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Pericytes are multipotent perivascular cells whose involvement in vasculature development is well established. Evidences in the
literature also suggest that pericytes display immune properties and that these cells may serve as an in vivo reservoir of stem
cells, contributing to the regeneration of diverse tissues. Pericytes are also capable of tumor homing and are important cellular
components of the tumor microenvironment (TME). In this review, we highlight the contribution of pericytes to some classical
hallmarks of cancer, namely, tumor angiogenesis, growth, metastasis, and evasion of immune destruction, and discuss how
collectively these hallmarks could be tackled by therapies targeting pericytes, providing a rationale for cancer drugs aiming at
the TME.

1. Introduction

It has become increasingly evident that, not only the evolving
genetic aberrations inmalignant cells are critical in the patho-
physiology of cancer, but also the interaction among cancer
cells, nonmalignant cells, soluble factors, and other elements
of the tumormicroenvironment (TME). In addition to cancer
associated-fibroblasts, immune cells, and endothelial cells
(ECs), pericytes are also one of the main cellular components
of the TME, whose diverse functions in tumor initiation and
progression have only been recently addressed [1].

Pericytes were first described in the 19th century, at
that time named “adventitial cells” by Rouget [2]. The term
“pericyte” would only be applied in 1923, by Zimmermann
[3]. These cells are commonly located on microvessel walls,
within the basement membrane and closely opposed to the
endothelium.

Under the microscope, pericytes are typically described
as highly elongated, slender, and branched cells, with projec-
tions that extend longitudinally and circumferentially around
the vessel wall [4, 5]. Pericytes have also been characterized
by the expression of alpha-smooth muscle actin (𝛼-SMA),
desmin, CD146, platelet-derived growth factor beta receptor
(PDGFR𝛽), and nerve/glial antigen-2 (NG2) proteoglycan
[5, 6]. These markers, however, are not exclusive of pericytes

and their expression may also vary according to the type of
tissue, maturation stage, and pathological conditions [5, 7].
The use of differentmarkers or combination ofmarkers varies
in the literature and, so far, a consensus about the phenotypic
identity of pericytes has not been reached. Nonetheless this
issue needs to be considered to better understand pericyte
biology.

For instance, in a study using double transgenic Nestin-
GFP/NG2-DsRed mice, Birbrair et al. [8] identified two
pericyte subpopulations from large blood vessels and small
capillaries, named type-1 and type-2 pericytes. These cell
subpopulations expressed common pericyte markers, such as
PDGFR𝛽, CD146, and NG2, but differed in Nestin expres-
sion. These distinct pericyte subtypes were later function-
ally characterized and shown to differ in their multipotent
properties [8, 9] and angiogenic potential [10]. In vitro
and in vivo assays revealed that type-2 (Nestin-GFP+/NG2-
DsRed+), but not type-1 (Nestin-GFP−/NG2-DsRed+), peri-
cytes are recruited during tumor angiogenesis. However, little
is known about the ontogeny of these distinct subtypes and
whether they are interconvertible.

In fact, the essential contribution of pericytes to vascu-
lature development and maintenance has long been known.
They participate in the regulation of blood flow and vessel
permeability, as well as in stabilization of the vascular
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wall [11]. Pericytes also provide important mechanical and
physiological support to ECs and such interaction is essential
for vessel remodeling and maturation [12, 13]. More recently,
there have been growing evidences supporting new roles
for pericytes in immunomodulation [14] and adult stem cell
biology [15].

In the context of cancer, these distinctive pericyte prop-
erties make them importantmodifiers of disease progression,
contributing directly or indirectly to tumor growth, meta-
static spread, and resistance to therapy.

2. Tumor Angiogenesis

Tumor-driven angiogenesis was first describedmore than 100
years ago [16]. The later observation that without an efficient
blood supply tumors could not grow beyond a critical size
or metastasize stimulated an intensive search for pro- and
antiangiogenic molecules [17, 18]. Nowadays, some of the
latest therapeutic options for treatment of different cancers
rely on antiangiogenic strategies, such as bevacizumab, a
monoclonal antibody targeting vascular endothelial growth
factor (VEGF).

