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Introduction
The advent of next-generation sequencing (NGS) or high-
throughput sequencing has revolutionized the field of micro-
bial ecology and brought classical environmental studies to 
another level. This type of cutting-edge technology has led to 
the establishment of the field of “metagenomics”, defined as the 
direct genetic analysis of genomes contained within an envi-
ronmental sample without the prior need for cultivating clonal 
cultures. Initially, the term was only used for functional and 
sequence-based analysis of the collective microbial genomes 
contained in an environmental sample,1 but currently it is also 
widely applied to studies performing polymerase chain reac-
tion (PCR) amplification of certain genes of interest. The for-
mer can be referred to as “full shotgun metagenomics”,2 and 
the latter as “marker gene amplification metagenomics” (ie, 
16S ribosomal RNA gene) or “meta-genetics”.3

Such methodologies allow a much faster and elaborative 
genomic/genetic profile generation of an environmental sample 
at a very acceptable cost. Full shotgun metagenomics has the 
capacity to fully sequence the majority of available genomes 
within an environmental sample (or community). This creates 

a community biodiversity profile that can be further associated 
with functional composition analysis of known and unknown 
organism lineages (ie, genera or taxa).4 Shotgun metagenom-
ics has evolved to address the questions of who is present in 
an environmental community, what they are doing (function-
wise), and how these microorganisms interact to sustain a bal-
anced ecological niche. It further provides unlimited access to 
functional gene composition information derived from micro-
bial communities inhabiting practical ecosystems.

Marker gene metagenomics is a fast and gritty way to 
obtain a community/taxonomic distribution profile or finger-
print using PCR amplification and sequencing of evolution-
arily conserved marker genes, such as the 16S rRNA gene.5 
This taxonomic distribution can subsequently be associated 
with environmental data (metadata) derived from the sam-
pling site under investigation.

Several types of ecosystems have been studied so far using 
metagenomics, including extreme environments such as areas 
of volcanism6–9 or other areas of extreme temperature,10,11 
alkalinity,12 acidity,13,14 low oxygen,15,16 and high heavy-metal 
composition.17,18 This invaluable resource provides an infinite 
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capacity for bioprospecting and allows the discovery of novel 
enzymes capable of catalyzing reactions of biotechnological 
commercialization.19

The first metagenomic studies were focused on low- 
diversity environments, such as an acid mine drainage,20 
human gut microbiome,21 and water samples from the Sargasso 
Sea,22 mainly due to the unavailability of both high-throughput  
sequencing technologies at that time and relevant software for 
the scaffolds’ assembly. As more and more researchers entered 
this new field of study, the need for powerful tools and soft-
ware became apparent and therefore led to the creation of 
several such tools.

Sequencing Technologies
Two commonly used NGS technologies utilized to date are 
the 454 Life Sciences and the Illumina systems, with the ratio 
of usage shifting in favor of the latter recently. Both technolo-
gies have been widely used in metagenomic studies, and hence 
it is important to briefly describe their advantages and dis-
advantages with respect to the sequencing of metagenomics 
samples.

The 454 pyrosequencer was the first next-generation 
sequencer to achieve commercial introduction in 2004.23 Its 
chemistry relies on the immobilization of DNA fragments on 
DNA-capture beads in a water–oil emulsion and then using 
PCR to amplify the fixed fragments. The beads are placed on 
a PicoTiterPlate (a fiber-optic chip). DNA polymerase is also 
packed in the plate, and pyrosequencing is performed.24,25 
Its main difference from the classic Sanger sequencing is 
that pyrosequencing relies on the detection of pyrophosphate 
release on nucleotide incorporation rather than chain termi-
nation with dideoxynucleotides. The release of pyrophosphate 
is conveyed into light using enzyme reactions, which is then 
converted into actual sequence information.23

In the initial years of high-throughput sequencing, scien-
tists embraced the new technology and hence discovered the 
existence of the “rare biosphere”.26 However, in many cases the 
apparent assignment of a microbial operational taxonomic unit 
(OTU) was in fact an attribute of sequencing errors, which 
caused an overinflation of the diversity estimates.27  Noise 
generated by this 454 pyrosequencing technology affected dif-
ferent aspects of metagenomic data analysis and led to biased 
results.28

PCR errors may lead to replicate sequence artifacts, which 
can cause overestimation of species abundance and functional 
gene abundance in 16S rRNA and full shotgun metagenom-
ics, respectively. PCR can also generate noise in the form of 
single base pair errors (ie, substitutions, deletions) that can 
cause frame shifts for protein coding genes in shotgun meta-
genomics. Moreover, PCR chimeras (sequences generated 
by undesired end-joining of two or more true sequences) can 
also affect 16S metagenomics results with respect to species 
distribution.29 Sequencing errors can also occur due to the 
actual chemistry underlining the technology. For example, 

there is an inherent difficulty in clearly identifying the 
intensity of 454 pyrosequencing-generated flowgrams. This 
task becomes even more difficult during the sequencing of 
homopolymers.30 The 454 pyrosequencing technology can 
generate reads up to 1,000 bp in length and ∼1,000,000 reads 
per run. The relatively long read length generated by this 
technology (in comparison to other sequencing technologies) 
allows a significantly less error-prone assembly in shotgun 
metagenomics and permits greater annotation accuracy.31,32 
The cost of sequencing using 454 pyrosequencing technology 
is estimated at around US$20 per Mb, but it has a relatively 
low coverage of 0.7 GB per sequencing run. With respect to 
pyrosequencing, ,20  ng of DNA is sufficient for sequenc-
ing single-end libraries, although paired-end sequencing may 
require larger quantities of DNA.

Although 454 will eventually stop being supported by 
Life Sciences, still one should take into account that there 
is a large number of existing unpublished datasets that have 
been generated via this technology. Therefore, it is impor-
tant to include it in this review and compare it with the other 
sequencing services that have become more popular over the 
last years, namely Illumina.

