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Abstract

Cells must be capable of switching between growth and autophagy in unpredictable nutrient
environments. Yeast cells lacking the conserved ImI1/Npr2/Npr3 complex (also called SEACIT),
a negative regulator of TORC1, can bypass autophagy and proliferate during specific nutrient
limitations. We determined that Npr2-deficient cells exhibit a metabolic state that is very distinct
from WT cells under such limitations that demand oxidative metabolism. Instead of accumulating
glutamine, npr2A cells consumed substantial amounts of glutamine to satisfy their demands for
nitrogen, and maintained high S-adenosyl methionine (SAM) concentrations to fuel growth.
Moreover, in normal cells, methionine addition stimulated glutamine consumption for synthesis of
nitrogenous metabolites, showing how a sulfur amino acid cue is integrated with nitrogen
utilization. These data reveal the metabolic basis by which the ImI1/Npr2/Npr3 complex regulates
cellular homeostasis and demonstrate a key function for TORCL1 in regulating the synthesis and
utilization of glutamine as a nitrogen source.

Introduction

In normal cells, metabolism is closely regulated in tune with nutrient availability, providing
anabolic substrates and energy for growth during nutrient sufficiency, while nutrient salvage
processes such as autophagy are activated during starvations (1, 2). Imbalanced metabolic
regulation can result in unchecked cell growth, as is often seen in cancer cells (3-5). In
eukaryotes, the TORC1 pathway is a central nutrient-sensitive regulator of cell growth,
responding particularly to amino acids (6-10). TORCL1 activity is regulated in part by the
conserved RAG family of GTPases (11-13), called Gtrl/2 in yeast (13), which are closely
associated with the lysosome/vacuole as part of larger amino acid-sensing systems (11, 13).

Within this paradigm, a conserved protein complex consisting of Iml1, Npr2, and Npr3
(termed Npr2 complex) appears to be at the hub of amino acid sensing and cell growth
regulation. Npr2 and Npr3 were first identified in S. cerevisiae as inhibitors of TORC1
activity, responding to nitrogen and amino acid signals (14-16). Along with Iml1, these
proteins form a larger, vacuole-associated SEA complex (17, 18). Recent studies from yeast
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and mammalian cells suggest that the Npr2 complex (also called SEACIT in yeast, and
GATOR in mammals) inhibits TORC1 activity by negatively regulating the Gtr1/2 or
RagA/B GTPases (19, 20). We previously observed that yeast cells induce autophagy when
switched from rich to minimal medium containing lactate as the sole carbon source, in a
manner dependent on the Npr2 complex (18). Interestingly, cells lacking any member of this
complex escaped autophagy and instead continued to proliferate at a faster rate (18, 21).
This phenotype is consistent with the proposal that Nprl2, the mammalian ortholog of yeast
Npr2, is a potential tumor suppressor gene in cancers (22-24). Yet, precisely how the Npr2
complex regulates cellular metabolism and growth is unclear.

Herein, we define metabolic differences in Npr2-deficient yeast cells that allow them to
continue proliferating under conditions where normal cells induce autophagy. Our results
reveal the consequences of loss of a negative regulator of TORC1 under such a challenging
nutrient environment and explain how the Npr2-complex regulates the TORC1 pathway to
alter metabolic homeostasis.

WT and npr2A cells growing in minimal lactate medium have contrasting metabolic states

When yeast cells growing in rich medium containing lactate as the sole carbon source (YPL)
are switched to minimal, amino acid-free medium containing lactate (SL) at the same cell
density, autophagy is induced (Fig. 1A) (18, 21). In contrast, npr2A cells bypassed
autophagy under identical conditions (Fig. 1A), and proliferated at a faster rate than WT
cells in SL medium (Fig. 1B), although this difference in proliferation was not observed in
YPL (21). Such unchecked proliferation was not due to the accumulation of suppressor
mutations (Fig. 1B). To compare the metabolic states of WT and npr2A cells under these
conditions, which demand oxidative metabolism, we prepared extracts from cells switched
to SL medium and measured relative metabolite amounts using targeted LC-MS/MS
methods that simultaneously detect metabolites covering major metabolic pathways (Fig.
1C, Table 1). Both the direction and magnitude of changes of several metabolites were
distinct in WT and npr2A cells (Fig. 1C), with several clusters of metabolites being anti-
correlated (Fig. 1C, Table 1).

npr2A cells increase nitrogen assimilation and utilization for metabolite biosynthesis