Angiogenesis is a multiple-step process tightly orches-
trated by many molecules that regulate both ECs and peri-
cytes activities. Pericytes are known to secrete growth factors
that stimulate EC proliferation, in addition to proteases
that contribute to modulate the surrounding extracellular
matrix and guide EC migration [13, 19–21]. The proliferative
endothelium from a preexisting structure with the basement
membrane forms an initial tube still in an immature state.
Subsequently, ECs release signals that induce pericyte recruit-
ment [22].The resulting pericyte coverage is crucial for vessel
remodeling, maturation, and stabilization.

The reciprocal communication between ECs and peri-
cytes is established by direct contact, by paracrine signaling,
or by a newly described chemomechanical signaling pathway
[23]. Some of the signaling molecules involved in this
crosstalk coordination include angiopoietin-1/2 and Tie2
(Ang/Tie2), transforming growth factor-𝛽 (TGF-𝛽), and
platelet-derived growth factor-𝛽 (PDGF𝛽/PDGFR-𝛽), which
are mainly related to EC viability, mural cell differentiation,
and pericyte recruitment, respectively [24].

Similar events occur during tumor angiogenesis. The
sprouting of ECs is followed by a pericyte migration but,
in this case, the vascular architecture does not accom-
plish complete maturation, which leads to several structural
and functional abnormalities [25, 26]. Tumor vessels are
highly disorganized, irregularly shaped, tortuous, excessively
branched, and leaky [27]. The basement membrane is dis-
continuous or absent and presents altered composition [28].
The endothelium can be incomplete or occasionally multi-
layered. ECs and perivascular cells also differ functionally
and morphologically from their normal counterparts [29,
30]. In tumor vessels, pericytes are loosely attached to the
endothelium and exhibit cellularmodifications such as differ-
ential expression of typical markers and aberrant cytoplasmic
projections that invade the tumor parenchyma [31–33].
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Figure 1: Abnormal pericyte coverage of tumor vessels affects
tumor development. PDGF-𝛽 signaling controls pericyte recruit-
ment during angiogenesis. Hyperactivation of this pathway within
TMEmay increase pericyte coverage, thereby improving vasculature
stability and perfusion, which favors tumor growth. In contrast,
low pericyte coverage compromises vessel structure integrity, which
becomes leaky, facilitating tumor cell invasion/extravasion. Under
such circumstances, tumor cells may also undergo EMT induced
by hypoxia, as a consequence of lower perfusion in the tumor
vasculature. Both situations enhance metastatic spread of tumor
cells.

Another abnormality often observed in tumor angiogene-
sis is the amount of pericyte coverage on tumor vessels, rang-
ing from high to little or no coverage at all. Clinical studies
have correlated the extension of pericyte coverage on tumor
microvessels with cancer prognosis [34–37]. Increased peri-
cyte coverage has been associated with tumors of melanoma
and renal cell carcinoma with aggressive clinicopathologi-
cal features, resistance to therapy, and unfavorable clinical
outcome of patients [38]. In contrast, pericyte dysfunction
or reduction has not been correlated with prognosis. Recent
studies reported that pericyte ablation leads to increased
vessel permeability and poor vessel integrity which, in spite
of inhibiting tumor growth, favors blood vessel invasion by
tumor cells and ensuing metastatic spread [39, 40]. These
findings illustrate themany facets of pericyte effects on tumor
angiogenesis (Figure 1).
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It is still unclear why tumor vessels are not able to
achieve proper pericyte coverage. One important mechanism
of EC-pericyte communication involves the PDGF-𝛽 signal-
ing, which is known to control pericyte migration during
tumor angiogenesis [41]. In such mechanism, activated ECs
produce PDGF-𝛽, recruiting pericytes expressing PDGF-𝛽
receptors [22, 42]. In turn, pericytes stabilize the neovessels
and contribute to ECs survival by locally releasing trophic
factors, such as VEGF and Ang-1 [43, 44]. Blockage of
pericyte recruitment by PDGF-𝛽 pathway inhibition leads to
EC loss and subsequent regression of tumor vessels [30, 45].
Overexpression of PDGF-𝛽, on the other hand, increases
pericyte coverage, improves vessel stability, and accelerates
tumor growth rates [46, 47]. Due to its relevance, therapies
targeting pericyte recruitment have been considered. Other
mechanisms governing pericytemigration have been covered
in a recent review [48].