Illumina dye sequencing by synthesis begins with the 
attachment of DNA molecules to primers on a slide, followed 
by amplification of that DNA to produce local colonies.23 
This generation of “DNA clusters” is accompanied by the 
addition of fluorescently labeled, reversible terminator bases 
(adenine, cytosine, guanine, and thymine) attached with a 
blocking group.33 The four bases then compete for binding 
sites on the template DNA to be sequenced, and the nonin-
corporated molecules are washed away. After each synthesis 
cycle, a laser is used to excite the dyes, and a high-resolution 
scan of the incorporated base is made. A chemical deblocking 
step ensures the removal of the 3’ terminal blocking group 
and the dye in a single step. The process is repeated until the 
full DNA molecule is sequenced. Illumina has a variety of 
sequencing instruments dedicated to different applications. 
MiSeq, for example, has an output of 15 GB and 25 million 
sequencing reads of 300  bp in length; clustered fragments 
can be sequenced from both ends (paired-end sequencing), 
which can be merged so that 600 bp reads can be obtained. 
HiSeq2500 has a much greater output (1,000 GB per run) but 
offers 125 bp reads. Illumina yields involve a much lower cost 
(∼US$0.50 per Mb), but the run time is longer than that for 
454 pyrosequencing. Currently, this feature is being addressed 
by the MiSeq Illumina machine, which has been developed in 
order to run smaller jobs at a much faster rate with relatively 
high throughput. Illumina allows sample preparation sizes of 
,20 ng DNA (similar to 454 pyrosequencing). The shorter 
read length produced by Illumina may increase errors during 
assembly and, subsequently, the annotation inaccuracies dur-
ing shotgun metagenomics data analysis.34 In contrast, when 
analyzing 16S metagenomics data, this technology obviates the 
need for time-consuming noise removal algorithms required 
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for pyrosequencing and makes analysis less error-prone.35 The 
greater coverage/yield generally offered by Illumina allows 
significant decrease of systematic errors. This advantage and 
the low cost are the delineating factors that have turned Illu-
mina into the preferred high-throughput sequencing technol-
ogy for metagenomics studies.

Additional sequencing technologies are available and can 
potentially be used for metagenomic studies. These include 
the Applied Biosystems SOLiD 5500  W Series sequencer, 
which offers higher coverage than 454 pyrosequencing but 
lower than Illumina (∼120 GB per run). It allows fragment 
or mate-paired sequencing; however, it can only guarantee 
a low error rate for sequencing reads of maximum 50 bp in 
length.36 This reduces the possibility of generating a reliable 
and usable de novo assembly for shotgun metagenomics; but, 
on the other hand, this technology performs very well when 
utilizing a reference genome for mapping or assembly of reads. 
However, using the Exact Call Chemistry (ECC) module, 
the SOLiD system offers to boost the accuracy of its ligation-
based sequencing.

An emerging sequencing technology that may have 
high impact on the fields of genomics and metagenomics was 
recently developed by Pacific Biosciences (PacBio).36 This 
technology uses single-molecule real-time (SMRT) sequenc-
ing, which is a parallelized single-molecule DNA sequencing 
by synthesis. SMRT sequencing utilizes the zero-mode wave-
guide (ZMW), whereby a single DNA polymerase enzyme 
is fixed to the bottom of a ZMW with a single molecule of 
DNA as a template. The ZMW is a structure that creates an 
illuminated observation volume that is small enough to allow 
the observation of a single nucleotide of DNA (also known as 
a base) being incorporated by DNA polymerase. Each of the 
four DNA bases is attached to one of four different fluorescent 
dyes. When a nucleotide is incorporated by the DNA poly-
merase, the fluorescent tag is cleaved off, which diffuses out of 
the observation area of the ZMW where its fluorescence is no 
longer observable. A detector detects the fluorescent signal of 
the nucleotide incorporation, and the base call is made accord-
ing to the corresponding fluorescence of the dye. PacBio pro-
vides much longer read lengths (∼10,000 bp) compared to the 
aforementioned technologies, thus having obvious advantages 
when addressing issues of annotation and assembly for shot-
gun metagenomics. PacBio technology uses a process called 
strobing to perform paired-end read sequencing. Despite the 
high read length of PacBio, this technology is limited by high 
error rates and low coverage (albeit at higher throughput than 
Sanger sequencing).

In addition to the aforementioned technologies, which 
are based on optics, technologies such as Ion Torrent’s semi-
conductor sequencing benchtop sequencer and Ion Proton are 
now coming into play. These technologies are based on the use 
of proton emission during polymerization of DNA in order 
to detect nucleotide incorporation. This system promises read 
lengths of .200  bp and relatively high throughput, on the 

order of magnitude achieved by 454  Life Sciences systems. 
Additionally, it offers higher quality than 454, especially when 
sequencing homopolymers, but at a similar cost (about US$23 
per Mb for the Ion Torrent PGM –314 Chip). Looking into 
the future, and given that 454 will eventually stop being sup-
ported by Life Sciences, it is very likely that former users of 
the 454 pyrosequencing will switch to Ion Torrent sequencing 
chemistry, due to the similarities of both (eg, emulsion PCR 
step) and the significant the advantages of the latter.

An even more cutting-edge technology is currently 
under development by Oxford Nanopore technologies, which 
is developing “strand sequencing”, a method of DNA ana
lysis that could potentially sequence completely intact DNA 
strands/polymers passed through a protein nanopore. This 
obviates the need for shotgun sequencing and aims to revo
lutionize the sequencing industry in the future. Oxford 
Nanopore intends to commercialize this technology with the 
Company's GridION™ and MinION™ systems. For meta-
genomics, this technology can have obvious advantages, as it 
will eliminate erroneous sequencing caused by shotgun meta-
genomics and exclude the need for the error-prone assembly 
step during data analysis (for details, see later). However, 
nanopore sequencing is at the moment noncommercialized 
(offered only through the MinION™ Access Program) and 
is still being optimized on case-by-case basis using specific 
template and sequencing needs.

Another example of an innovative and very promising 
technology is the Irys Technology (BioNano Genomics), 
which uses micro and nanostructures and offers new ways 
of de novo constructing genome maps. The input is DNA 
labeled at specific sequence motifs that can be used for imag-
ing and identification in IrysChips. These labeling steps 
result in a uniquely identifiable, sequence-specific pattern of 
labels to be used for de novo map assembly or for anchoring 
sequencing contigs.

