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Abstract

Background

In the past few decades, several researchers have proposed highly accurate prediction
models that have typically relied on climate parameters. However, climate factors can be
unreliable and can lower the effectiveness of prediction when they are applied in locations
where climate factors do not differ significantly. The purpose of this study was to improve a
dengue surveillance system in areas with similar climate by exploiting the infection rate in
the Aedes aegypti mosquito and using the support vector machine (SVM) technique for
forecasting the dengue morbidity rate.

Methods and Findings

Areas with high incidence of dengue outbreaks in central Thailand were studied. The pro-
posed framework consisted of the following three major parts: 1) data integration, 2) model
construction, and 3) model evaluation. We discovered that the Ae. aegypti female and lar-
vae mosquito infection rates were significantly positively associated with the morbidity rate.
Thus, the increasing infection rate of female mosquitoes and larvae led to a higher number
of dengue cases, and the prediction performance increased when those predictors were in-
tegrated into a predictive model. In this research, we applied the SVM with the radial basis
function (RBF) kernel to forecast the high morbidity rate and take precautions to prevent the
development of pervasive dengue epidemics. The experimental results showed that the in-
troduced parameters significantly increased the prediction accuracy to 88.37% when used
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on the test set data, and these parameters led to the highest performance compared to
state-of-the-art forecasting models.

Conclusions

The infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity
rate forecasting efficiency better than the climate parameters used in classical frameworks.
We demonstrated that the SVM-R-based model has high generalization performance and
obtained the highest prediction performance compared to classical models as measured by
the accuracy, sensitivity, specificity, and mean absolute error (MAE).

Introduction

Dengue fever (DF) is one of the most important infectious diseases worldwide, particularly in
areas with tropical and sub-tropical climates [1-3]. DF is a viral vector-borne disease and is
spread by the female Aedes aegypti mosquito [4,5]. In Thailand, dengue hemorrhagic fever
(DHF) was first reported in 1949 [6] and remains the country’s primary public health problem
because no specific medical treatments [7] or effective vaccines [8] exist to prevent dengue in-
fections. Therefore, several scientists have undertaken a massive endeavor to construct early
warning systems using various predictors, statistical techniques, and mathematical models to
facilitate early public health responses to reduce morbidity and mortality. Several factors are in-
cluded in the models, including climate variables, mosquito density, human populations, de-
mographic transitions, places (e.g., school, home, or hospital), and areas (e.g., towns and rural
areas). Of these, climate or weather variables, particularly rainfall and temperature, are the
most commonly used variables to increase the forecasting performance of predictive models
[5,9-13]. Many works have indicated that higher rainfall results in a higher risk of dengue virus
transmission [14-16]. However, some studies have revealed that rainfall is significantly nega-
tively associated with dengue incidence because larvae and eggs can be washed away by massive
rainfalls [17-19]. In addition, the climate-based model may be less efficient in areas that are
geographically similar because these areas have only minor differences in temperature and
rainfall. Therefore, relying only on the weather variables can lead to lower reliability of the
model. Focks et al. [20,21] has constructed comprehensive models that take into account the
majority factors known to influence dengue epidemiology and introduced to use a new factor,
a number of Ae. aegypti paupae, for the prediction model. This study revealed that a number of
Ae. aegypti paupae is more appropriate for assessing risk and directing control operations.
Moreover, Ae. aegypti populations have been suggested for use in predicting dengue outbreaks
[22,23]. Researchers have hypothesized that higher Ae. aegypti population densities result in
higher dengue incidences. However, Goh et al. [24] reported that a high number of dengue
cases were found in Singapore even though the Ae. aegypti populations decreased. This result
indicates that Ae. aegypti populations are not positively related to the outbreaks. Therefore, we
hypothesize that the infection rate of the dengue virus in Ae. aegypti is significantly correlated
with the outbreaks and can be used to enhance the effectiveness of the morbidity rate predic-
tion. Moreover, choosing the forecasting technique is an important task for this study.

