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Abstract
The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in

human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin,

a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of

PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results re-

vealed that shikonin treatment suppressed skin tumor formation. Morphological examina-

tions and immunohistochemical staining of the skin epidermal tissues suggested that

shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone sup-

pressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the

skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential

chemopreventive mechanism of shikonin, an antibody microarray analysis was performed,

and the results showed that the transcription factor ATF2 and its downstream target Cdk4

were up-regulated by chemical carcinogen treatment; whereas these up-regulations were

suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were in-

creased during tumor promotion, whereas this increase was inhibited by shikonin. Further-

more, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key

subunit of the activator protein 1. In summary, these results suggest that shikonin, rather

than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.

Introduction
Shikonin is an active component isolated from lithospermum erythrorhizon, a traditional orien-
tal medicinal herb, which has been used to treat HIV-1 infection [1]. Shikonin’s anti-tumor ac-
tivity has been studied since the 1990s. Shikonin and its derivatives have been shown to induce
cell death in a variety of human cancer cells [2–9]. In addition, shikonin and its derivatives also
show anti-angiogenesis [10,11], anti-inflammation [12], and anti-glycolysis activities [13,14].
Although the chemopreventive activity of shikonin has been suggested in a rat intestinal
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carcinogenesis study [15], the potential application of this compound in chemoprevention has
not been thoroughly investigated.

Targeting cancer metabolism for cancer therapy and prevention is one emerging research
topic. Many types of cancer cells predominantly produce ATP by higher rates of glycolysis fol-
lowed by lactic acid fermentation even with ample oxygen, known as the “Warburg Effect”. Py-
ruvate kinase catalyzes the last step of glycolysis and the M2 isoform PKM2, is highly
expressed in cancer cells [16]. However, how to target PKM2 in cancer treatment is not conclu-
sive, since both inhibition and activation of PKM2 have been shown to suppress cancer cell
growth [17]. This is at least partially due to the fact that in cancer cells, PKM2 can exist as ei-
ther a tetramer with higher activities or a dimer with lower activities. In addition, PKM2 can
translocate to nucleus and exerts both kinase and non-kinase activities [17].

We aim to test if targeting PKM2 can prevent tumor promotion, the early stage of carcino-
genesis. Shikonin has been recently identified as a specific inhibitor to PKM2 [13]. Since PKM2
is highly expressed in many types of human carcinoma including skin cancers, shikonin anti-
tumor promotion activity may involve regulation of PKM2 activity as it was suggested by a re-
cent study. Using a promotable skin epidermal JB6 cell model, this study showed shikonin sup-
pressing tumor promoter-induced PKM2 activation and glycolysis without inducing apoptosis
[14]. To further investigate the potential chemopreventive activity of shikonin, we performed a
multistage skin carcinogenesis study.

Materials and Methods

Cell lines, Reagents and Treatment
Murine skin epidermal JB6 Cl-41 (P+) cells (purchased from American Type Culture Collec-
tion) were used to study tumor promotion. Cells were grown in EMEMmedium containing
4% fetal bovine serum (FBS), 2 mM L-glutamine, and 2.5 μg/ml penicillin and 2.5 μg/ml strep-
tomycin in a 37°C incubator under 5% CO2.

For cell culture, the levels of mycoplasma were routinely (once every three months) assessed
in these cells using a MycoAlert Mycoplasma Detection Kit purchased from Lonza (Rockland,
ME), and the results were consistently negative.

Shikonin (SKN), purchased from Sigma (S7576), was dissolved in dimethyl sulfoxide
(DMSO, Sigma, St. Louis, MO). The chemical carcinogen dimethylbenz[α]anthracene
(DMBA, Sigma) and the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA, Sigma)
were also prepared in DMSO.