Shotgun Metagenomics
Assembly of shotgun metagenomics data. Metage

nomics studies are commonly applied to investigate the spe-
cific genomes (known as well as unknown, both cultured and 
uncultured) that are present within an environmental com-
munity under study. Moreover, when performing full shotgun 
metagenomics, the complete sequences of protein coding genes 
(previously characterized or novel) as well as full operons in 
the sequenced genomes can offer invaluable functional knowl-
edge about the community. For these reasons, an assembly of 
shorter reads into genomic contigs and orientation of these into 
scaffolds is often performed to provide a more compact and 
concise view of the sequenced community under investiga-
tion. Early attempts at metagenomic data assemblies utilized 
tools initially implemented for single genome data assemblies. 
They, therefore, fell short when forced to assemble reads into 
contigs for metagenomic samples. However, assembly tools 
have significantly evolved since then, and the current line of 
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tools have been modified and specifically designed to assemble 
samples containing multiple genomes, thereby rendering them 
much more affective for the task in hand.

The process of assembling shorter reads into contigs can 
take two different routes: 1) reference-based assembly and 2) 
de novo assembly. The choice of which route to follow depends 
on the dataset that needs to be analyzed and on the specific 
needs of each research project. For example, de novo assembly 
could be, in theory, used even if a reference genome exists, if 
the computational power allows for it.

Reference-based assembly refers to the use of one or more 
reference genomes as a “map” in order to create contigs, which 
can represent genomes or parts of genomes belonging to a spe-
cific species or genus. Tools such as Newbler (Roche), MIRA 4,37  
or AMOS, as well as the recent MetaAMOS,38 are com-
monly used in metagenomics for performing referenced-based 
assemblies. These tools are not computationally intensive 
and perform well when metagenomic samples are derived 
from extensively studied and researched areas. In such cases, 
sequences from closely related organism would have already 
been deposited in online data repositories and databases, 
allowing them to be used as references for the assembly pro-
cess. Often, assemblies are visually evaluated using genome 
browser tools such as Artemis.39 The observation of large gaps 
in the query genome(s) of the resulting assembly, when com-
paring to the reference genome(s), can be seen as an indication 
that perhaps the assembly is incomplete or that the reference 
genome(s) used are too distantly related to the community 
under investigation in order to perform optimally.

De novo assembly refers to the generation of assembled 
contigs using no prior reference to known genome(s).40 This 
task is computationally expensive and relies heavily on sophis-
ticated graph theory algorithms, such as de-Bruijn graphs, 
which were specifically employed to tackle this job. Tools such 
as EULER,41 Velvet,42 SOAP,43 and Abyss44 were amongst 
the first to perform de novo assembly and are still widely used 
today. They require computers with large amounts of memory 
and generally long execution times (depending on the size of 
the dataset). However, these tools were built with the assump-
tion of assembling a single genome and often underperform 
when used for metagenome assemblies. Problems arise from 
1) variation between similar subspecies, 2) genomic sequence 
similarity between different species, and 3) difference in 
abundance for species in a sample also affected by different 
sequencing depths for individual species. These issues intro-
duce kinks (or branches) in the de Bruijn graph, and have to 
be addressed in order to improve the assembly.

The next generation of assembly tools, such as MetaVelvet 
and very recently MetaVelvet-SL45,46 and Meta-IDBA,47 was 
developed to address these issues. MetaVelvet and Meta-
IDBA employ a combined binning (for details on binning, 
see below) and assembly approach to create more accurate 
assemblies from datasets containing a mixture of multiple 
genomes. They make use of k-mer frequencies to detect kinks 

in the de-Bruijn graph and then use these k-mer thresholds 
to decompose the graph into subgraphs. These tools further 
assemble contigs and scaffolds based on the decomposed 
subgraphs, and thus perform a more efficient grouping/
assembly of contigs, effectively separating those belonging to  
different species.

The IDBA-UD algorithm48 was recently developed to 
additionally address the issue of metagenomic sequencing 
technologies with uneven sequencing depths. It makes use of 
multiple depth-relative k-mer thresholds to remove errone-
ous k-mers in both low-depth and high-depth regions. Com-
parison of the performances of these tools is often performed 
using the N50 length score, which is defined as “the length for 
which the collection of all contigs of that length, or longer, 
contains at least half of the total of the lengths of the con-
tigs in the assembly”.49,50  A recent comparison of the latest 
line of assembly tools shows that IDBA-UD can reconstruct 
longer contigs with higher accuracy.48 However, there is still 
much room for the improvement of metagenomic assembly 
algorithms in order for them to conceptually capture the task  
in hand.

Binning tools for metagenomes. Binning is the process of 
grouping (binning) reads or contigs into individual genomes 
and assigning the groups to specific species, subspecies, or 
genus. Binning methods can be characterized in two different 
ways depending on the information used to group the sequences 
in hand: 1) Composition-based binning is based on the obser-
vation that individual genomes have a unique distribution of 
k-mer sequences (also denoted as genomic signatures). By mak-
ing use of this conserved species-specific nucleotide composi-
tion, these methods are capable of grouping sequences into 
their respective genomes. 2) Similarity- or homology-based 
binning refers to the process of using alignment algorithms 
such as BLAST or profile hidden Markov Models (pHMMs) 
to obtain similarity information about specific sequences/
genes from publically available databases (eg, NCBI’s nonre-
dundant database – nr or PFAM). Thereafter, sequences are 
binned according to their assigned taxonomic information.

Available composition-based binning algorithms are 
included in tools such as TETRA,51 S-GSOM,52,53 Phy-
lopythia54 and its successor PhylopythiaS,55 TACAO,56 
PCAHIER,57 ESOM,58,59 and ClaMS,60 while examples of 
purely similarity-based binning software include tools such as 
CARMA,61 MetaPhyler,62 and SOrt-ITEMS.63 Some tools 
employ similarity-based binning algorithms in their metag-
enomics analysis pipelines. Examples of such tools are IMG/
MER 4,64 MG-RAST,65,66 and MEGAN67–69 and will be 
described in more detail below.

Certain binning tools employ a hybrid approach using 
both composition and similarity-based information to group 
sequences. Some examples of such tools are PhymmBL70 and 
MetaCluster.71,72 More innovative binning approaches include 
co-abundance gene segregation across a series of metagenomic 
samples, thus facilitating the assembly of microbial genomes 
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without the need for reference sequences.73 This new method 
promises to overcome the usual computational challenges 
of other binning tools and has been tested for a human gut 
microbiome.