Many classical forecasting techniques, such as the autoregressive integrated moving average
(ARIMA) [13], the K-H model [25], the seasonal autoregressive integrated moving average
(SARIMA) [5,12,26], the SVM [27], a Poisson regression analysis [28], and the artificial neural
network (ANN) have been used to extrapolate dengue incidences [29]. Time series analysis
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methodologies, particularly ARIMA and SARIMA [26], have been increasingly deployed in the
field of epidemiological research on DF, DHF, and many other infectious diseases. Typically, a
time series analysis technique involves homogeneous data over long periods. The main draw-
back of this method is that it does not consider other variables that are associated with the de-
pendent parameter. Nonetheless, many research studies have revealed that the severity of
dengue outbreaks is influenced by several independent variables, and particularly by climate
factors. Therefore, a time series analysis may be less reliable because it only considers the his-
torical data of the dependent variable. The ANN has been widely used in biomedical fields for
data analysis and modeling, forecasting, and diagnostic classification. For dengue outbreaks,
the ANN has been used for noninvasive diagnosis of the risk in dengue patients [8, 23] by ex-
ploiting four parameters (day of fever, reactance, gender, and the risk group quantification) to
classify patients into risk groups. The overall prediction accuracy to perform such a task was
96.86%. Dengue outbreak prediction in Malaysia using the ANN was proposed by Husin et al
[30]. The experiments showed that the ANN-based model outperformed a nonlinear regres-
sion model, as measured by the mean square error (MSE). However, the ANN needs to deter-
mine how many neurons are required for a task, and this is another issue that affects whether
the ANN is optimized. A new machine learning method, e.g., the SVM, has become more at-
tractive to researchers in the field. SVM is an efficient approach for nonlinear classification
problem solving. Benjamin et al. [31] reported using the SVM to predict dengue incidence in
Singapore and Bangkok using a search query from Google and demonstrated that SVM models
outperformed logistic regressions for predicting high periods of dengue incidence. Similar to
the work of Shameem et al. [27], the SVM displayed a more accurate predictive performance
for dengue cases. The SVM is an efficient technique based on statistical learning theory for
nonlinear classification problem solving and has been reported to be efficient in generalization
performance; the SVM has been implemented in various fields [32]. The SVM can solve several
problems of classification techniques such as the overfitting problem and the curse of di-
mensionality. The SVM has been proven to provide more solutions to boundaries compared to
the neural network (NN) and can solve local minimum problems found in the NN [33].

An effective prediction model of dengue outbreaks is of great importance to relevant public
health decision makers who are typically responsible for budgets and manpower. Hence, this
paper aimed to use the SVM to construct a predictive model for dengue incidence using climate
parameters and the newly discovered variable, the Ae. aegypti mosquito infection rate, which
has never been used in any existing predictive models.

Materials and Methods
Study areas

Three provinces (Nakhon Pathom, Ratchaburi, and Samut Sakhon) in the central region of
Thailand were selected for this experiment. In each province, data regarding Ae. aegypti larvae
and adults were collected from 2007 to 2013. Nakhon Pathom is located at 13.9167°N,
100.1167°E and covers an area of 2,168.327 km®. The population size is 882,184, and the popu-
lation density is 406.85 people/km®. Ratchaburi is located at 13.5289°N, 99.8144°E, and covers
an area of 5,196.462 km” with a population of 850,162 and a population density of 163.60 peo-
ple/km?. Samut Sakhon is located at 13.5472°N, 100.2736°E. The population size of Samut
Sakhon is 519,457 with an area of 872.347 km?, corresponding to a high population density of
595.47 people/km”. These provinces were selected for the following three major reasons: 1) a
high DHF morbidity rate as reported in Thailand health information system (www.hiso.in.th),
2) a high mosquito density, and 3) a minor difference in climatic factors. Human baiting was
performed by officers with highly experience from National Institute of Health, Thailand and
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the study was approved by the Ethic Committee of Research Affairs Unit, Faculty of Medicine,
Chulalongkorn University (COA No. 328/2014).