We investigated whether specific metabolites explained the absence of autophagy and
increased proliferation of npr2A cells. Since the amino acids leucine and isoleucine
reportedly activate growth (13, 25), we asked if their abundance correlated with the
increased growth of npr2A cells. Instead, we found that leucine amounts were lower in
npr2A cells (Fig. S1, Table 1), which suggests alternate growth-inducing metabolic signals.
However, we observed that glutamine increased in WT cells by >50-fold in ~5 h in SL
medium (Fig. 2A), but remained low in npr2A cells. This suggested that npr2A cells either
rapidly consumed glutamine, or synthesized glutamine at reduced rates in these conditions
where ammonium was the sole nitrogen source.
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Glutamine is a critical nitrogen donor for nucleotide (26), glutathione (27), and NAD™*
biosynthesis (28) (Fig. 2B), all of which may promote proliferation (29). In addition to
satisfying cellular requirements for nitrogen, through anapleurosis glutamine can also be
converted back to a-ketoglutarate to replenish TCA cycle intermediates or for oxidative
ATP synthesis (29) (Figure 2B). In yeast cells, this can occur during growth in non-preferred
carbon sources (30). It is therefore essential to determine the relative importance of these
outcomes of glutamine metabolism in npr2A cells. We noted that a-ketoglutarate amounts in
npr2A cells were higher than WT cells initially, but decreased after 4.5 h (Fig. S1). In yeast
cells growing in poor carbon sources (such as lactate), the Gdh2 isoform favors glutamate to
a-ketoglutarate conversion, enabling glutamine and glutamate to serve as anaplerotic
substrates to feed the TCA cycle (30). npr2A cells lacking Gdh2 (gdh2A/npr2A) grew as
well as npr2A cells (Fig. S1). These data suggested that npr2A cells did not require
glutamine-dependent anaplerosis for growth in SL medium. In contrast, continuing
glutamine consumption for nitrogen would predict increased glutamine-derived metabolites,
such as glutathione, NAD* and nucleotides (Fig. 2B). Indeed, we observed that these
metabolites were substantially higher in npr2A cells (Fig. 2C, Table 1). Furthermore, while
nucleoside amounts decreased in npr2A cells compared to WT cells in SL medium,
nucleotides increased substantially (Fig. 2C, Table 1), consistent with npr2A cells
consuming nucleosides to sustain high nucleotide synthesis required for proliferation.

Although correlative, these trends do not directly demonstrate whether npr2A cells increase
ammonium assimilation to glutamine, and if npr2A cells consume more glutamine to make
these nitrogenous metabolites. To address this, we utilized metabolic flux analysis with 1°N-
labeled nitrogen sources, enabling measurements of newly synthesized 1°N-labeled
metabolites. To measure ammonium incorporation into glutamine-derived metabolites, we
switched WT and npr2A cells from YPL to SL medium containing 1°N-ammonium sulfate
as the only nitrogen source, and measured relative amounts of 1°N-labeled glutathione,
NAD* and nucleotides (IMP, AMP and GMP) (Fig. 2D, Fig. S2). The increases in molecular
mass, and product and fragment ion m/z values detected from the 15N-labeled forms of these
metabolites are illustrated in Fig. S2. We observed that relative amounts of these 15N-
labeled metabolites increased >1,000 fold in npr2A cells compared to WT cells (Fig. 2D),
which exhibited very little new synthesis of glutathione, NAD* and nucleotides. We
simultaneously measured unlabeled (24N) metabolites, enabling estimates of newly
synthesized vs existing (*°N-labeled vs 14N-labeled) pools (Fig. 2E). In contrast to WT
cells, significant fractions of the total pool of these metabolites in npr2A cells were 1°N-
labeled (Fig. 2E). We therefore conclude that in SL medium, npr2A cells increase
ammonium assimilation to synthesize nitrogenous metabolites important for growth.

These data would predict that npr2A cells would require nucleotide synthesis for
proliferation. Although most nucleotide biosynthesis enzymes are essential, precluding the
use of gene knock-outs to determine specific roles in growth, yeast have two complementing
isoforms of a de novo purine biosynthesis enzyme, Adel16 and Adel7 (31). Since deletions
of either isoform individually does not affect WT cell growth (31), we compared the growth
of adel16A and adel7A cells in a WT or npr2A background. npr2A/ade16A (but not npr24/
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adel7A) cells showed substantially reduced proliferation (Fig. S1), suggesting that
nucleotide biosynthesis was critical for sustaining proliferation of npr2A cells.

Increased glutamine utilization as a nitrogen source in npr2A mutants

To determine if npr2A maintained high glutamine consumption for synthesis of nitrogenous
metabolites, we switched WT or npr2A cells from YPL to SL medium (with ~40 mM
ammonium sulfate) and supplemented them with 1 mM 15N glutamine. We then measured
amounts of 1°N labeled metabolites, targeting our analysis to those species of these
metabolites where the nitrogen is directly donated by glutamine, and excluding nitrogens
indirectly derived from glutamine (Fig. S2, Fig. 3A). The amounts of 1°N containing species
for these metabolites dramatically increased in npr2A cells relative to WT cells (Fig. 3A),
similar to what we had observed with labeled ammonium sulfate as the sole nitrogen source
(Fig. 2D).

We next asked if npr2A cell proliferation in SL medium was dependent on glutamine
consumption. The glutamate dehydrogenase enzyme isoforms Gdhl and Gdh3 prefer
converting a-ketoglutarate to glutamate, which is then converted to glutamine (Fig. 2B) (32,
33). Deletion of GDH1 in npr2A cells almost completely blocked proliferation (Figure 3B).
In contrast, in WT cells, deletion of GDH1 had a minor effect on proliferation over a similar
amount of time in SL medium (~12 h) (Fig. S3). The Gdh3 isoform had a smaller role in
supporting npr2A proliferation (Fig. S3). We also observed that 0.5 mM glutamine, and not
cell-permeable a-ketoglutarate, rescued proliferation of npr2A/gdhlA cells, allowing
proliferation until the glutamine in the medium was depleted (Fig. 3B). Finally, GIt1 (which
reconverts glutamine to glutamate) played a smaller role in npr2A proliferation (Fig. 3C).
Collectively, our data show that npr2A cells are metabolically adapted to consume glutamine
to synthesize nitrogenous metabolites for proliferation. Moreover, providing WT cells in SL
medium with excess glutamine did not increase proliferation (Fig. S3), strongly suggesting
that the ability to consume glutamine, and not glutamine availability itself, controlled cell
growth under these conditions.