Binning tools can further be characterized with respect 
to the type of algorithm they employ such as 1) ab initio unsu-
pervised classifiers and 2) supervised/training-based clas-
sifiers.60 Unsupervised binning refers to the process of using 
pre-existing bins derived from genomic sequences to classify a 
given dataset without user supervision. In contrast, supervised 
binning allows user interference and supervision in the train-
ing process per se. More particularly, the user may specify the 
type of sequences that will be used to train each bin and, fur-
thermore, select sequences from known taxonomic lineages to 
use while training the classifier. Sophisticated algorithms such 
as support vector machines (PhylopythiaS), hidden Markov 
models (PhymmBL, TETRA), as well as self-organizing 
maps (ESOMs) have been used in binning algorithms. How-
ever, tools such as PhylopythiaS and TETRA allow little user 
intervention, while ClaMS and ESOM provide a more super-
vised training approach that can be fine-tuned to allow opti-
mal classification for the specific dataset under consideration.

There are certain aspects that one must take into con-
sideration when performing the binning of metagenomic 
sequences. Composition-based binning using genomic signa-
ture has its drawbacks, especially when performed on short 
reads (ie, 150  bps). Given that all possible tetranucleotide 
combinations amount to 256, it is unlikely to extract sufficient 
information to reliably assign a taxonomic rank to a specific 
bin using short reads. Therefore, it is common practice to per-
form composition-based binning on assembled datasets. This 
way, longer contigs can provide the required k-mer distribution 
information, which will allow effective binning and taxonomic 
assignment.31 Observation of a taxonomic marker sequence 
(ie, 16S rRNA gene) within the bins can further facilitate reli-
able taxonomic assignment for the respective bin. Similarity-
based binning also has its disadvantages. Although capable of 
binning reads of short length, it fails to do so accurately when 
the metagenome under consideration consists of numerous 
closely related species. This may cause assignment of closely 
related sequences to the same reference genome, perhaps at a 
higher taxonomic level (ie, order or class), thereby generating 
bins containing a mixture of genomes. Therefore, optimal bin-
ning results are expected to be attained when combining both 
composition- and similarity-based approaches as adopted by 
hybrid tools such as PhymmBL70 and MetaCluster.71,72

Annotation of metagenomics sequences. Annotation of 
metagenomes is specifically designed to work with mixtures 
of genomes and contigs of varying length. Initially, a series 
of preprocessing steps prepare the reads for annotation. These 
include 1) Trimming of low-quality reads using platform-specific 
tools such as the FASTX-Toolkit.74  Additionally, FastQC67 
can provide summary statistics for FASTQ files. Both have 
been recently integrated into the Galaxy platform.75–77 

SolexaQA78 and Lucy 279 are also used for FASTQ files. 
Most of these tools make use of Phred or Q quality scores,80,81 
the thresholds of which depend on sequencing technology;  
2) Masking of low-complexity reads performed using tools such 
as DUST82; 3) A de-replication step that removes sequences 
that are more than 95% identical; 4) A screening step performed 
by some tools (ie, MG-RAST) in which the pipeline provides 
the option of removing reads that are near-exact matches to 
the genomes of a handful of model organisms, including fly, 
mouse, cow, and human. This is done using mapping tools 
such as Bowtie 2.83

The next main stage of the annotation pipeline is the 
identification of genes within the reads/assembled contig,  
a process often denoted as “gene calling”.64 Genes are labeled as 
coding DNA sequences (CDSs) and noncoding RNA genes, 
and certain annotation pipelines (eg, IMG/MER) also predict 
for regulatory elements such as clustered regularly interspaced 
short palindromic repeats (CRISPRs).

CDSs are identified using a number of tools including 
MetaGeneMark,84 Metagene,85 Prodigal,86 Orphelia,87 and 
FragGeneScan,88 all of which utilize ab initio gene predic-
tion algorithms. Often, annotation pipelines use an intersec-
tion of these tools to obtain a more informative prediction of 
the protein coding genes. Gene prediction tools utilize codon 
information (ie, start codon – AUG) to identify potential open 
reading frames and hence label sequences as coding or non-
coding. Most tools can be trained by using the desired train-
ing sets. For example, FragGeneScan is trained for prokaryotic 
genomes only, and is used by IMG/MER and MG RAST 
as well as EBI Metagenomics. It is believed to be one of the 
most accurate gene-prediction tools currently available. How-
ever, like most of these tools, it is expected to have an average 
prediction accuracy of ∼65%–70%, resulting in multiple genes 
that are missed altogether.88

CRISPR elements are identified by programs such as 
CRT89 and PILER-CR.90 IMG/MER uses a concatenation 
of results obtained from both these programs, retaining the 
longest element prediction in case of overlap.

Noncoding RNAs such as tRNAs are predicted using 
programs like tRNAscan,91,92 ribosomal RNA (rRNA) genes 
(5s, 16s, and 23s) are predicted using internally developed 
rRNA models for IMG/MER, and MG-RAST uses simi-
larity to compare three known databases (SILVA,93 Greengenes,94 
and the Ribosomal Database Project-RDP95,96) to predict 
rRNA genes.

The next stage of the annotation pipeline involves func-
tional assignment to the predicted protein coding genes. 
This is currently achieved by homology-based searches of 
query sequences against databases containing known func-
tional and/or taxonomic information. Due to the large size 
of metagenomic datasets, this stage is often very expensive 
computationally and highly automated. BLAST or other 
sequence-similarity-based algorithms97 often run on high-
performance computer clusters. Often, multithreading or 
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other parallel programming approaches are used to divide jobs 
in multiple central/graphic processing units (CPUs/GPUs). 
This reduces the running time complexity and significantly 
speeds up querying execution time.

Some widely used data repositories to obtain annota-
tion for metagenomic datasets include functional annota-
tion databases such as KEGG,98,99 SEED,100 eggNOG,101 
COG/KOG,102 as well as protein domain databases such as 
PFAM103,104 and TIGRFAM.105 Often, annotation pipelines 
make use of multiple databases or composite protein domain 
databases such as Interpro106 (see EBI Metagenomics) in order 
to obtain a more collective, cumulative biological functional 
annotation.