Chemically-induced mouse skin carcinogenesis
Sixty 6–8-week old female DBA/2 mice (which are relatively sensitive to skin carcinogenesis)
from Jackson Laboratory (Indianapolis, IN) were divided into 4 groups: DMSO, DMBA/TPA,
SKN, SKN+DMBA/TPA. The DMSO group (5 mice) received DMSO treatment as the vehicle
control; the DMBA/TPA group received a single topical application of 200 nmol DMBA for
2 weeks, following by a single topical application of 5 μg TPA (12-O-tetradecanoylphorbol-
13-acetate), once per day, three times per week for 14 weeks. The SKN group received topical
application of shikonin at 10 μg following the same schedule for DMBA/TPA treatments. The
SKN+DMBA/TPA groups received shikonin (SKN) treatment first followed by TPA treatment
30 min later. At the end of the skin carcinogenesis study, mice were euthanized by pentobarbi-
tal (150 mg/kg, i.p.). The skin samples from experimental sites were collected and submitted
for biochemical and morphologic analysis as described in the following. This animal protocol
was approved by the Animal Care and Use Committee of LSU Health Sciences Center in
Shreveport.
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Counting apoptotic and mitotic cells
Skin samples were fixed in 4% buffered formaldehyde, embedded in paraffin and processed for
hematoxylin eosin (H&E), Ki-67 (Abcam, ab16667) and TUNEL (Roche, #11684817910) stain-
ing. Mitoses and apoptotic cells were counted using light microscopic evaluation of H&E
stained slides. Morphologic features, such as cell shrinkage, formation of cytoplasmic vacuoles
were used to identify apoptosis. Morphologic analysis was performed by one of the authors
(XG), a board-certified pathologist. TUNEL and Ki-67 staining was performed following the
manufacturer’s instructions. The secondary antibodies were conjugated with Alexa Fluor
488 dye and the images were taken using a Nikon fluorescence microscope.

Preparation of whole cell lysate
Collected cultured skin cells were suspended in 150 μl of PBS containing a proteinase inhibitor
cocktail (Calbiochem, La Jolla, CA). Cells were sonicated on ice for two strokes (10 sec per
stroke) using a Fisher Sonic Dismembrator (Model 100, Scale 2). After incubating on ice for
30 min, cell lysate was centrifuged at 14,000 x g for 15 min, and the supernatant was collected
and designated as Whole Cell Lysate.

PKM2 expression and activity assay
PKM activities were analyzed using the lactate dehydrogenase (LDH)-coupled assay as de-
scribed previously [18,14] and Whole Cell Lysate was used for the assay.

Antibody microarray analysis
The Panorama Antibody Microarray Cell Signaling kit (Catalog Number CSAA1-1, Sigma-
Aldrich) was used. The array kit was composed of 224 highly specific antibodies spotted in du-
plicate on nitrocellulose-coated glass slides. Each antibody microarray contained 32 subarrays
with duplicate spots of seven antibodies as well as a single positive control for Cy3 and Cy5 and
a single negative control. The list of arrayed antibodies can be found at the Sigma-Aldrich’s
website. Whole Cell Lysate from each treatment group was pooled together and used for the
assay. The experiments were performed following the instructions provided by
the manufacturer.

Knockdown of AFT2 by siRNA
JB6 P+ cells were seeded (2 x 105 cells/well) in six-well tissue culture plates, and incubated at
37°C in a 5% CO2 incubator until becoming 70–80% confluent. For each transfection, 2 μl of
ATF2 siRNA duplex (sc-29756, Santa Cruz Biotechnology, Santa Cruz, CA) was diluted into
100 μl of siRNA transfection medium (sc-36868, Santa Cruz Biotechnology). In a separate
tube, 2 μl of transfection reagent (sc-29528, Santa Cruz Biotechnology) was diluted into 100 μl
of siRNA transfection medium. The dilutions were mixed gently together and incubated for
30 min at room temperature. Fluorescein conjugated control siRNA (sc-36869, Santa Cruz Bio-
technology) was used to monitor the transfection efficiency, which was approximately 70%.

Western blot analysis
Whole Cell Lysate was used for the assay. Antibodies against ATF2 (sc-187), Fra-1 (sc-605), α-
Tubulin (sc-5286), and β-Actin (sc-47778) were purchased from Santa Cruz Biotechnology.
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Statistical analysis
Data were presented as mean ± standard division (S.D.). The Fisher’s Exact Test and student’s
t-test were used to compare the tumor incidence and multiplicity, respectively. Statistical analy-
ses was performed by using SAS 9.3 (SAS, Gary, NC). All p values less than 0.05 were consid-
ered as statistically significant.

Results

Shikonin suppressed chemically-induced skin carcinogenesis
At the end of the skin carcinogenesis study, animals’ bodyweights were first measured and the
data were presented in the following order: DMSO, SKN, DMBA/TPA, and SKN+DMBA/
TPA: 22.1±2.0g, 22.1±1.9g, 22.0±1.4g, and 21.9±1.4g. Results from statistical analysis revealed
that neither shikonin (p = 0.87) nor chemical carcinogen treatment (p = 0.37) affected the
animal’s bodyweight.