These data could therefore predict altered regulation of glutamine biosynthesis enzymes in
npr2A cells. Yeast cells adapt extensively to nitrogen availability. In preferred nitrogen
sources such as glutamine, they repress the utilization of non-preferred sources through
nitrogen catabolite repression (NCR) (26, 32, 34), whereas in poor nitrogen sources, they
attempt to restore glutamine amounts (26, 32, 34, 35). We observed that Gdhl and GInl
enzyme amounts in WT cells decreased slowly in SL medium as cells accumulated
glutamine (Fig. 3D). In contrast, Gdhl and GInl increased substantially in npr2A cells (Fig.
3D). Finally, we examined the regulation of the transcription factor GIn3 which is activated
during nitrogen starvation (10, 34, 36). The responses of GIn3 to nitrogen sources are
complex (36, 37), but in general GIn3 is hyperphosphorylated and inactive in preferred
nitrogen sources, and this regulation is only in part TORC1-dependent (10, 26, 34, 36-40).
We tested if GIn3 activity was distinct between WT and npr2A cells. In rich medium (YPL),
GIn3 phosphorylation (as measured by a gel mobility shift assay) in WT and npr2A cells
was high, and decreased upon TORCL inhibition with rapamycin (used only as a positive
control) (Fig. 3E). However, in SL medium, WT cells showed an immediate decrease in
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GIn3 phosphorylation, which then became hyperphosphorylated as glutamine concentrations
increased (Fig. 3E). In contrast, in npr2A cells, GIn3 remained phosphorylated in SL
medium (Fig. 3E). Collectively, our data suggest that in SL medium, npr2A cells bypass
normal nitrogen-sensing mechanisms and no longer recognize poor nitrogen sources, but
instead grow as if present in preferred nitrogen sources, with abnormal increases in the
protein amounts of glutamine biosynthesis enzymes.

Methionine promotes glutamine consumption for nitrogenous metabolite biosynthesis

We previously observed that in SL medium, WT cells were limited in their ability to
synthesize sufficient sulfur-containing amino acid (SAA) metabolites (21). The sole addition
of either methionine or its downstream metabolite SAM could inhibit autophagy and
promote growth, suggesting that these sulfur metabolites were limiting for growth (21). We
therefore wondered if in addition to glutamine, SAM amounts in npr2A cells also differed
from WT cells. Indeed, we observed that npr2A cells in SL medium accumulated higher
SAM and cysteine amounts compared to WT cells following switch to SL medium (Fig. 4A,
Table 1). Furthermore, the addition of methionine alone dramatically increased WT cell
proliferation (Fig. 4B), suggesting the possibility that methionine might promote glutamine
consumption for nitrogen.

To test this hypothesis, WT cells were switched from YPL to SL medium with or without
methionine, containing 1°N labeled ammonium sulfate as the sole nitrogen source, and
amounts of 1°N labeled glutathione, NAD™ and nucleotides were measured (Fig. 4C, Fig.
S2). We observed that relative amounts of these metabolites substantially increased in cells
growing in SL + methionine (Fig. 4C). Furthermore, a sizable fraction of the total pool of
these metabolites were newly synthesized (1°N labeled) only in the methionine
supplemented cells (Fig. 4D). Similarly, we switched WT cells to SL or SL+met medium
supplemented with 15N glutamine and measured 1°N labeled glutathione, NAD* and
nucleotides, targeting our analysis to those species where the nitrogen is directly donated by
glutamine (Fig. S4, Fig. S2). The relative amounts of 1°N containing species for these
metabolites dramatically increased in WT cells growing with methionine supplemented (Fig.
S4). Thus, the presence of methionine alone in SL medium mimicked the growth and
metabolic phenotypes of npr2A cells.

We then compared the ability of methionine and glutamine to inhibit autophagy in WT
versus npr2A cells under several autophagy-inducing paradigms. In WT cells, autophagy
was induced in SL medium as well as in SL medium devoid of nitrogen (SL-N), as indicated
by the accumulation of free GFP cleaved from IDH1-GFP (Fig. 4E). Such SL-induced
autophagy was inhibited in WT cells by adding methionine but not glutamine (Fig. 4E).
However, autophagy in SL-N medium was not inhibited by either glutamine or methionine
alone (Figure 4E). In contrast, in npr2A cells autophagy occurred only in SL-N medium,
which was rescued by adding glutamine alone (Fig. 4E). Moreover, we had shown that
methionine inhibits autophagy in SL medium through its ability to promote the Ppm1-
catalyzed methylation of PP2A (21) (Fig. 4D). Accordingly, upon testing the importance of
Ppm1 for proliferation in SL medium, we found that ppm1A cells could not proliferate,
while npr2A/ppm1A cells proliferated faster than WT cells, albeit slower than npr2A cells
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(Fig. 4F). This suggests that the methylation of PP2A contributes significantly to the
increased growth observed in npr2A mutants, which have higher SAM amounts. We
conclude that the rewiring of metabolism in npr2A cells promotes growth under these
conditions through synergistic effects of increased SAM, increased PP2A methylation, and
increased utilization of glutamine as a nitrogen donor.