IMG/MER utilizes HMMsearch (profile HMMs) to 
associate genes with PFAM, and genes are further anno-
tated using COGs. Database of position-specific scoring 
matrix (PSSMs) for COGs are downloaded from NCBI and 
are used to annotate protein sequences. Moreover, genes are 
labeled using KEGG-associated KO terms, EC numbers, and 
assigned phylogeny using similarity searches. With a large set 
of genomes in its public repositories, IMG/MER can exploit 
its own resources, using them as reference nonredundant data-
bases from which it obtains additional functional annotation.

MG-RAST utilizes many of the databases described 
above for annotation mapping as well as the NCBI taxonomy. 
The primary data product displayed to the user by MG-RAST 
is in the form of abundance profiles, and taxonomic informa-
tion is projected against this data.

Both IMG/MER and MG-RAST are widely used data 
management repositories and comparative genomics environ-
ments. They are fully automated pipelines that provide qual-
ity control, gene prediction, and functional annotation. Both 
tools support user download of data products generated, as 
well as optional sharing and publishing within the respective 
portals. However, there are important differences between 
MG-RAST and IMG/MER that are relevant to the way 
MG-RAST calculates abundance profiles.

MG-RAST predicts all genes in the metagenome, and 
then identifies the best homologs of those genes in the iso-
late genomes using a tool called BLAT (BLAST-like align-
ment tool).107 BLAT misses similarities below 70% identity, 
so many strong hits to other genes are missed. After the best 
hits to genes from an isolated genome are identified, all subse-
quent analysis is done using the genes of the isolate genomes, 
not the genes of the metagenome at hand. This creates a lot of 
limitations due to the fact that the analysis is not performed 
on the original genes of the metagenome but on the “proxy” 
genes to the isolated genomes instead. The advantage of this 
method is its speed; the only computationally intensive step 
is to find the best hits of the metagenomes against the iso-
lates. Once this is done, all other comparisons are already pre-
existing. The other major advantage is that the MG-RAST 
database does not grow in size, as is the case with the IMG/
MER database.

IMG/MER also begins with prediction of all genes from 
the metagenome, but then runs all the computations on those 
genes rather than on their proxies. This allows the identifica-
tion of PFAM hits (which is not supported in MG-RAST) 
and provides much more detailed functional information com-
pared to COGS, which is the only protein families database 
used in MG-RAST. The major bottleneck for IMG/MER 
is the exponential growth of the gene number, which is not 
an issue for MG-RAST since the metagenome genes are not 
kept for analysis. It is, however, important to use PFAM for 
functional analysis because by comparing the number of genes 
from any metagenome that go into COG or PFAM clusters, 
the second provides significantly higher coverage and there-
fore allows a much deeper analysis. Another major advantage 
of IMG/MER is that, since the tool keeps the original meta-
genome genes, it also keeps the original contigs, which pro-
vides synteny information. Therefore, it is far more suitable if 
one is interested in identifying novel biosynthetic gene clusters 
(BGCs) in the metagenomes, a type of analysis that may be 
less viable using MG-RAST. The prediction of BGCs from 
metagenomics data is recently gaining a great deal of inter-
est due to their potential in biotechnological applications. The 
possibility to engineer BGCs for the production of secondary 
metabolites with improved properties, known for their use in 
anticancer drugs and antibiotics, offers limitless potential for 
bioprospecting.

The EBI Metagenomics service108 is a newly developed 
web-based portal that uses metadata structures and formats 
that comply with the Genomic Standards Consortium (GSC) 
guidelines. Moreover, a novel data scheme currently being 
hosted by the EBI-EMBL is being adopted by the EBI Meta-
genomics service. This is known as the European Nucleotide 
Archive (ENA)109 data schema and aims to integrate data 
derived from sequencing technologies under a consensus, 
mutually accepted standard. EBI Metagenomics offers a dual 
shotgun and marker gene analysis service. It allows the extrac-
tion of rRNA data from shotgun metagenomic data using 
tools such as rRNASelector110 for concurrent marker metag-
enomic analysis. It therefore supports additional 16S rRNA-
based analysis tools such as Qiime111 (see section on Marker 
Gene Metagenomics) for the efficient taxonomic assignment 
of these sequences. For functional analysis and annotation of 
CDS sequences, EBI Metagenomics uses FragGeneScan to 
obtain protein coding sequences and thereafter utilizes data-
bases such as Interpro, which is a composite, cumulative system 
comprised of multiple databases of protein families, and allows 
for protein domain prediction and functional assignment. EBI 
Metagenomics provides data archiving via ENA and provides 
unique accession numbers for submitted datasets. Archiving 
policies require the data to be made public; however, there is a 
2-year period (upon submission) during which the data is kept 
private pending user publication of analysis results.

CAMERA112 is another online cloud computing service 
that provides hosted software tools and a high-performance 
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computing infrastructure for the analysis of metagenomic 
data. One advantage of CAMERA is that it allows greater 
user intervention and flexibility during the analysis process. 
However, this means that users must have expertise, knowl-
edge, and hands-on experience in metagenomic date analysis 
per se, in order to ensure correct execution of the pipeline and 
accuracy of results. Moreover, in order to perform comparative 
metagenomics using CAMERA, the datasets in hand must 
be traversed through the CAMERA pipeline, thus making 
integration of data from different resources more computa-
tionally demanding. MEGAN 567 is yet another tool that per-
forms analysis of metagenomic data and offers a wide range 
of visualization tools for metagenomic annotation results. It 
supports multiple visualization schemes including functional 
or taxonomic dendrograms, tag clouds, bar charts, and Krona 
taxonomic plots,113 that allow hierarchical data to be explored 
in the form of a zoomable pie chart.

Marker Gene Metagenomics
It is widely accepted that sequencing of the 16S rRNA gene 
reflects eubacterial evolution.114 Since the introduction of SSU 
rDNA-based molecular techniques,115–117 the study of micro-
bial diversity in natural environments has advanced signifi-
cantly. In addition, pyrosequencing24,25 of the 16S rRNA gene 
has been widely applied in the field of microbial ecology26,118–120  
and has resulted in a great number of sequences deposited 
in relevant databases, thus enhancing the value of 16S as the 
“gold standard” in microbial ecology. While the 16S rRNA 
gene fragment, containing one or more variable regions, is 
the preferred target marker gene for bacteria and archaea, this 
is not the case for fungi and eukaryotes where the preferred 
marker genes are the internal transcribed spacer (ITS) and 
18S rRNA gene, respectively.