Key predictors for the proposed model

Due to the high cost of collecting mosquito infection data, seasonal data collection was per-
formed at this stage of the experiment. Here, nine major contributors to dengue epidemics, col-
lected between 2007 and 2013, were included in the model. These are temperature, rainfall,
humidity, wind speed, Ae. aegypti larvae infection rate, male mosquito infection rate, female
mosquito infection rate, population density, and morbidity rate. All data required cleaning be-
fore being entered into a model. This process included data transformation and the removal of
missing values. The values of the dengue virus infection rate in mosquitoes were obtained from
a previous report by Chompoosri et al [7]. The Ae. aegypti larvae were collected from indoor
clean water containers, and the adult mosquitoes were collected using human bait twice a sea-
son between 2007 and 2012. The collected larvae and mosquitoes were visually identified for
Ae. aegypti species. Dengue virus was detected by pooling and storing all Ae. aegypti larvae and
mosquitoes in cryogenic vials (5 larvae or mosquitoes/pool/vial) in liquid nitrogen.

Predictive model construction based on SVM

The SVM was first introduced in 1992 by Boser, Guyon, and Vapnik in COLT-92 [34] and re-
ceived much attention from researchers due to its tendency to have better empirical perfor-
mance. The SVM is a prediction tool that uses machine-learning theory to maximize predictive
accuracy while automatically avoiding overfitting of the data. Three major components [35] of
the SVM include learning theory [36], the optimal hyperplane algorithm [35], and the
kernel functions.

Several kernel functions are used with the SVM. For instance, the linear kernel is the sim-
plest kernel function (Eq 1).

k(x,y)=x-y+c (1)

The polynomial kernel (Eq 2) is a classical method for non-linear modeling and is well fitted
for problems when all the training data are normalized.

k(x,y) = (x-y)* (2)

The radial basis function (RBF) kernel is one of the most powerful kernels (Eq 3).

kixy) = exp| -7 ()

202

These three kernels will be deployed in the dengue predictive model, and the highest accura-
cy model will be selected.

Predictive model performance criteria

Sensitivity, specificity, and accuracy were used to assess the effectiveness of the proposed
model. Sensitivity indicates the fraction of high-risk dengue outbreak areas that are correctly
classified, whereas specificity shows the fraction low-risk areas that are correctly classified.
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These three measures are computed by the following equations:

Sensitivity = TP (4)
ensitivity = 15—
TN
Specificity = TP (5)
TP + TN

A
COHTAYY =P L TN + FP + EN

where: True positive (TP) is the number of correctly classified high morbidity rates.

True negative (TN) is the number of correctly classified low morbidity rates.

False positive (FP) is the number of incorrectly classified high morbidity rates.

False negative (FN) is the number of incorrectly classified low morbidity rates.

Ideally, a perfect predictor would be described as 100% sensitive (i.e., predicting all areas
from the high-risk group as being high risk) and 100% specific (i.e., not predicting any areas
from the high-risk group being low risk).

Definition 1: High morbidity rate of a dengue outbreak in Thailand

The morbidity rate of the dengue outbreak in Thailand is defined as the number of dengue
cases per 100,000 population (Eq 7). The morbidity rate is high when it equals 50 or more; oth-
erwise, the rate is classified as low.

dengue case x 100, 000
population density

Morbidity rate =

(7)

Methodology

To develop a predictive model for dengue outbreaks, three main processes are defined as illus-
trated in Fig 1 and can be explained as follows:

(Llnear, Decision Tree
Ministry of olynomlal RBE
Interior
Populatlon density Neural
Network
& > 3 Ae aegypti
Chulalongkorn [/ 7 =« 3 Infectlon rat
university e\
= Exce\\eﬂ‘
—> —> wGood
Saus(acto\"l
Meteorological (7 4% =57 )Poor
department & \clnma(efaaors