Changes in metabolism in npr2A cells depend on TORC1

Since the Npr2 complex negatively regulates TORC1 (14, 19, 20), we asked if the metabolic
differences in npr2A cells were mediated by TORC1. To address this, we transferred WT
and npr2A cells growing in YPL medium to SL medium containing sub-lethal
concentrations of the TORC1 inhibitor rapamycin, and compared metabolite profiles (Fig.
5A, Table 2). Upon rapamycin treatment, the direction and fold changes for most
metabolites measured from WT and npr2A cells were largely indistinguishable across the
time course (Fig. 5A). We also compared amounts of glutamine and SAM in WT cells
switched to SL medium with npr2A cells switched to SL medium + rapamycin (Fig. 5B). In
the presence of rapamycin, glutamine amounts now steadily increased in npr2A cells, in a
manner similar to WT cells (Fig. 5B). Furthermore, SAM amounts in npr2A cells remained
similar to or lower than that of WT cells (Fig. 5B). These data suggest that most metabolic
differences caused by absence of Npr2 were TORC1-dependent.

Constitutively active Gtrl mimics the growth and metabolic phenotypes of npr2A

Since the Npr2 complex inhibits the Rag GTPase Gtrl (19), and the GTP-bound form of
Gtrl activates TORC1 (13), we wondered how much of the metabolic and proliferative
changes in npr2A were Gtrl-dependent (Fig. 6A). We compared the proliferation of npr2A
cells with those overexpressing constitutively active Gtrl (Gtr1-Q65L), wherein TORC1
remains activated (13, 41), in SL medium (Fig. 6A). The Gtr1-Q65L overexpressing, npr2A
and npr2A/Gtr1-Q65L cells all had similar rates of proliferation (Fig. 6A).

We compared glutamine-derived metabolites between Gtr1-Q65L and WT cells and found
that glutamine was low in Gtr1-Q65L cells (Fig. 6B), while NAD™ and glutathione increased
(Fig. 6C). These metabolite profiles closely resembled npr2A cells (Fig. 2). Gtr1-Q65L cells
also recovered faster from SAM starvation compared to WT cells (Fig. S5, Fig. 4), although
not as effectively as npr2A cells. Consistent with these results, in Gtr1-Q65L cells, there was
no evidence of autophagy as assayed by cleavage of IDH1-GFP (Fig. S5), suggesting that
these cells bypassed autophagy in SL medium just like npr2A cells. Taken together, we
conclude that the metabolic and proliferative changes in npr2A cells under these conditions
are Gtrl-activation dependent.

Sch9 controls proliferation in npr2A cells

TORCL increases translation and growth by activating the ribosomal S6K (8), which in
yeast is Sch9 kinase (42). We compared the proliferation rates of WT, npr24, sch9A, and
npr2A/sch9A cells (Fig. 7A) and noted that npr2A/sch9A cells were unable to proliferate in
SL medium (Fig. 7A), indicating that Sch9 was essential for the proliferation of npr2A cells.
Additionally, sch9A cells proliferated slower than WT cells, suggesting that basal TORC1
activity was required in WT cells in SL medium.
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Since TORC1-dependent phosphorylation is critical for Sch9 activity (42), we tested if Sch9
phosphorylation differed between WT and npr2A cells in SL medium. Because Sch9 has an
apparent SDS-PAGE gel mobility of >100 kDa, a chemical cleavage assay yielding a ~35
kDa carboxy terminal fragment containing the major Sch9 phosphorylation sites is the
standard assay used to measure Sch9 phosphorylation (42). The phosphorylated form of this
fragment indicates TORCL activity and exhibits decreased SDS-PAGE mobility (42). Using
this assay, we noted decreased Sch9 mobility in both WT and npr2A cells in rich medium,
which was reversed upon the addition of rapamycin (Figure 7B), as has been observed
previously (19). In SL medium however, we observed increased Sch9 Western blot signal
intensity over time only in npr2A and not WT cells (Fig. 7B). Additionally, the decreased
mobility of Sch9 in npr2A cells grown in SL medium was less than in rich media (Fig. 7B).

This increased Sch9 blot intensity in npr2A cells with a modest mobility shift in SL medium
was puzzling. Since Sch9 transcripts remained constant in WT and npr2A cells (Fig. 7C),
and blots were normalized for total protein (Fig. 7B), this increased signal was unlikely due
to increased Sch9 protein. However, since Sch9 is epitope tagged (3X HA) at the C-
terminus, we wondered if the HA antibody preferred recognition of the phosphorylated form
of Sch9-3XHA. If so, the signal detected for the phosphorylated form of Sch9 would be
greater than the dephosphorylated version, for the same amount of protein. Indeed, when
Sch9-3xHA tagged cells were lysed in the absence of protein phosphatase inhibitors, anti-
HA blots showed decreased signal intensity (Fig. 7D). Additionally, when
immunoprecipitated Sch9-3xHA was treated with A-phosphatase, the Western blot signal
intensity was substantially reduced (Fig. 7D). This effect was likely more pronounced when
detecting only the C-terminal fragment of Sch9 (Fig. 7B). We conclude that the increased
Sch9 signal observed in npr2A cells compared to WT cells in SL medium (Fig. 7B) is indeed
due to increased Sch9 phosphorylation and thus TORC1 activity. These data caution that the
apparent levels of Sch9 phosphorylation must be interpreted carefully especially under non-
fermentable carbon sources.