Taxonomic analysis for prokaryotes (ie, bacteria and 
archaea) is regularly performed using 16S data derived from 
varying sequencing technologies (ie, 454 pyrosequencing as 
well as Illumina, Solid and Ion Torrent), and, for the pur-
poses of this review, we will list the relevant software to allow 
analysis for most sequencing technologies. Commonly used 
tools for 16S data analysis and denoising include QIIME,111 
Mothur,121 SILVAngs,93 MEGAN,67 and AmpliconNoise.122 
Despite the vast availability of algorithms and software for 
analysis of 16S metagenomics datasets, QIIME seems to be 
established as the “gold standard”.123

It is important to be aware of certain aspects of the termi-
nology required for the efficient analysis of 16S metagenomics 
data. These include the following: 1) Amplicon – a DNA frag-
ment that is amplified by PCR, eg, one or more 16S rRNA 
variable regions, or other marker genes. Most researchers will 
make use of standard PCR primers; 2) OTU – species distinc-
tion in microbiology, typically using rRNA and a percentage of 
similarity threshold for classifying microbes within the same, 
or different, OTUs; 3) Barcode – a short DNA sequence that is 
added to each read during amplification and that is specific for 

a given sample. This allows samples to be mixed (multiplexed) 
to reduce sequencing cost. During analysis, sequences need to 
be demultiplexed, ie, separated by sample.

Analysis usually requires a reference database that is 
searched to find the closest match to an OTU from which 
a taxonomic lineage is inferred. Some widely utilized data-
bases include Greengenes,94 (16S), Ribosomal Database 
Project,95,96,124 (16S), Silva93,125 (16S  +  18S), and Unite126 
(ITS). These databases are less suitable for certain groups of 
organisms, such as protists and viruses, which are extremely 
diverse and for which considerably less sequence information 
is available compared to bacteria.

Denoising. Denoising is important for 16S metagenomic 
data analysis, and it is platform-specific; ie, certain platforms 
(eg, Illumina) require less denoising than others (eg, pyrose-
quencing). For example, denoising of 454 pyrosequencing 
data, despite being computationally expensive, is necessary 
due to intrinsic errors generated from pyrosequencing that can 
give rise to erroneous OTUs. A procedure called “flowgram 
clustering” removes problematic reads and increases the accu-
racy of the taxonomic analysis. Several denoising algorithms 
have been developed so far,29,122,127–131 but for the purpose of 
this review three of them will be analyzed in detail.

Denoising is performed very efficiently by Amplicon-
Noise,122 a tool that uses the following basic denoising steps: 
1) Filtering of noisy reads: reads are truncated based on the 
appearance of low signal intensities; 2) Removing pyrose-
quencing noise: distance between the flowgrams is defined 
and true sequences and their frequencies are inferred by an 
expectation-maximization (EM) algorithm; 3) Removing 
PCR noise: the same ideas are used for removing PCR errors; 
4) Chimera identification and removal: for each sequence, 
exact pairwise alignments are performed to all sequences with 
equal or greater abundance, which is the set of possible parents. 
Although a considerable number of sequences is lost during 
the denoising process, it results in high-quality sequences132; 
however, there has been some debate on the level of stringency 
required to achieve such high quality.133

A very popular software for the analysis of microbial 
communities is QIIME. Initially QIIME was implemented 
for use of 454 pyrosequencing datasets only, ie, using sff (Stan-
dard Flowgram Format) files, but currently QIIME has been 
modified to accept the fastq file format, thereby making the 
analysis of Illumina datasets possible. The QIIME developers 
provide users with extensive online tutorials for several work-
flows, and, moreover, QIIME is available as an open-source 
software package mostly implemented using the program-
ming language PYTHON.

Another widely used software for the analysis of micro-
bial communities is Mothur. It was created from the combina-
tion of pre-existing software, such as DOTUR,134 SONS,135 
and Treeclimber,136 but, due to the community support it has 
received, currently it incorporates many more algorithms, thus 
providing the user with a variety of choices.
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More recently, a web-based application called SILVAngs93 
was developed, which provides a fully automated analysis 
pipeline for data derived from rRNA marker gene amplicon 
sequencing. The analysis workflow is based on 1) Alignment of 
reads, 2) Quality assessment and filtering of reads, 3) Derep-
lication, whereby identical sequences are filtered out to avoid 
overestimation, 4) Clustering and OTU picking using a priori 
defined thresholds, and 5) Taxonomic assignment of OTUs 
using the SILVA rDNA database.

The choice of which denoising algorithm to use is largely 
depends on the user. Once a choice is made, the user should 
also consider whether to deviate from the default parameters. 
Parameter adjustment is related to the dataset produced, ie, 
which specific 16S rRNA region was sequenced and which tech-
nology was used to perform the actual sequencing. In addition, 
it has been suggested that use of different denoising methods 
can produce significantly different outcomes,137 which should 
be taken into careful consideration when comparing studies 
that have utilized different algorithms for data analysis.

OTU clustering, picking, and taxonomic assignment. 
After the demultiplexing of the dataset, ie, the assignment of 
reads to samples using barcode information, the next step is 
OTU picking. For bacteria/archaea, it is accepted that OTUs 
of similarity greater than 97% correspond to the same species, 
but also other dissimilarity cutoffs can be employed, if needed 
for the downstream analyses. There are numerous OTU pick-
ing strategies: 1) De novo is used if amplicons overlap and if 
a reference sequence collection is not available. It clusters all 
reads without using a reference and is quite expensive com-
putationally, hence not very suitable for very large datasets. 
2) Closed-reference is used if amplicons do not overlap and 
if a reference sequence collection is available. This approach 
discards reads that do not hit a reference sequence. 3) Open-
reference is used if amplicons overlap and a reference data-
set is available. This method clusters reads against a reference 
dataset, but if the reads do not match the reference, they are 
consequently clustered de novo. All the aforementioned are 
incorporated into QIIME. There are also other types of OTU 
clustering and picking strategies being developed138–141; the 
most appropriate choice for the downstream analysis will 
depend on the type of data and the user.