2 Model 3 Predllcted
1. Data construction result
integration evaluation

Dengue cases

Thai

Bureau of
Epidemiology

Fig 1. The experimental processes. The following three experimental processes are conducted: 1) data
integration, 2) predictive model construction using Weka [37], and 3) result evaluation using sensitivity,
specificity, and overall accuracy.

doi:10.1371/journal.pone.0125049.g001
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1. Data integration: All data from several sources, as shown in Table 1, were collected and in-
tegrated into a unified data storage system. Before feeding the collected data into a forecast-
ing model, the data were extensively processed by data cleaning, transformation,
categorization, and scaling. As a result, 648 samples remained.

2. Model construction: Two well-known data mining techniques were applied for the predic-
tion task, the K-nearest neighbor (KNN), the decision tree (DT), the NN, and the SVM with
different kernels. These supervised classification algorithms were deployed in the models,
and the predicted results were compared and analyzed. The SVM was selected because it
has been proven to provide a better performance and processing time compared to the NN
and has a good generalization performance [38].

3. Predicted result evaluation: The predicted results will be compared to the observed data to
assess the constructed model using all measures addressed in Eqs 4-6. In addition, a 10-fold
cross-validation approach was exploited to measure the proposed model effectiveness. The
cross-validation procedure can prevent the problem of overfitting. Because changing the pa-
rameters of the SVM directly affects the values of sensitivity, specificity, and overall accura-
cy, it is important to determine the optimal parameters to obtain the highest accuracy with
a good sensitivity and specificity.

Table 1 lists the variables considered in the proposed forecasting model. The values of all
variables were collected between 2007 and 2013

Table 2 demonstrates more details of the three proposed processes in Fig 1. The data clean-
ing involved amending or removing data that were incorrect, incomplete, improperly format-
ted, or duplicated. These data should be removed from the model because they can lower the
classification or forecasting power. Because data come from various sources, their format and
structure are often different and not ready to be processed. Therefore, they need to be restruc-
tured into a format that the SVM tools can execute. In this experiment, all data were trans-
formed into a CSV format. In addition, both techniques require that each data point is
represented as a vector of a real number. Hence, a categorical variable, e.g., province and sea-
son, must be converted into a numerical value. Here, season was converted into m numbers to
represent the m-season attribute. Only one of the m numbers is one, and others are zero. For
example, a three-season attribute, such as summer, rainy, and winter, can be represented as
(1,0,0), (0,1,0), and (0,0,1). This representation is more stable than using a single number, e.g.,
1, 2, and 3, as suggested by Hsu et al [39].

Table 1. Independent and dependent variables collected from various sources and used in the proposed forecasting model.

Variables

1. Temperature
2. Rainfall

3. Humidity

4. Wind (speed)

5. Ae. aegypti larvae infection rate

6. Female mosquito infection rate

7. Male mosquito infection rate

8. Population density

9. Dengue cases (later used to compute

morbidity rate)

doi:10.1371/journal.pone.0125049.t1001

Sources Unit
Thai Meteorological Department Celsius (C)
Thai Meteorological Department Millimeters (mm)
Thai Meteorological Department Percentage (%)
Thai Meteorological Department Miles per hour
(mph)
Parasitology Department, Chulalongkorn University Percentage (%)
Parasitology Department, Chulalongkorn University Percentage (%)
Parasitology Department, Chulalongkorn University Percentage (%)
Ministry of Interior People
National Trustworthy and Competent Authority Epidemiological Surveillance and Cases

Investigation Department (NTCAESI)
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Table 2. Experimental procedure.