Skin papilloma formation was examined by a pathologist, and the results are summarized in
Table 1. The tumor incidence of the SKN+TPA group (73.3%) was not significantly decreased
compared with that of the carcinogen treatment group (93.3%) (p = 0.329 by two sided Fisher's
Exact Test). However, the tumor multiplicity in the SKN+TPA group (1.6±1.7) was significant-
ly decreased (p = 0.0035 by student’s t-test) compared with the carcinogen treatment group
(3.9±2.3).

Does shikonin inhibit cell proliferation or cause cell death to exert its tumor preventive ef-
fect? Ki-67 and TUNEL staining of the skin epidermal tissues was performed and the results
were shown in Fig 1. Higher levels of Ki-67/TUNEL staining were observed in the carcinogen
group (TPA), whereas lower levels of Ki-67/TUNEL staining were observed in the three other
groups. Mitotic figures and apoptotic cells were then counted precisely using H&E stained tis-
sue sections. As summarized in Table 2, cell mitosis and apoptosis were increased by 1.8 and
1.6 fold, respectively, in the TPA group comparing with the DMSO group, which is similar to
what has been observed in our previous studies [19,20].These increases were suppressed by
topical application of shikonin, and shikonin by itself did not affect cell mitosis or apoptosis.

PKM2 activities were not suppressed by shikonin in carcinogen-treated
animal tissues
Since shikonin has been identified as a PKM2 inhibitor [13] and it inhibits PKM2 activation in
TPA-treated skin epidermal JB6 cell [14], PKM2 activities were measured using pooled Whole
Cell Lysate samples in each treatment group. As shown in S1 Fig, carcinogen activated PKM2;

Table 1. Papilloma formation in the multistage carcinogenesis model.

Treatment Number of mice Tumor Incidence Papillomasper mouse Total Papillomas

DMSO 5 0% 0±0 0

TPA 15 93.3%# 3.9±2.3 59

SKN 5 0% 0±0 0

SKN+TPA 15 73.3%# 1.6±1.7* 24

DMSO, DMSO-treated group; TPA, DMBA/TPA-treated group; SKN, shikonin-treated group; SKN+TPA, shikonin plus DMBA/TPA-treated group.
#p<0.01 compared with its own control group by Fisher’s Exact Test;

*p<0.01 compared with the TPA group by student’s t-test.

doi:10.1371/journal.pone.0126459.t001
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although PKM2 activity was suppressed by shikonin alone, it was not suppressed in the carcin-
ogen-treatment group.

Antibody microarray analysis
To identify potential shikonin targets, antibody microarray analysis was performed using
pooled Whole Cell Lysate samples isolated from skin epidermal tissues at the end of the skin
carcinogenesis study. The original images of the array slides were shown in S2 Fig. Quantified
results were normalized to the internal control (actin) and these ratios were used for calcula-
tion. Positive hits were determined when the protein expression levels were increased more
than 2-fold by DMBA/TPA treatment whereas these increases were significantly suppressed
by shikonin.

Fig 1. Ki-67 and TUNEL staining of skin epidermal tissues at the end of the skin carcinogenesis study (amplification: 20x). Ki-67 and TUNEL
staining was performed according to the manufacturer’s instructions. A representative image from each treatment group was shown. DMSO, DMSO-treated
group; TPA, DMBA/TPA-treated group; SKN, shikonin-treated group; SKN+TPA, shikonin plus DMBA/TPA-treated group.

doi:10.1371/journal.pone.0126459.g001

Table 2. Counts of mitotic and apoptotic cells in skin epidermal tissues.

Average Mitotic Cells Average Apoptotic Cells

DMSO 2.4±1.7# 1.8±0.8#

TPA 4.4±2.0* 2.8±0.9*

SKN 2.6±1.3# 2.2±0.8

SKN+TPA 2.1±0.9# 1.7±1.2#

Number of mitotic/apoptotic cells per 100 cells. DMSO, DMSO-treated group; TPA, DMBA/TPA-treated

group; SKN, shikonin-treated group; SKN+TPA, shikonin plus DMBA/TPA-treated group.
#p<0.05 compared with the TPA group;

*p<0.05 compared with the DMSO group.

doi:10.1371/journal.pone.0126459.t002
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In details, these targets include two kinases involved in cell proliferation and migration:
JNK and Actopaxin (S3 Fig); four proteins involved in apoptosis: Bcl-10, caspase 3, 6, and 7 (S4
Fig); the transcription factor ATF2, and one of its target gene, the cell cycle regulator Cdk4
(Fig 2, left panel). The microarray results on ATF2 and Cdk4 were further confirmed using
Western blot analysis (Fig 2, right panel). These two shikonin targets become the focus of the
following studies.