Discussion

As a key regulator of metabolism, the TORCL1 pathway balances cell growth with survival
(43), yet TORC1-regulated metabolic transformations driving cell proliferation are not well
understood. Herein, we have defined a metabolic and mechanistic basis of how the Npr2
complex, through TORC1, regulates cell growth in a challenging non-fermentable carbon
source (lactate). The loss of Npr2 results in a “hyperproliferative” metabolic state (Fig. 1),
switching from glutamine accumulation to consumption, thereby supplying cells with
nitrogenous metabolites required for proliferation (Fig. 2, 3). Concomitantly, these cells
have increased SAM (Fig. 4), which can drive cell growth and proliferation through the
action of Ppm1/methylated PP2A (21), and increased tRNA thiolation (44). Our data are
consistent with a model wherein the loss of Npr2 disrupts the Npr2 complex, relieving Gtrl
inhibition and activating TORCL (Fig. 7E). This TORC1 activation alters both nitrogen and
sulfur metabolism to provide building-blocks for proliferation (Fig. 7E), and the SAM-
dependent regulation of PP2A methylation drives a feed-forward loop further activating
TORC1 and promoting growth. A striking observation from our studies is that in WT cells
growing in amino acid-free lactate medium, methionine supplementation promotes nitrogen
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assimilation and consumption of glutamine for nitrogen, recapitulating the metabolic and
proliferative phenotypes observed in npr2A cells (Fig. 4). This regulation of nitrogen and
sulfur amino acid metabolism appears to be critical for switching between proliferation and
autophagy.

Our studies reveal that the role of the Npr2 complex in regulating nitrogen metabolism,
glutamine utilization and TORC1 activity depends upon nutritional context, including the
carbon source used by the cells. Previous studies of the yeast Npr2 complex and TORC1, are
limited to rich glucose-containing medium (14, 15, 19, 45). Under these conditions, npr2A
cells are maladapted to environments where the nitrogen source quality is poor (e.g.,
ammonium) (14), but grow normally in the presence of the preferred nitrogen source
glutamine (14). Our investigations were performed under a more-challenging, non-
fermentable carbon source (lactate), and not glucose. It should be noted that Npr2 is
degraded by the F-box ubiquitin ligase Grrl (Glucose repression resistant 1) (15). Grrl
functions primarily in carbon catabolite repression (46, 47), and has marginal roles in non-
fermentable carbon sources, suggesting that the function of Npr2 becomes more important to
the cell upon glucose depletion. We provide important insights into how the Npr2 complex
regulates nitrogen consumption and growth under conditions that demand oxidative
metabolism. Under these conditions, the Npr2 complex controls nitrogen preference, and its
absence mimics nitrogen catabolite repression leading to increased nitrogen consumption
and unchecked growth. These diverse observations indicate distinct roles and modes of
regulation for Npr2 depending upon the nature of the carbon source. Nonetheless, a
consensus model emerges in which the Npr2 complex functions to inactivate TORC1 as
means to slow down glutamine utilization and promote its accumulation. Loss of Npr2
function in glucose + ammonium medium may promote glutamine synthesis and utilization
at the expense of other metabolic processes, thus leading to slower growth.

There is considerable interest in the interplay between TORC1 and glutamine in growth
regulation. Glutamine in conjunction with leucine is thought to activate TORC1 by
increasing leucine transport (48); or glutaminolysis, although the precise mechanisms
remain unclear (45, 49-51). We show that in glucose-deficient minimal conditions, TORC1
activation through the loss of npr2A increases glutamine metabolism to synthesize nitrogen-
containing metabolites, despite lower intracellular leucine (Fig. 2). Furthermore,
supplementing glutamine neither increased TORC1 activity, nor proliferation in WT cells
(Fig. 7, Fig. S3). As such, glutamine metabolism instead appears to be downstream of the
Npr2 complex-Gtrl-TORCL1 during such nutrient limitations. We propose a central function
of TORCL in increasing the synthesis and utilization of glutamine as a nitrogen donor for
biosynthesis, with a key role of the Npr2-complex in modulating TORC1 activity according
to the cell’s needs. Finally, while studies of cancer cell lines have focused on the utilization
of glutamine as a carbon source (29, 52, 53), our results reiterate the importance of
glutamine as a nitrogen source for biosynthesis of numerous important metabolites,
including amino acids, nucleotides, glutathione, and NAD* (32, 34, 35, 54) that fuel cell
proliferation. Lack of Npr2 function in certain nutritional contexts may therefore cause
dysregulations in metabolism that could promote transformation.
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Materials and Methods

Yeast strains, gene deletion, tagging and mutagenesis

The prototrophic CEN.PK strain background was used in all experiments. Strains used in
this study are listed in the Supplementary Table S1. Gene deletions or tagging was
performed using a PCR based strategy as described (55).

Generation of the GTR1-Q65L strain

The GTR1 CDS and TEF1 promoter for overexpression were amplified and inserted into the
Smal site in HO-poly-HygroMX4-HO plasmid (56). The HO-TEF1p-GTR1 Q65L-
HygroMX4-HO plasmid was subsequently made by Site-Directed Mutagenesis, and these
constructs were stably expressed at the HO locus in WT yeast.

Media composition

Standard formulations for rich medium (yeast extract, peptone) or synthetic minimal
medium (YNB and ammonium sulfate without amino acids), with 2% concentrations of the
specified carbon source were used. Supplemented amino acids: Methionine, glutamine, a-
ketoglutarate (dimethyl-alpha-KG) 0.5 mM each, Non-S mixture contains 1 mM each amino
acid (except Met, Cys, Tyr) or as specified in the text.

Cell growth in different media

Unless specified, cells were grown in rich medium with lactate as the carbon source (YPL)
for ~36 h with repeated dilutions, in order to acclimatize cells to growth in lactate, and were
subsequently switched to YPL, minimal medium with lactate (SL), or as indicated. Cell
proliferation curves in different media used cultures started at ODggg ~0.15-0.2.

