parameters of the model. This suggests that 

understanding the mechanisms that give rise even to an apparently simple trait such as 

reflection impulsivity necessarily requires careful model-based analysis of both behaviour 

and its neural correlates. Such model-based analysis is likely to become increasingly 

important both for characterising the mechanisms that give rise to inter-individual 

differences in behaviour, and for improving diagnostic criteria in psychiatry (Montague et 

al., 2012).

It is interesting to consider whether the precise patterns of behaviour underlying reflection 

impulsivity are similar across different patient groups (for example, in psychosis 

(Moutoussis et al., 2011), Parkinson’s disease (Djamshidian et al., 2012; Averbeck et al., 

2013) and other disorders (Lunt et al., 2012)). To the extent that these disorders are 

characterised by altered dopaminergic function, our model predicts similar behavioural 

changes. However, it is also possible that specific disease features play a role, particularly 

given the multiplicity of potential routes to impulsivity discussed above corresponding to the 
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differences, rather than similarities, between the panel rows of Fig. 5. In fact, the particular 

strength in inverting individual (generative) models of a task lies in the potential 

identification of characteristic parameter configurations of a specific patient group that may 

induce the same overt behaviour. More specifically, the underlying causes of impulsivity in 

patients with Parkinson’s disease, addiction or psychosis are likely to differ, even though the 

behavioural consequences in a task may be the same. In the particular setting of this model, 

this translates into the fact that on the one hand, impulsive and hasty behaviour can have 

various causes such as decreased prior precision or negative expectations about transition 

probabilities and, on the other hand, aberrant precision can have different effects depending 

on the context, such as on action selection, perception or policy. Addressing this requires 

fitting the model to data collected from different patient groups, which we hope to carry out 

in the near future. A similar comment applies to the relationship between delusions and 

impulsivity (Fear and Healy, 1997; Moritz and Woodward, 2005; Menon et al., 2008), given 

that delusions are common in schizophrenia patients, but less common in other groups that 

also show increased impulsivity. Delusions might depend upon the dopaminergic 

abnormalities also found in other disorders, but emerge only in the particular context of a 

schizophrenia pathology. Alternatively, there may be specific mechanisms underlying 

delusions that relate to (reflection) impulsivity in ways that are indirectly related to 

dopaminergic function. For example, reduced precision at the relevant cognitive level might 

contribute to down-grading evidence against a delusion which otherwise has great personal 

significance.

In general, the active inference framework considered here explains stochastic action 

selection as resulting from agents seeking to minimise surprise (variational free energy), 

rather than maximise the value of their actions. This means that the precision term which 

governs the sensitivity of action to the utility of different policies must itself be optimised, 

based on an agent’s confidence in attaining desirable states (an extremely large precision 

term would lead the agent to deterministically select the action with greatest utility) (Friston 

et al., 2013). This provides a principled explanation for stochastic choice behaviour which 

does not need recourse to noise or temperature parameters in the decision rule governing 

choice (Daw et al., 2006; FitzGerald et al., 2009). In the context of the urn task, free energy 

minimisation explains why agents do not always choose to sample until the last possible 

opportunity, even when the cost of acquiring more evidence is set to zero (Figure 5).

One limitation of our approach is that it only considers processes that occur in discrete time, 

whereas the brain, as a dynamical system, functions in continuous time. This criticism can 

be mitigated by the observation that the solutions that variational updates converge to the 

same solutions that would be found through gradient descent methods. These gradient 

descent schemes can be implemented as (biologically plausible) Bayesian filtering or 

predictive coding (Mumford, 1992; Friston, 2005; Friston et al., 2007, 2008). This means 

that while our discrete time models are further abstracted from brain function than models 

we have considered elsewhere (for example (Adams et al., 2012; Friston et al., 2012)) they 

are still capable of embodying mechanistic hypotheses about cognition, which is essential if 

we want to relate model parameters to neurobiology. Discrete versus continuous time 

formulations of evidence accumulation are important because evidence accumulation is a 

general problem in inference – that goes beyond the discrete trial, binomial task considered 
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here. In future work, we will consider how evidence accumulation might be performed 

through free energy minimisation when the agent is presented with a stream of continuous, 

graded evidence as in the random-dot motion paradigm (Gold and Shadlen, 2007).