Pericytes have been shown to be capable of providing
a scaffold of preexisting blood vessels for rapid revascular-
ization of tumors after interruption of therapies that elim-
inates only ECs [49]. It seems that the remaining pericytes
participate in a strategy developed by tumors to evade
antiangiogenic therapies. Consequently, the combination of
anti-VEGF and anti-PDGF therapies has been proposed and
was shown to induce tumor vessel regression [50, 51]. More
recently, treatment with anti-OLFML3 (olfactomedin-like 3)
was reported to be significantly effective in reducing tumor
vascularization, pericyte coverage on tumor vessels, and
tumor growth [52].

Therefore, in addition to their role in tumor angiogenesis,
the involvement of pericytes in vessel cooption, an impor-
tant alternative pathway by which tumors obtain blood sup-
ply through the use of preexistent vessels, supports the devel-
opment of novel antiangiogenic strategies targeting, not
only ECs as usual, but also pericytes. The proposal that
interaction of pericytes with tumor cells may determine the
perivascular location of tumor propagating cells [53] provides
further arguments to the relevance of pericytes in tumor
development, although details of this phenomenon remain to
be determined.

3. Metastasis

Dissemination of cancer cells to distant organs requires their
survival through a challenging route beginning in the pri-
mary tumor site. Invasion into surrounding vessels or tissues,
survival in a hostile environment (e.g., blood circulation),
and ability to seed and recapitulate tumor growth in a new
site are the main limiting steps in this process. All stages can
be highly influenced by nonmalignant cells within the tumor
microenvironment, including pericytes.

Although the initial studies of pericytes and tumor devel-
opment were mostly focused on angiogenesis, showing that
blockage of pericyte recruitment or function leads to reduced
tumor growthdue to compromised vessel structure andblood
supply [26], later studies surprisingly revealed that loss of
pericyte coverage facilitates tumor cell spreading.

One of the first evidences showing that pericytes may be
negative regulators of metastasis was provide by Xian et al.
(2006), using mice deficient in neural cell adhesion molecule
(NCAM). In this landmark paper, they provide compelling
evidence that destabilization of tumor vasculature due to
detachment of pericytes and dysfunctional interaction with
ECs leads to enhanced metastatic potential [54]. A previous
study had already observed an enhanced metastatic fre-
quency in knockout animals exhibiting compromised blood
vessel structure [55]. Further clinical studies with colorectal
and breast cancer patients corroborated this finding [35,
40]. Low pericyte coverage showed a significant correlation
with distant metastasis and poorer survival. Similarly, in a
xenograftmodel of prostate cancer, increased tumor cell inva-
sion was associated with lower pericyte density on microves-
sels [56].

However, the underlying cellular and molecular mech-
anisms whereby pericytes may limit tumor metastasis have
not been entirely elucidated. Pericytes may act as a physical
barrier that makes the extravasation of tumor cells into the
vessel lumen difficult and/ormay actively promotemetastasis
by releasing factors that affect tumor invasion.

Alternatively, a recent proposal defends the idea that
pericytes may be indirectly involved in tumor cell escape.
They hypothesize that pericyte depletion originates leaky
vessels which increases intratumoral/interstitial plasma vol-
ume and elevates local pressure. The higher fluid pressure
favors compression of remaining tumor vessels, decreasing
the blood flow and reinforcing hypoxia, which may trig-
ger tumor metastasis through a hypoxia-induced epithelial-
mesenchymal transition (EMT) mechanism [40]. In fact,
recovery of tumor vascular integrity by improving ECs
junctions and increasing pericyte coverage was effective in
reducing leakage and enhancing perfusion. In melanoma
models, normalization of tumor vessels was able to attenuate
hypoxia and decrease EMT of tumor cells, resulting in
inhibition of lung and lymph node metastasis [57].