: Data cleaning: e.g., removing missing values
: Formatting data to for SVM and Poisson regression, e.g., CSV
: Categorizing the features of a model
: Conducting simple scaling (standardization) of the features
: Applying the forecasting techniques using:
1) K-Nearest Neighbor (KNN)
2) Decision Tree (DT)
3) Neural Network (NN)
4) Support Vector Machine using Linear kernel (SVM-L)
5) Support Vector Machine using Polynomial kernel (SVM-P)
6) Support Vector Machine using Radial basis function kernel (SVM-R)
6: Evaluating all models using these measures:

a A~ 0N =

1) Sensitivity, specificity, and overall accuracy
2) 10-fold cross-validation
7: Selecting the best model

doi:10.1371/journal.pone.0125049.t002

Data scaling refers to the method used to normalize the range of features or independent
variables of a data mining model. This approach can ensure that data are not overwhelmed by
each other in terms of distance measures [33]. We used a standardization technique (Eq 8) to
rescale both the training and testing data:

, _x—mean(f)

~ stddev(f) (®)

where «’ is a standardized value, x is an original value, and mean and stddev are a median and a
standard deviation value of each feature (f), respectively.

Having scaled the data, they are ready to be processed by the techniques mentioned in step
5 of Table 2; the results of each model will be assessed by sensitivity, specificity, and accuracy.
Finally, the model that best optimizes those measures is selected.

Results
Mosquito infection rate and observed data analysis

We hypothesized that the Ae. aegypti infection rate was associated with the morbidity rate of
dengue outbreaks. Therefore, we initially studied the relationship between these parameters by
plotting the line charts, as shown in Fig 2, compared to the plot of the observed dengue cases.
The line chart in Fig 2 (A) and 2 (C) demonstrates that the trends of observed dengue cases
and female mosquito infection rates fluctuated similarly. These trends show that they were pos-
itively correlated with the observed dengue cases. In contrast, the infected male mosquitoes
and the dengue cases are divergent, and thus, they are potentially not associated with each
other. The climate factors seemed to be less associated with the observed data, except for the
rainfall amount (Fig 2D). More discussion about this can be found in the Discussion.

Prediction performance evaluation

Data scaling performance study. Because different data attributes have different numeric
ranges, greater numeric ranges can dominate those with smaller numeric ranges. Thus, scaling
techniques are required to resolve this problem. Another benefit of scaling is that it avoids nu-
merical difficulties during calculations. Because SVM kernel values usually depend on the
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Fig 2. The trends of four predictors, dengue cases, and the infection rates of female, male, and larvae
mosquitoes, are plotted and compared. This figure illustrates the trends of four parameters in Nakhon
Pathom. The trends of these parameters in the other two provinces (Ratchaburi and Samut Sakhon) are
similar but are not shown due to space limitations.

doi:10.1371/journal.pone.0125049.9002

inner products of feature vectors, e.g., the linear kernel (Eq 1) and the polynomial kernel (Eq
2), large attribute values might cause numerical problems [39] and result in high computation-
al costs. Table 3 demonstrates the forecasting power of three SVM techniques, SVM-Linear

Table 3. The effect of scaled and unscaled data on prediction performance and model construction time.

Dataset Kernels Sensitivity Specificity Accuracy Time to construct a model (seconds)
Unscaled SVM-L 1 0.316 75.930 30.2201

SVM-P 1 0.684 88.890 595.5434

SVM-R 1 0.373 90.741 0.0135
Scaled SVM-L 1 0.474 81.482 0.0147

SVM-P 0.882 0.789 90.740 0.0183

SVM-R 0.947 0.947 96.296 0.0119

doi:10.1371/journal.pone.0125049.1003
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(SVM-L), SVM-Polynomial (SVM-P), and SVM-RBF (SVM-R), and the computational time
required to construct a model using unscaled and scaled data. SVM-L and SVM-P require
30.2201 and 595.5434 seconds, respectively, whereas SVM-R requires only 0.0135 seconds to
construct the model. There is a dramatic decrease in the computational time of SVM-L and
SVM-P when the data are scaled (0.0147 and 0.0183, respectively), and the prediction powers
are also improved.