Taxonomic assignment of OTUs can be performed using 
a variety of algorithms. Currently QIIME supports numer-
ous algorithms, such as BLAST, the RDP classifier, RTAX, 
Mothur classifier, and uclust, to search for the closest match 
to an OTU from which a taxonomic lineage is inferred. This 
requires reference databases of marker genes. Some commonly 
utilized databases include Greengenes,94 (16S), Ribosomal 
Database Project95,96,124 (16S), Silva93,125 (16S +  18S), and 
Unite126 (ITS).

Statistical analysis and visualization of results. QIIME 
output includes a representation of a taxonomic tree in 
Newick format, which can be visualized in applications such 
as FigTree,142 and a file in Biom (Biological Observation 

Matrix) format143 representing OTU tables. This file can be 
imported into MEGAN for visualization or into any other 
statistical software requiring matrix-type data. In addition, 
alpha-diversity analysis (diversity within a sample, eg, Phy-
logenetic Diversity (PD), Chao,144 etc.) and beta-diversity 
analysis (diversity across samples, eg, UniFrac,145 PCoA), as 
well as taxonomic composition and phylogenetic analyses, 
are supported through QIIME. Numerous other tools and 
software packages exist for performing statistical analysis of 
metagenomic data. The Primer-E package146 is commonly 
utilized by microbial ecologists and allows for multiple mul-
tivariate statistical analyses, such as multidimensional scaling 
(MDS), analysis of similarities (ANOSIM), and hypothesis 
testing. Recently the R statistical programming language147 
has gained imense popularity and is currently widely used 
for multivariate statistics. Packages such as vegan,148 phylo-
seq,149 and Bioconductor150 provide multiple in-built func-
tions and libraries for performing a wide range of statistical 
analysis required for metagenomic datasets. While it is out of 
the scope of this review to thoroughly analyze visualization 
tools for genomic data, readers are encouraged to visit a recent 
review article.151

Data Management, Storage, and Sharing
Tools such as IMG/MER, CAMERA, MG-RAST, and EBI 
metagenomics (which also incorporates QIIME) provide an 
integrated environment for analysis, management, storage, 
and sharing of metagenome projects. This requires that a con-
sensus commonly accepted annotation scheme is designed in 
order to allow for efficient data exchange, integration, sharing, 
and visualization between different platforms and to further 
reduce the need for reprocessing of metagenomic datasets,  
a task which is very expensive computationally.

The GSC is currently investing heavily toward a widely 
accepted language that shares ontologies and nomenclatures 
thereby providing a common standard for exchange of data 
derived from the analysis of metagenomic projects. Toward 
this goal, MIMS (Minimum Information about a Metag-
enome Sequence) and MIMARKS (Minimum Information 
about a MARKer Sequence)152 have been devised, providing a 
scheme of standard languages for metadata annotation.

Conclusions
Tools and databases for metagenomic data analysis are cur-
rently well on their way to becoming more and more efficient 
and elaborate (for an overview of the tools most utilized nowa-
days for metagenomic data analysis, see Table 1). Technologies 
offering increased read length, such as PacBio, or new chem-
istry, such as Irys Technology and Nanopore Sequencing, are 
beginning to offer new capabilities to the analysis pipelines 
and aid in many aspects the assembly as well as the concur-
rent annotation process. Assembly tools such as IDBA-UD 
are being developed and increasingly improved to address 
the specific problem of assembling mixtures of genomes as is 
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Table 1. Tools grouped according to their main functionality.

Shotgun metagenomics Assembly EULER41

Velvet42

SOAP43

ABySS44

MetaVelvet46 

MetaVelvet-SL45 

Meta-IDBA47

IDBA-UD48

Newbler (Roche)

MIRA37

Mapsembler171

ALLPATHS172,173

MetaORFA174,175

MetAMOS38

Binning TETRA51

S-GSOM52

PhylopythiaS54,55

TACOA56

PCAHIER57

ESOM58

ClaMS60

CARMA61

WGSQuikr176

SPHINX177

MetaPhyler62

SOrt-ITEMS63

PhymmBL70

MetaCluster71,72

Annotation FASTX-Toolkit74

FastQC67

SolexaQA78

Lucy 279

DUST82

Bowtie83

MetaGeneMark84

LEfSe19

TACOA56

Metagene85

CREST178

Prodigal86

mOTU-LG179

Orphelia87

Kraken180

FragGeneScan88

CRT89

NBC181

MyTaxa182

(Continued)

Table 1. (Continued)

RITA183

PILER-CR90

tRNAscan184

KEGG99

MetaCluster TA71

SEED100

eggNOG101

ProViDE185

COG/KOG186

PFAM103,104,187

TIGRFAM105

MetaPhlAn188

HighSSR189

Blat107

Analysis pipelines IMG/MER64,190

MG-RAST65

MEGAN 567–69

CAMERA112

Parallel-META74,191 

EBI Metagenomics108

METAREP192

PHACCS193

Marker gene  
metagenomics

Standalone 
software

QIIME111,194

Mothur121

JAguc195

M-pick196

OTUbase197

CopyRighter198

AbundantOTU199

UniFrac145,200

ESPRIT141,201

Analysis pipelines SILVA125

FunFrame202

PANGEA203

FastGroupII204

CLOTU205

Denoising AmpliconNoise122

DADA28

JATAC127

UCHIME206

Bellerophon207

CANGS208,209

Databases SILVA125

Greengenes94

Ribosomal Database  
Project (RDP)210

Unite126
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Preprocessing

Marker-gene metagenomics Shotgun metagenomics

Noise removal

OTU picking and taxonomy Gene and regulatory element prediction

Sequence reconstruction and grouping

Preprocessing

Functional annotationStatistics

Trimming low-
quality regions:

Tools: FASTQ/FASTX

De-noising: technology depended.
Tools: AmpliconNoise, QIIME

OTU clustering
and picking:
Algorithms:

UCLUST. Tools:
QIIME, SILVANGS

Statistical analysis and
visual of results:

Tools: SILVANGS, QIIME

Data management, storage and sharing
Tools: IMG/MER, CAMERA, MG-RAST

and EBI metagenomics, SILVANGS

Functional assignment to the predicted protein coding genes:
Tools: IMG/MER, MGRAST

Databases: KEGG, SEED, eggnog, COG/KOG, PFAM, and TIGRFAM, Interpro

Ribosomal RNA (rRNA),
tRNAs prediction:
Tools: tRNAscon.