Pericytes have also been suggested to contribute to the
metastatic process by affecting the colonization and growth
of tumor cells at distant sites [9]. The contact of tumor cells
with microvessel walls in a pericyte-like position seems to be
determinant in the successful extravasation and proliferation
of melanoma and lung carcinoma cells in the brain [58].
Studies with two murine models of lung metastasis showed
that the administration of sunitinib, a clinically approved
antiangiogenic drug, led to pericyte depletion in the seeding
location [59]. Interestingly, tumor cells were preferentially
retained in the lung vasculature area displaying lower pericyte
coverage. The suggested hypothesis is that pericytes may
limit seeding at the target site, controlling and regulating the
metastatic niche.

Moreover, endothelial-derived factors have been reported
to influence breast cancer cell growth at sprouting vessels
in metastatic sites [60]. Taken together, these findings sup-
port the emerging idea that microvascular cells, including
pericytes, may affect metastasis establishment and tumor cell
growth at secondary sites.
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4. Stemness

The multipotent differentiation capacity of pericytes has
long been proposed. In 1978, Meyrick and Reid had already
demonstrated that pericytes were plastic cells, capable of
developing into vascular smoothmuscle cells (vSMCs) under
hypoxic stress [61]. Differentiation into other nonvascular
cells, primarily bone cells, was later described [62]. Sub-
sequently, several studies described that pericytes obtained
from a variety of tissues could differentiate into adipocytes,
chondrocytes, and skeletal myofibers [63, 64]. Furthermore,
pericytes derived from brain capillaries were also reported to
be capable of converting into neural cell lineages [65]. These
and several other evidences support the hypothesis of the
perivascular zone as the in vivo niche of mesenchymal stem
cells (MSCs) and pericytes being the MSC precursors [66].

Indeed, besides multipotency, pericytes and MSCs share
other similarities, including expression of common cellular
markers. While pericytes express surface antigens typical of
MSCs, such as CD44, CD73, CD90, and CD105, MSCs also
express pericytes markers, including NG2, Sca-1, 𝛼-SMA,
and PDGF𝛽-R [15], suggesting a shared ontogeny. Both cell
types also present similar homing properties. Pericytes and
MSCs can proliferate and migrate in response to chemotaxis
and damage signals, such as those occurring during wound
healing and tumor development.

Some recent findings, however, indicate that not all
pericytes display stem cell potential, such as the highly
differentiated pericytes found in some large and small vessels
[67, 68]. Other studies also suggest that pericytes may be a
subpopulation of specialized MSC residing in perivascular
locations, given that the pericytic behavior is not an intrinsic
ability of all MSCs [68].

There are also growing evidences of pericytes with stem-
ness potential in several central nervous system pathologies.
Compared with other tissues, the pericyte number and
coverage in brain capillaries are relatively higher, and they
are crucial to the integrity and function of the blood-brain
barrier. Pericytes have been considered as an alternative
stem/progenitor cell reservoir within the brain, since they
were shown to migrate, proliferate, and even differentiate in
neural cells, in response to tissue injury, stress, and inflamma-
tion [65, 69, 70].

In brain cancer, the perivascular niche is critical to the
maintenance of a stem cell-like state in tumor cells. Interac-
tion of perivascular cells with cancer stem cells (CSC) was
shown to regulate self-renewal and differentiation of the latter
cells, which are strongly related to tumor aggressiveness [71].
Notably, in Glioblastoma, the most frequent and aggressive
type of primary brain tumor, a contact-dependent interaction
with tumor cells, switches on the tumor-promoter character
of pericytes, inducing their participation in tumor initiation
and progression [53].