Shikonin decreased the nuclear levels of ATF2 and knockdown of ATF2
suppressed the expression levels of Cdk4 and Fra-1
Since ATF2 is a transcription factor, the nuclear levels of ATF2 were detected after shikonin
treatment. The promotable skin epidermal JB6 P+ cells were treated with shikonin or the
tumor promoter TPA. As shown in Fig 3 (left panel), TPA induced increases in ATF2 as well
as Fra-1, a key subunit of activator protein 1 (AP-1) in the nucleus. To further verify the role of
AFT2 in regulating Cdk4 and Fra-1, knockdown of ATF2 was performed using a siRNA ap-
proach in JB6 P+ cells. As shown in Fig 3 (right panel), the expression levels of Cdk4 and Fra-1
were both suppressed in ATF2 knockdown cells.

Discussion
Shikonin, the naphthoquinone pigment isolated from Lithospermum erythrorhizon is the active
component of a traditional Chinese medicine, which has been used to treat inflammation-relat-
ed diseases and HIV-1 infection [1]. Its anti-tumor activity is reported largely due to induction
of apoptosis in human cancer cells, including HL60 human premyelocytic leukemia cell line
[2], hepatoma cells [4], colon cancer cells [5], melanoma cells [6], breast cancer cells [7], non-

Fig 2. Detection of the expression levels of ATF2 and Cdk4 in mouse skin epidermal tissues at the end of the skin carcinogenesis study.Results
were obtained from both the antibody microarray analysis (left panel) andWestern blot analysis (right panel). Tissues from each individual mouse were
pooled together and there were four repeats in each data group. DMSO, DMSO-treated group; TPA, DMBA/TPA-treated group; SKN, shikonin-treated group;
SKN+TPA, shikonin plus DMBA/TPA-treated group. *, p<0.05 compared with the DMSOGroup; #, p<0.05 compared with the TPA group.

doi:10.1371/journal.pone.0126459.g002
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small cell lung cancer cells [8] and bladder cancer cells [9]. Shikonin is also reported to inhibit
the growth of prostate cancer PC-3 cells [3]. Induction of apoptosis through coordinative mod-
ulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of
caspases in human colorectal carcinoma cells [5] was also reported. Similarly, shikonin can
sensitize drug resistant cancer cells to treatment since it targets drug resistant genes [21]. Un-
like the above studies, shikonin does not cause apoptosis in mouse skin epidermal tissues in the
multistage skin carcinogenesis mouse model. This might be due to that the concentration of
shikonin used in this study and/or shikonin is applied to a chronic tumor model.

Anti-inflammation is another possible mechanism of its anti-tumor effect. In transformed
human mammary epithelial cells, shikonin has been shown to inhibit TPA-induced cyclooxy-
genase-2 (COX-2) activation, which is mediated by suppression of MAPK signaling [22].

Shikonin first showed chemopreventive activity in azoxymethane-induced intestinal carci-
nogenesis in rats via a dietary approach [15]; however, further studies are needed to test che-
moprevention in other cancer models and to reveal the molecular mechanism.

Our previous study using a tumor promotion model [14] has shown that shikonin can sup-
press cell transformation which is associated with reduced glycolysis. This finding suggests that
shikonin’s anti-tumor promotion works through inhibition of PKM2 activity. In the current
study, although PKM2 activity is inhibited by shikonin alone, it is still increased when carcino-
gens are present. The PKM2 activity was measured at the end of the skin carcinogenesis study
and the shikonin+TPA group also developed tumors. We cannot rule out the possibility that
shikonin might be able to inhibit PKM2 during the early stage of skin carcinogenesis. It will be
interesting to monitor PKM2 levels via a reporter system throughout the whole stage of
skin carcinogenesis.

As a natural product, shikonin may also have other targets and/or affect other signaling
pathways. The targets identified using the antibody microarray analysis provides
interesting candidates.