In summary, we have considered evidence accumulation on the urn task in terms of active 

inference using a generic variational scheme. By specifying a generative model of the 

agent’s beliefs about the causal structure of the environment – together with its beliefs about 

which states it expects to end up in – we were able to simulate plausible decision-making 

behaviour. In addition, the partitioning of model parameters required by variational Bayes 

naturally motivates hypotheses about which brain regions or systems might encode 

particular parameters. Expected precision, which we hypothesise is encoded by 

dopaminergic firing, plays a key role in modulating impulsivity, leading one to hypothesise 

that dopaminergic dysfunction may underlie the behavioural changes observed in 

schizophrenia, and perhaps other disorders. Our simulations demonstrate the power and 

flexibility of the active inference framework and generate plausible hypotheses for future 

investigation.
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Appendix

An important application of the Markovian scheme described in the main text is to 

parameterise or phenotype individual subjects in terms of key model parameters that have 

both a computational and putative neurobiological meaning. This computational 

phenotyping rests on estimating model parameters from observed behaviour. This is 

relatively simple to do with Markovian models because they provide the probability of any 

allowable action at any point in time. This means the probability of observed choices can be 

computed for any given model parameter, using simulations of the sort described above. By 

searching over ranges of parameters the ensuing log likelihood functions serve to estimate 

the model parameters that best explain a particular subject’s behaviour.

Figure A1 shows the results of a simulated estimation of model parameters. In this example, 

eight games were simulated and the outcomes (and choices) were used to evaluate the 

probability of choice behaviour under different values of prior precision α = (2,…,16). The 

observed distribution of latencies over the eight games is shown on the upper left, while the 

corresponding log likelihood of obtaining the choice behaviour is shown on the lower left – 

as a function of the prior precision, for each of the eight trials. Because the outcomes from 

the eight games were conditionally independent, their log likelihood is the sum of log 

likelihoods from each game. Under the (Laplace) assumption that the posterior distribution 

over prior precision is Gaussian, one can now use the log likelihood to estimate the posterior 

expectation and precision of the model parameter. In this case, the scale parameter of the 

priors over precision and had a true value of four (vertical line) – which was estimated 

accurately.
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Figure A1. 
Results of a simulated estimation of model parameters. In this example, eight games were 

simulated and the outcomes (and choices) were used to evaluate the decision probability 

under different values of prior precision. Upper left: the observed distribution of latencies 

over the eight games. Upper right: the log likelihood of obtaining the choice behaviour 

under different levels of the prior precision (from 2 to 16), with one function for each 

games. Lower left: because the choices from the eight games were conditionally 

independent, the total log likelihood is the sum of log likelihoods from each game. Under 

the (Laplace) assumption that the posterior distribution over prior precision is Gaussian, one 

can use the log likelihood to estimate the posterior expectation and precision of the model 

parameter. In this case, the scale parameter of the priors over precision had a true value of 

eight (vertical line).
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Figure 1. 
This figure illustrates the dependencies among hidden states and control states of a 

generative model of choice behaviour. Left panel: these equations specify the generative 

model in terms of the joint probability over observations, the states causing these 

observations and the precision of prior beliefs about those states. The form of these 

equations rests upon Markovian or independence assumptions about controlled state 

transitions. Right panel: The dependencies among these variables are depicted on the right. 

This Bayesian graph illustrates the dependencies among successive hidden states and how 

they depend upon past and future control states. Note that future control states (policies) 

depend upon the current state, because policies depend upon relative entropy or divergence 

between distributions over the final state that are, and are not, conditioned on the current 

state. The resulting choices depend upon the precision of beliefs about control states, which 

in turn depend upon the parameters of the model. Observed outcomes depend on, and only 

on, the hidden states at any given time. Given this generative model, an agent can make 

inferences about observed outcomes using standard (variational Bayes) schemes for 

approximate Bayesian inference (see next figure). See (Friston et al., 2013) for further 

details.
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Figure 2. 
This figure illustrates the cognitive and functional anatomy implied by the variational 