Databases: SILVA,
Greengenes, RDP

Optional:
(ie, MGRAST):

Clustering Tools:
UCLUST 90%:

Optional: (ie, MG/MER):
CRISPR element

identification.
Tools: CRT and PILER-CR

Gene calling:
Tools:

FragGeneScan

Binning:
Tools: ESOM, CLAMS,

PhymmBL and metaCluster

Assembly:
Tools: IDBA-UD,

ALLPATH

Screening:
contamination

removal
Tools: Bowtie2

De-replication:
Duplicate read

removal
Tools: DUST

Trimming low-
quality regions:

Tools: FASTQ/FASTX

Taxonomic assignment of OTUs
using BLAST, RDP classifier

Databases: SILVA,
Greengenes, RDP.

Tools: QIIME, SILVANGS

Next generation
sequencing data

Figure 1. Flowchart of basic metagenomics steps and tools currently in practice. 
Notes: The analysis pipeline can take two different routes depending on the type of sequencing data (marker gene or shotgun metagenomics) available. 
The flowchart outlines the basic steps in the analysis pipeline starting with preprocessing of the data to the final extraction of results and concurrent 
storage and management of the data. Some popular tools that have been used extensively by the metagenomics community are shown for every step, as 
a well as the databases and algorithms in common practice.

eminent for metagenomic samples. Databases like GOLD,153 
associated with the IMG/MER portal, can be used as a refer-
ence in order to perform validation tests for assembly tools. 
Moreover, the use of simulated metagenomic datasets has 
been proposed in order to asses these tools.154

There has been some controversy within the metagenom-
ics community regarding the actual need for performing 
assembly on metagenomes. One contention is that using clus-
tering algorithms such as cd-hit155,156 or uclust97 is sufficient to 
group similar reads together and thereafter proceed to annota-
tion of these clusters without prior assembly. This clustering 
approach may allow for more accurate annotation of highly 
diverse samples containing rare, uncultured genomes that may 
otherwise be excluded from the assembly process due to their 
low coverage. One drawback of not performing an assembly 
may be that complex regulatory elements such as CRISPRs 
may not be identified successfully.31

Binning and annotation methods are also constantly 
being modified and altered to specifically address metage-
nomic analysis pipelines. A significant improvement of these 
processes will be achieved upon increase of the genomic 
repository of cultured as well as uncultured genomes within 
the public database repertoire. Composition-based as well 
as similarity-based binning methods, especially those 
making use of supervised machine learning algorithms 

(ie, PhylopithiaS, trained on reference genomes), will become 
increasingly accurate due to the availability of more reliable 
information.

At this stage it is important to mention that, in spite 
of the best efforts to reconstruct and prepare datasets by  
1) quality filtering, 2) performing assemblies, and 3) binning 
sequences into taxonomically informative groups, annotation 
pipelines still achieve successful annotation for only ∼50% 
of the sequences under analysis.31,157  As mentioned above, 
the annotation process is highly dependent on the available 
databases and hence limited by the amount of information 
that is present within these repositories. Sequences that do 
not have any similarity with any other sequence existing in 
a known database are termed “orphan genes”.158 These genes 
are believed to be 1) a consequence of sequencing errors and/
or reflect the inaccuracy of gene prediction tools, or 2) truly 
novel genes that have no sequence or function similarity to 
known genes and may share higher order similarity in the 
form of protein folds.31,158  A lot of work is currently being 
undertaken in order to shed some light on these unknowns/
orphans using various types of information. Some existing 
tools use pathway information from metagenomic neighbors 
and also context-depended metabolomic data to assign a 
functional annotation to unknown genes.159,160 Along these 
lines, the use of metabolomic, metatranscriptomic, and/or 
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metaproteomic data will provide a more elaborate view of 
the “picture”, addressing all aspect of the dogma of life in 
the metagenomics era. Moreover, single-cell genomics is now 
becoming increasingly popular by investigating information 
from sequencing individual cells. The synergy of single-cell 
genomics with metagenomics can allow a more accurate sepa-
ration of metagenomics sequences into individual genomes, 
guided by the single-cell sequencing data.

A wide array of software is currently available to perform 
each step of the marker gene metagenomics analysis pipeline. 
What is missing from the literature is a systematic evaluation of 
software and algorithms that have been used so far and a stan-
dardized means of comparing results derived from different 
workflows. Variation in results can occur due to inconsistencies 
in a number of factors, such as DNA extraction,161,162 primer 
pair and amplification region,163–165  sequencing platform,166 
and the software used.167 All of the aforementioned sources of 
variation make it very difficult to compare and obtain trust-
worthy results. Computational and programming challenges 
to improve the already available software can be achieved, 
but only through benchmarks, simulations,168 and thorough 
testing. Initiatives such as the GSC could potentially take 
over the design of the “Minimum Analysis Requirements of 
Metagenome Sequences (MARMS)”. This will be made up 
of standardized methodologies and consensus in the choice 
of software, analysis steps, threshold values, and parameters. 
Such an initiative would eliminate, or at least minimize, the 
biases that can be generated by analyzing data using multiple 
methodologies.

The availability of data software such as EBI Meta-
genomics, IMG/MER, MG-RAST, and SILVAngs will 
further allow users with limited computational facilities to 
perform analysis of metagenomic samples. In comparative 
metagenomic analyses, one can use tools to compare samples 
from different ecological niches and extract information that 
is common and/or unique to a specific environment.8,169,170 
Moreover, the GSC is striving toward the successful integra-
tion of analyzed data under a unified and mutually acceptable 
structure/format that will facilitate the exchange of valuable 
insights and information in the field of microbial ecology and 
environmental microbiology.

To sum up, we have created a metagenomics flowchart 
(Fig.  1) outlining all the aforementioned basic steps of the 
analysis pipeline. Analysis can take two different routes 
depending on the type of sequencing data (marker gene or 
shotgun metagenomics). Every analysis step shown in the 
flowchart is complemented by a list of some well-established 
tools used by the metagenomics community.
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