Activating transcription factor 2 (ATF2) is one of the transcription factors whose induction
is inhibited by shikonin. ATF2 is a member of the ATF/cyclic AMP-responsive element bind-
ing protein family of transcription factors. It has been implicated in malignant and non-malig-
nant skin tumor developments. Inhibiting ATF2 suppresses melanoma development [23].
ATF2 can be phosphyralated by JNK and contributes to AP-1 binding activity [24,25]. Howev-
er, ATF2 also exerts tumor suppressive activity in chemically induced skin carcinogenesis

Fig 3. Detection of the expression levels of ATF2 and Cdk4 in mouse epidermal JB6 P+ cells. Left panel, JB6 cells were pretreated with shikonin (1 μM)
for 30 min following by TPA (5 nM) treatment for 24 h. Nuclear extract was prepared and used for Western blot analysis. Right panel, JB6 P+ cells were
transfected with siRNAs for 48 h and whole cell lysate was prepared for Western blot analysis.

doi:10.1371/journal.pone.0126459.g003
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model [26], and protein kinase-c ε (PKCε) shifts ATF2 towards to tumor promotion. An early
study [27] has indicated that in our skin carcinogenesis model, it is PKCε, not other PKCs, that
is activated during skin carcinogenesis, which suggest that ATF2 may function as an oncogene
in this study, and shikoin may exert its tumor suppressive effect via PKCε and JNK and their
downstream target ATF2.

Cdc activates cyclin-dependent kinases (Cdks) by the removal of phosphates from residues
in the Cdk active site. Cdk4 is part of the cyclin-dependent kinase family, and overexpression
of Cdk4 in mouse skin results in increased susceptibility to squamous cell carcinoma develop-
ment in a chemically induced carcinogenesis model [28].

Actopaxin (α-parvin), a kinase regulating cell adhesion and motility, is also suppressed by
shikonin during skin carcinogenesis. Actopaxin is a paxillin, integrin-linked kinase, and
F-actin binding focal adhesion protein. Actopaxin has been found to contribute to the regula-
tion of matrix degradation and cell invasion in osteosarcoma and breast cancer cells. Rac1
seems to be required for actopaxin-induced motility [29].

DNA damage, oncogenic stress, and oxidative stress induced by chemical carcinogens can
also lead to growth arrest and apoptosis during skin carcinogenesis. Caspase recruitment pro-
teins and caspases which are up-regulated in this model might be responsible for this apoptotic
event. Bcl-10 (B-cell lymphoma/leukemia 10) contains a caspase recruitment domain. In-
creased expression of active caspase 3 and 6 has been reported in melanoma [30] and mouse
skin carcinogenesis models [19,20]. The role of this apoptotic event can be a consequence of
cancer development which may provide growth advantage for the growth of other cancer
cells [31].

In summary, the results from this study suggest that shikonin is effective in inhibiting chem-
ically-induced skin carcinogenesis which is mediated largely by inhibiting cell proliferation
during skin carcinogenesis. The potential target identified in this study, ATF2, will be exam-
ined in future experiments.

Supporting Information
S1 Fig. Detection of PKM2 activity in mouse epidermal tissues at the end of the skin carci-
nogenesis study.Whole cell lysate from each mouse tissue was pooled together and there were
four repeats in each data group. DMSO, DMSO-treated group; TPA, DMBA/TPA-treated
group; SKN, shikonin-treated group; SKN+TPA, shikonin plus DMBA/TPA-treated group. �,
p<0.05 compared with the DMSO Group.
(DOCX)

S2 Fig. Antibody microarray slides scanned by a fluorescence scanner.Whole cell lysate was
pooled together in each data group. DMSO, DMSO-treated group; TPA, DMBA/TPA-treated
group; SKN, shikonin-treated group; SKN+TPA, shikonin plus DMBA/TPA-treated group.
(DOCX)

S3 Fig. Detection of the expression levels of Actopaxin and JNK in mouse epidermal tissues
at the end of the skin carcinogenesis study. Results were obtained from the antibody microar-
ray analysis. Tissues from each individual mouse were pooled together and there were four re-
peats in each data group. DMSO, DMSO-treated group; TPA, DMBA/TPA-treated group;
SKN, shikonin-treated group; SKN+TPA, shikonin plus DMBA/TPA-treated group. �, p<0.05
compared with the DMSO Group; #, p<0.05 compared with the TPA group.
(DOCX)

S4 Fig. Detection of the expression levels of Bcl-10 and caspases in mouse epidermal tissues
at the end of the skin carcinogenesis study. Results were obtained from the antibody
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microarray analysis. Tissues from each individual mouse were pooled together and there were
four repeats in each data group. DMSO, DMSO-treated group; TPA, DMBA/TPA-treated
group; SKN, shikonin-treated group; SKN+TPA, shikonin plus DMBA/TPA-treated group. �,
p<0.05 compared with the DMSO Group; #, p<0.05 compared with the TPA group.
(DOCX)
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