RNA purifications and RT-gPCR

Total RNA from yeast cells was isolated using a MasterPure Yeast RNA kit (Epicentre).
Reverse transcription was performed on 1 pg of purified total RNA, using SuperScript-11
reverse transcriptase (Invitrogen). Quantitative PCR was performed using SYBR® Green,
validated primers, template cDNA, and transcript abundance normalized to ACT1.

Cell collection, protein extraction and detection

Equal numbers of cells were collected from respective cultures,flash-frozen in liquid
nitrogen, and lysed in 50mM NacCl, 100mM Tris pH 7.5, ImM EDTA, 1mM EGTA, 10%
glycerol, 0.5% Triton X-100, 2 mM [-mercaptoethanol, protease inhibitors, and phosphatase
inhibitors (50mM Sodium Fluoride, 2mM Sodium Orthovanadate), by bead-beating using
glass beads. Protein concentrations from extracts measured using a BCA assay. Equal
amounts of samples were resolved on 12% or 4-12% Bis-Tris gels, and detected as
specified. Coomassie-blue stained gels or western blots for G6PD were used as loading
controls.

Antibodies used
monoclonal anti-flag M2, anti-G6PD (Sigma); anti-HA 12CAD5, anti-GFP (Roche).
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Detection of phosphorylated Sch9 using NTCB cleavage

The Sch9 gel mobility shift assay was modified from (42). ~10 OD cells in culture were
rapidly harvested by centrifugation after quenching in 10% TCA, pellets were flash frozen,
and cells lysed in 300 pl buffer containing 50 mM Tris [pH 7.5], 5 mM EDTA, 6 M urea,
1% SDS, ImMPMSF, and protein phosphatase inhibitors (50mM sodium fluoride, 2mM
sodium orthovanadate) by bead-beating with glass beads, with sub- sequent heating (10
min/65° C). Lysates were collected after centrifugation and protein concentrations were
measured, normalized. The NTCB cleavage assay was performed as described (42). Further
analysis was done by SDS-PAGE separation and immunoblotting using anti-HA antibody.

Cells for metabolite extractions

Cells were grown in YPL medium for ~36 h with repeated dilutions, diluted in YPL (OD
0.01), and grown to an ODgqg of ~1.0 and collected for metabolite extractions, or rapidly
harvested, and transferred to minimal lactate (SL) medium, and collected for metabolite
extractions at specified times. Metabolites were extracted as described earlier in 75%
ethanol (44, 57). Acidic extractions (to preserve oxidation sensitive metabolites) were done
in 75% ethanol with 0.1% formic acid.

Metabolite analysis by LC-MS/MS

Extracted metabolites were measured using targeted LC-MS/MS methods, expanding
methods described previously (44, 57). A library of common metabolites was constructed
using standards, and metabolites were detected using an Applied Biosystems 3200 QTRAP
triple quadrupole-linear ion trap mass spectrometer for quantitative optimization detection of
daughter ions upon collision-induced fragmentation of the parent ion [multiple reaction
monitoring (MRM)]. For each metabolite, parameters for quantitation of the two most
abundant daughter ions (i.e., two MRMs per metabolite) were included. Metabolites were
separated chromatographically using a Synergi Fusion column (150 "2.0 mm 4 m,
Phenomenex), using a Shimadzu Prominence LC20/SIL-20AC HPLC-autosampler coupled
to the mass spectrometer. Buffers for positive mode analysis: Buffer A: 99.9% H,0/0.1%
formic acid, Buffer B: 99.9% methanol /0.1% formic acid. T = 0 min, 0% B; T = 4 min, 0%
B; T =11 min, 50% B; T = 13 min, 100% B; T = 15 min, 100% B, T = 16 min, 0% B; T = 20
min, stop, or Buffer A: 5 mM ammonium acetate in H,O, Buffer B: 5 mM ammonium
acetate in 100% methanol. Buffers for negative mode analysis: 5 mM TBA (Buffer A), and
100% methanol (Buffer B). The area under each peak was quantitated by using Analyst
software, inspected for accuracy, and normalized against total ion count, following which
relative amounts were measured, setting metabolite amounts from WT samples in the first
time point to 1.

15N ammonium sulfate or glutamine labeling and metabolic flux analysis

15N labeled ammonium sulfate ((1°NH,4),SO4) or glutamine
(H,®NCOCH,CH,CH(**NH5)CO,H) were obtained from Cambridge Isotope Laboratories,
Inc. Cells were grown in YPL, and switched to SL medium where all the ammonium sulfate
(sole nitrogen source) was 1°N labeled, or SL medium was supplemented with 1 mM 1°N
glutamine, and cells were collected, metabolites extracted as described earlier. 15N labeled
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metabolites were detected by LC-MS/MS, with the targeted parent and daughter ions
specific to the 15N form of the metabolites, as illustrated in Fig. S2.

Hierarchical clustering analysis and heat maps

For hierarchical clustering analysis normalized metabolite amounts were log,-transformed,
centered about the mean, normalized, and clustered by Spearman—Rank correlation using the
Cluster software (58, 59), and the data visualized as heat-maps built using Java Treeview.

Measurement of autophagy

Autophagy was measured using an 1dh1-GFP cleavage assay, as described earlier (18, 21).
The accumulation/presence of cleaved GFP was used as an indicator of autophagy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. WT and npr2A cells have diametrically opposed metabolic states
A) An illustration of the nutrient shift that induces autophagy in WT but not npr2A cells.