Bayesian inversion of the generative model in the previous figure. Here, we have associated 

the Bayesian updates of expected states with perception, of future control states (policies) 

within action selection and, finally, expected precision with evaluation. The forms of these 

updates show that sufficient statistics from each set of variables are passed among each 

other until convergence to an internally consistent (Bayes optimal) solution. In terms of 

neuronal implementation, this might be likened to the exchange of neuronal signals via 

extrinsic connections among functionally specialised brain systems. In this schematic, we 

have associated perception (inference about the current state of the world) with the 

prefrontal cortex, while assigning action selection to the basal ganglia. Crucially, precision 

has been associated with dopaminergic projections from ventral tegmental area and 

substantia nigra that, necessarily, project to both cortical (perceptual) and subcortical (action 

selection) systems. See (Friston et al., 2013) for further details. The precise form of this 

model, and the anatomical mappings implied in the figure, are not mean to be definitive, but 

we present them to illustrate the underlying plausibility of our simple scheme.
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Figure 3. 
This figure illustrates the construction of the model for the urn task. As described in the 

main text, this has three main components. Upper panel: the likelihood maps from the 

hidden states to observations. Here, we assume that all attributes of hidden states are 

available for observation apart from the state of the urn, which can contain a preponderance 

of red or green balls. This means that for every observed state there are two hidden states – 

one for a red urn and one for the green urn. Middle panel: for every control state there is a 

probability transition matrix. Here there are three control states wait, or choose red and 

green. If the agent waits, the number of drawn balls increases by one and the number of 

green balls increases (or not) probabilistically, depending upon whether the hidden state 

corresponds to a red or green urn. If the agent makes a decision, then the hidden state jumps 

from an undecided to declaring red or green, having witnessed the previous outcomes. 

Lower panel: prior beliefs about policies or sequences of control states are based upon goals 

encoded by the utility. Here, the utility reflects a confident decision – defined as a log odds 

ratio of greater than three, when comparing the accumulated evidence under the appropriate 

hidden urn state, relative to the other. Here, ⊗ denotes a Kronecker tensor product. The 

graphics depict a subset of hidden states encoding the number of drawn balls, the number of 

green balls, the choice (undecided, red or green) and the hidden state of the urn (red or 

green).
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Figure 4. 
This figure shows the results of a simulation of an eight draw game. Upper left: these show 

the inferred hidden states as a function of trial or draws. In this example, all the drawings 

returned green balls, apart from the fourth ball which was red. The image scale on the right 

of the graph indicates those final states that have a high utility or prior probability. Here, the 

agent was prevented from deciding until the last draw, where it chooses green. We delayed 

the decision to reveal the posterior beliefs about policies shown on the upper right: the solid 

lines correspond to the posterior expectation of waiting (blue) or deciding (red or green 

respectively). The dotted lines show the equivalent beliefs at earlier times. These 

probabilities are based upon the posterior expectations about policies shown in the middle 

two panels. Middle left: these are the allowable policies which, in this example, allow a 

decision at each of the eight trials. The corresponding posterior expectations are shown in 

the middle right panel in image format. It shows a progressive increase in the eighth policy 

that corresponds to a green choice on the final trial. The lower panels show the expected 

precision over trials. Lower left shows the precision (γ) as a function of variational updates 

(eight per trial). Simulated dopamine responses are shown on the lower left. These are the 

updates after deconvolution with an exponentially decaying kernel of eight updates. Both 

expected precision and simulated dopamine responses show increases after sampling 

information reinforcing currently held beliefs (here drawing a green ball after the first trial), 
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and a decrease when sampling conflicting information (when a red ball is drawn on trial 

four).
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Figure 5. 
these simulated results illustrate the effects of increasing the threshold criterion for decision 

(top row), prior precision (middle row) and sampling cost (bottom row) on the propensity to 

make an early decision. Upper panels: these show the probability of deciding as a function 

of the number of draws (latency) for increasing the decision threshold (from 0 to 8). The left 

panel shows the effects in terms of the probability of deciding, given no previous decision, 

the middle panel shows the corresponding distribution over latencies to a choice, and the 

right panel shows the cumulative probability of making a decision. (Lower thresholds are 

indicated by darker grey lines). Increasing the threshold or evidence required for a confident 

decision effectively delays the decision. Middle panels: these show the equivalent results 

when increasing the scale parameter of the prior beliefs about precision (from 2 to 16). 

(Lower prior precision values are indicated by darker grey lines) As confidence in policy 

selection increases, there is again a tendency to wait for more evidence. Bottom panels: 

these show the results when increasing the cost to sample w (from 0 to 1/8). (Lower 
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sampling costs are indicated by darker grey lines) As sampling costs increase, the agent 

tends to decide at earlier time points.
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