Another surprising connection between pericytes and
brain CSC was revealed by Cheng et al. (2013) [72]. The
authors demonstrated that most pericytes residing in the
perivascular niche of Glioblastoma are generated by CSC.
Through a close interaction with vascular components, Glio-
blastoma stemcells are also able to diferentiate into functional
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Tumor angiogenesis/
Immunosuppression
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Figure 2: Interplay between pericytes and cancer stem cells. In
brain cancer, the perivascular niche is critical to the maintenance
of CSC pool. Perivascular cells promote self-renewal and impair
differentiation of CSC. In turn, new pericytes may be generated
by CSC, contributing to tumor angiogenesis and tumor scape from
immune destruction. This reciprocal interaction between pericytes
and CSC is highly beneficial to tumor development.

endothelial cells [73]. These findings reveal an interesting
reciprocal interaction between pericytes and CSC, favoring
tumor development (Figure 2).

Based on the MSC properties of pericytes, Appaix et al.
[74] also proposed that neoplastic pericytes in brain capillar-
ies could be activated and recruited in response to inflam-
mation signals, similar to what occurs during tissue regen-
eration. These neoplastic pericytes would then acquire a
neural stem cell-like phenotype in the brain parenchyma and
generate a pool of CSC, fueling tumor development. Newper-
icytes generated from CSC could either contribute to tumor
vascularization or restart the cycle.Due to theirmultipotency,
pericytes could also generate other stromal cells constituting
the TME. In fact, pericytes have been shown to differentiate
into collagen-producing fibroblasts [75] and myofibroblasts
[76], twomajor components of the heterogeneous population
of cancer-associated fibroblasts. Although plausible, further
experimental evidences are needed to support this model of
neoplastic pericytes as tumor initiating cells.

In addition to inflammation signals, hypoxia is another
important extrinsic factor within the TME that may recruit
pericytes. Interestingly, brain-derived pericytes have been
recently reported to generate neurovascular cells and acti-
vated microglial cells under hypoxic conditions [77, 78]. In
gliomas, the most frequent group of primary central nervous
system tumors, microglial cells are known to be recruited to
the TME and activated to support tumor growth [79, 80].
Altogether, these evidences support an important role of
pericytes as precursor cells for other stromal cells within the
TME.

5. Immunomodulation

Tumor cells can evade the immune system through different
mechanisms, some of which involving multiple cellular
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components and immunosuppressive factors (e.g., TGF-
𝛽, prostaglandin E2, and interleukin-10) from the TME.
Although the contribution of pericytes in this process is still
elusive, recent data support pericytes as potential targets in
cancer immunotherapy approaches.

Similar to MSCs, pericytes produce cytokines, chemok-
ines, growth factors, and adhesion molecules that regulate
immune cells under certain conditions. Several genes encod-
ing immune factors in pericytes have been reported to be
upregulated by activation of the PDGF-𝛽 signaling pathway
[81], whose involvement in pericyte migration during angio-
genesis was described above. In fact, pericytes have been con-
sidered an important component of the immunologic defense
mechanism in the mammalian central nervous system [82,
83], where they were reported to express typical macrophage
markers, such as ED-2, CD11b, CD68, and MHC class II,
and exhibit immune cell properties, such as phagocytic and
antigen-presentation activities [14, 84].

Brain pericytes, in particular, are highly sensitive to
inflammatory stimuli and may differentially respond accord-
ing to the cytokine involved. Studies with porcine brain
capillary pericytes reported a rapid upregulation of iNOS and
COX-2 mainly after stimulation with interleukin-1 beta (IL-
1𝛽). Upregulation of iNOS was accompanied by increments
in the intracellular oxidative status of pericytes. The same
study also reported induction of phagocytosis of opsonized
particles and MHC II expression in pericytes by tumor
necrosis factor-alpha (TNF-𝛼) or interferon-gamma (IFN-𝛾)
treatment, characteristic of an antigen-presentation activity
[84].

Interaction between pericytes and immune cells also
occurs during tissue repair, when pericytes may actively
participate in leukocyte recruitment and diapedesis. Using an
experimental model of brain inflammation, Pieper et al. [85]
demonstrated that treatment with TNF-𝛼, IL-1𝛽, or LPS stim-
ulates secretion of IL-8 andmatrixmetalloprotease-9 by brain
pericytes, facilitating chemoattraction and transmigration of
neutrophils.