Cells growing in log phase in rich medium with lactate as a carbon source were harvested,
and switched to minimal medium with lactate as a carbon source (SL) at the same cell
density (18, 21).

B) WT, npr2A and npr2A/NPR2-flag cells growing in log phase in rich medium (YPL) were
diluted into minimal medium (SL), and cell proliferation was measured.. n=3, mean+SD,
*** n<0.001.C) (Top) Experimental strategy used for metabolite extract preparation and
metabolomic analysis by LC-MS/MS. WT and npr2A cells were grown in YPL and
transferred to SL medium to induce autophagy (as in panel A), after which metabolites were
extracted at the indicated time points. Shown are heat-maps of hierarchical clustering
analyses of metabolite profiles obtained from LC-MS/MS analysis depicting changes in
intracellular metabolite amounts over time in WT and npr2A cells as measured using
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multiple targeted LC-MS/MS based methods. Rows correspond to metabolites, and columns
to the time points as illustrated in the schematic for either the WT or npr2A cells. Metabolite
data were log,-transformed, centered about the mean, normalized, and clustered by using
Spearman-Rank correlation.
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Figure 2. npr2A cells increase utilization of glutamine as a nitrogen donor for biosynthesis
A) WT but not npr2A cells induce autophagy and accumulate glutamine in SL medium. The

graphs show relative intracellular glutamine amounts in WT and npr2A cells switched to
minimal lactate (SL) medium, collected over 4.5 h.
B) Metabolites derived from glutamine metabolism. Glutamine can serve as a nitrogen

donor for nucleotides, glutathione, de novo NAD™ synthesis regeneration, or replenish TCA
cycle intermediates through anaplerosis.
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C) Nitrogenous metabolites dependent on glutamine for synthesis increase in npr2A cells.
The graphs show relative amounts of reduced glutathione (GSH), oxidized glutathione
(GSSG) and NAD™* in WT and npr2A cells.

D) Ammonium incorporation into glutamine derived nitrogenous metabolites increases in
npr2A cells. WT and npr2A cells were switched from YPL to SL medium containing 15N
ammonium sulfate as the nitrogen source, and relative changes in 1°N glutathione, NAD*
and nucleotides were measured from cells collected at the specified times using LC-MS/MS
as shown in the schematic on the right (also see Supplemental Figure 3 and Materials and
Methods). Changes in 15N labeled metabolites are relative to WT cells 3 h after switching to
SL medium.

E) Fractions of the specific nitrogenous metabolites with all nitrogens unlabeled (14N),

or 15N labeled (newly synthesized) in WT and npr2A cells 4.5 h after switching to SL
medium with 1N ammonium sulfate as the sole nitrogen source.
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Figure 3. Glutamine is utilized as a nitrogen donor to support proliferation of npr2A cells in SL
medium
A) Direct glutamine consumption for nitrogenous metabolite biosynthesis increases in

npr2A cells. WT and npr2A cells were switched from YPL to SL medium supplemented
with 1 mM 15N glutamine, and relative changes in 1°N glutathione, NAD* and nucleotides
were measured from cells collected at the specified times using LC-MS/MS as shown in the
schematic on the right (also see Supplemental Figure 3 and Materials and Methods for more
details). The changes in 15N labeled metabolites are relative to amounts of these metabolites
in WT cells 3 h after switching to SL medium.
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B) Glutamine consumption for nitrogen, and not glutaminolysis, is essential for growth in
npr2A cells. WT and npr2A cell proliferation in the presence or absence of the glutamate
dehydrogenase enzyme Gdhl was measured. npr2A/gdhl1A cells show reduced proliferation
compared to npr2A cells. Cell growth upon addition of 0.5 mM glutamine, or a-
ketoglutarate (cell permeable ester) was also measured. Note that only glutamine, and not a-
ketoglutarate addition rescues growth in npr2A/gdhlA cells. n=3, mean£SD, *** p<0.001.
C) The role of glutamate synthase Glt1 in npr2A cell proliferation was determined by
comparing the proliferation of npr2A/glt1A cells with npr2A cells. Gltl had a relatively
small role in npr2A cell proliferation. n=3, mean+SD.

D) Glutamine biosynthesis enzymes increase in npr2A cells in SL medium. Protein amounts
of GDH1-flag or GLN1-flag in WT and npr2A cells switched to SL medium for the specified
times were measured by Western blotting. The bar-graphs represent mean+SD values for
normalized relative protein amounts n=3, * p<0.05, *** p<0.001.

E) Patterns of GIn3 phosphorylation in WT and npr2A cells are distinct. GIn3
phosphorylation in WT and npr2A cells growing in YPL, YPL + 100nM Rapamycin (20
min), or over time in SL medium were measured using an SDS-PAGE gel mobility shift
assay by Western blotting. The reduced mobility bands indicated higher phosphorylation.
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Figure 4. Methionine promotes glutamine consumption for nitrogenous metabolite biosynthesis
and proliferation
A) Relative intracellular SAM and cysteine amounts in WT and npr2A cells growing in

minimal (SL) medium over a 4.5 h period. Note: npr2A cells recovered rapidly from SAM
and cysteine starvation, compared to WT cells.

B) Methionine promotes cell proliferation in SL medium. The panel shows growth curves
for WT cells in SL medium in the presence or absence of 0.5 mM methionine, further
supplemented with glutamine. n=3, mean+SD, *** p<0.001.
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C) Ammonium incorporation into glutamine derived nitrogenous metabolites increases upon
methionine supplementation. WT cells were switched from YPL to SL medium £ 0.5 mM
methionine, containing 1°N ammonium sulfate as the nitrogen source, and relative changes
in 15N glutathione, NAD* and nucleotides were measured from cells collected at the
specified times using LC-MS/MS as shown in Figure 2D (also see Supplemental Figure 3).
The changes in 15N metabolites are shown relative to amounts of these metabolites in WT
cells 3 h after switching to SL medium.

D) Fractions of the specific nitrogenous metabolites with all nitrogens unlabeled (}4N),

or 1°N labeled (newly synthesized) in WT cells in SL medium or SL medium-+methionine
4.5 h after switching to SL medium with >N ammonium sulfate as the sole nitrogen source.
E) Induction of NNS (methionine starvation) and nitrogen starvation-dependent autophagy
in WT and npr2A cells. WT or npr2A cells were transferred from YPL to SL medium, or
SL-N medium, with or without glutamine (Q) or methionine (M) supplementation. The
Western blots show the accumulation of free GFP (from the Idh1-GFP cleavage autophagy
assay), which was used to detect autophagy induction.

F) Loss of the PP2A methyltransferase Ppm1 compromises growth of both WT and npr2A
cells. Cell proliferation was measured in WT, npr2A, ppm1A, and npr2A/ppm1A cells.
npr2A/ppm1A cells have decreased proliferation compared to npr2A cells, while ppm1A
cells cannot proliferate. n=3, mean£SD. ** p<0.01, *** p<0.001.
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Figure 5. Changes in the metabolism of npr2A cells depend upon TORCL activity
A) WT and npr2A growing in YPL were transferred to SL medium with 40 nM rapamycin,

and intracellular metabolites measured over 4.5 h, as illustrated in the schematic on the right.
Shown are hierarchical cluster analyses of changes in intracellular metabolite amounts over
time in WT and npr2A cells as measured using targeted LC-MS/MS. The columns
correspond to different time points (as illustrated in Figure 1C) for either WT or npr2A cells.
B) Relative amounts of glutamine and SAM in WT cells growing in SL medium, and npr2A
cells in SL medium + rapamycin. Note that glutamine and SAM amounts in npr2A cells in
SL+rapamycin resemble WT cells in SL medium.
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Figure 6. Increased proliferation and glutamine metabolism in npr2A cells depend upon Gtrl
A) Cells with a constitutively active form of Gtrl (GTR1-Q65L) resemble npr2A cells.

Shown are proliferation curves in minimal lactate (SL) medium for WT, GTR1-Q65L
(constitutively active form of Gtrl overexpressed), npr24/ Gtrl-WT (WT Gtrl expressed in
the npr2A background), and npr2A/GTR1-Q65L cells.

B) GTR1-Q65L cells have low glutamine concentrations. The graphs show relative
glutamine amounts in WT and GTR1-Q65L cells over a 4.5 h period growing SL medium.
C) Products of glutamine metabolism increase in GTR1-Q65L cells. The graphs show
relative amounts of reduced glutathione (GSH), oxidized glutathione (GSSG) and NAD* in
WT and GTR1-Q65L cells. Note that trends for glutamine (panel B), glutathione and NAD*
(panel C) in GTR1-Q65L cells resembles that of npr2A cells (Figure 2, Table 1).
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Figure 7. The S6Kinase Sch9 is required for rapid proliferation in npr2A cells
A) Proliferation curves for WT, npr24, sch94, and npr24/ sch9A cells growing in minimal

lactate (SL) medium are shown. Note that npr2A cells lacking Sch9 (npr2A/sch9A) grow
extremely poorly in SL medium, slower than WT cells. n=3, mean£SD.

B) Sch9 phosphorylation was measured (using a chemical cleavage, Western blot based
assay) in WT and npr2A cells grown in either YPL or SL medium. Note that although the
Sch9 protein shows a smaller gel mobility shift in SL medium in both WT and npr2A cells
compared to YPL medium, a strong increase in signal is detected in npr2A cells.

C) RT-gPCR based measurement of relative Sch9 transcript abundance in WT and npr2A
cells growing in YPL or minimal SL medium. n=3, mean+SD.

D) The anti-HA antibody has a higher affinity for the C-terminally phosphorylated Sch9
protein. Upper panel: Sch9-HA tagged cells were grown in rich medium (YPD), and cells
were lysed either in the presence or absence of protein phosphatase inhibitors (PPI), and
processed as indicated in the schematic. Cells lysed with phosphatase inhibitors showed
stronger signal in anti-HA Western blots (with uncleaved Sch9). Lower panel: Sch9 was
also immunoprecipitated from cells using the HA-antibody, and treated with/without PPIs,
and A-phosphatase (A-Ppt). Note that samples treated with A-Phosphatase in the absence of
PPI showed reduced signal intensity, compared to identical samples without A-Phosphatase,
or where PPIs were added to inhibit A-Phosphatase.
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E) A model depicting Npr2 and TORC1-mediated regulation of metabolism and cell
proliferation. The absence of Npr2 results in increased TORC1 activity and proliferation
through increased glutamine consumption, synergistic with increased SAM. Increased SAM
can drive proliferation in part through the action of Ppm1 and methylated PP2A, which may
act as a feed-forward loop further increasing TORCL1 activity.
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