However, in the cancer context, there are evidences
that maturation of pericytes and restoration of the normal
tumor vasculature improve transmigration of immune cells
into tumors. A study with the RIP1-Tag5 mouse model
of pancreatic islet carcinogenesis showed that deletion of
the Rgs5 gene, encoding a regulator of G-protein signaling
with expression restricted to pericytes in the vascular tissue,
induced changes in the vasculature and enhanced infiltration
of CD8+ T lymphocytes in tumors. As a consequence, the
immune-mediated tumor rejection was exacerbated, result-
ing in improved survival of tumor-bearing mice [86].

In agreement with these observations, Bose et al. [87]
reported upregulation of Rgs5 in murine pericytes when
these cells were cocultured with fragmented tumor cells
or were directly injected into established tumors in vivo.
Moreover, tumor-derived pericyteswere able to induceCD4+
T cell anergy and this effect was rescued after Rgs5 silencing.
Interestingly, in addition to Rgs5, upregulation of PDL-1
was also observed in pericytes cultivated in the presence of
tumor fragments. Since PDL-1 expression in cancer cells is
known to inhibit the activity of PD-1+/CD8+ T cells [88], the

combined effects of RGS5 and PDL-1 expression in pericytes
may improve protection of tumor cells from T cell-mediated
death. Indeed, pericytes isolated from human malignant
gliomas, characterized by coexpression of CD90, PDGFR-𝛽,
and CD248, were also suggested to have immunosuppressive
properties within the TME, based on their capacity to inhibit
proliferation of cytotoxic T lymphocytes [89].

These findings point out important direct and indirect
effects of pericytes in the immune response against tumor
cells, whose underlying mechanisms remain to be fully
dissected.

6. Conclusions

An overall analysis of the functional properties of pericytes
reveals that these are multifaceted cells with ability to sig-
nificantly influence tumor development. As a component
of the TME, pericytes may actively contribute to some
classic cancer hallmarks, namely, induction of angiogenesis,
sustained tumor growth, metastasis, and evasion of immune
destruction.

Disruption of the delicate balance of pericyte coverage
on tumor vessels seems critical since it may either induce
tumor growth or facilitate metastatic spread. The interplay
between pericytes and CSC is also compatible with the
updated dynamic CSC model. Pericyte-mediated regulation
of stemness properties in cancer cells could help maintain
a residual CSC pool, whose cell progenies include both
tumor and stromal cells. The immunosuppressive phenotype
acquired by pericytes once in the TME is also of great
relevance since they may act in synergy with tumor cells
to inhibit local immune response. This scenario is highly
favorable to current cancer immunotherapy strategies, such
as the use of monoclonal antibodies targeting the PD-1/PDL-
1 signaling.

Altogether, this analysis argues in favor of pericytes as
cellular targets for new cancer therapies aiming at the TME.
Modern cancer treatments largely rely on such strategy, with
antiangiogenic and immunosuppressive drugs as the main
examples. Development of new drugs addressing pericytes
would have the advantage of targeting multiple cancer hall-
marks at once, increasing the chances of treatment efficacy.
However, given the prometastatic effects of pericyte depletion
on tumor vessels, development of such therapeutic strategy is
not straightforward and should be more beneficial to early-
stage diseases or to tumors with low metastatic potential.
As phenotypic and functional characterization of pericytes
progresses, particular subtypes of pericytes may also emerge
as clearer targets for therapeutic purposes, such as the case of
type-2 pericyteswhich are specifically recruited during tumor
angiogenesis. Ultimately, pericyte-targeted therapies should
be tested in combination with other treatment modalities
to address possible synergistic effects aiming at meaningful
tumor regression without favoring metastatic spread.

Conflict of Interests

The authors declare that they have no conflict of interests.



6 Stem Cells International

Acknowledgments

This work was supported by grants from FAPESP-CEPID,
CNPq, and INCT-CETGEN. Aline Lopes Ribeiro was recipi-
ent of a CAPES fellowship.

References
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