Noticeably, the results from the testing in Table 3 showed that the highest prediction accu-
racy, sensitivity, and specificity were found in the RBF kernel with scaled data. Thus, SVM-R
was chosen as the main model for morbidity rate prediction in this study.

SVM with RBF kernel parameter analysis. There are two parameters for the RBF kernel:
Cand ¢, in which Cis the parameter for regularization, determining the trade-off between the
fitting error minimization and the smoothness of the estimated function. The second parame-
ter, o, is the kernel function parameter. There is no a structural way to select the optimal values
of C and ¢” for a given problem. This method is called a grid search and involves numerous tri-
als and errors [38]. This section aims at investigating the effect of those two parameters on the
performance of the RBF-based prediction model by varying one parameter at a time.

Various pairs of (C, 0°) values were tried, and the one with the best accuracy was selected.
Fig 3 shows the evaluation parameter values at various values of ¢ in which C is fixed at 1.0
(default value). Fig 3(A) illustrates the results for determining the optimal value of o”. The val-
ues of 0> were varied exponentially from 27%,277,27°,. . ., 2" (the mean absolute error [MAE]
and prediction accuracy remained steady afterwards). The figure shows that the lowest MAE
value of 0.0926 and the highest prediction accuracy of 90.74% were obtained when o” was
0.1250 (27%). This value was selected as the optimal value of 0* and was used to determine the
optimal value for C. Fig 3(B) shows the results of various values of C when o was chosen to be
0.1250 based on the previous experiment. The value of C was varied from 27 to 2*. A C value
of 8 (2), in which the MAE and the prediction accuracy remained steady afterwards, was cho-
sen because it produced the highest predictive accuracy (96.296%) and the lowest MAE
(0.037). Based on these results, the optimal SVM-RBF predictive model was defined by a value
of C equal to 8 and a value of o” equal to 0.1250 using 10-fold cross validation.

Significance of the female mosquito and Ae. Aegypti larvae infection rate features. This
experiment aimed to study the significance of two new features found by the data analysis in
Fig 2: the female mosquito and larvae infection rates. Two models were constructed to compare
the predicted results. The first prediction model applied all nine attributes addressed in
Table 1, while the second model eliminated the two new variables to study the effect of the two
new parameters. Both models deployed three classification techniques, SVM-L, SVM-P, and
SVM-R. The predicted performances were assessed by three measures (Eqs 4-6) and illustrated
in Table 4. The candidate models were trained using the 2007-2013 data. To choose between
those techniques, the model with the highest accuracy was determined. As shown in Table 4,
all techniques in the first model yielded a higher prediction performance in terms of sensitivity,
specificity, and accuracy than in the second model. This result suggests that the omitted in-
fected female mosquito and infected larvae variables significantly affected the prediction per-
formance. It was noted that the SVM-R had the highest prediction accuracy, up to 96.296%,
among all the models. Therefore, this confirms the superior predictive power of the RBF kernel
of SVM compared to other kernels using optimal parameters from the previous experiment of
this study.

Comparing the chosen model with classical forecasting techniques. The purpose of the
following experiment was to compare the SVM-R model with the other SVM kernels as well as
other state-of-the-art classification techniques (Fig 4), such as the KNN, DT, and standard back
propagation NN. These techniques are popular and have been applied in several research areas
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Fig 3. The prediction performance comparison based on the MAE and forecasting accuracy. Fig 3 (A)
shows the MAE and the prediction accuracy with varying values of o® while C was fixed. In contrast, the value
of C was varied and o® was fixed in Fig 3 (B) to determine the optimal values for the MAE and

prediction accuracy.

doi:10.1371/journal.pone.0125049.g003

such as image processing, business data mining, and medicine. The collected data were
completely separated (no overlapping instances) into a training set and a test set. To avoid
model overfitting, a 10-fold cross validation was deployed. Fig 5 shows the values of sensitivity

Table 4. Prediction performance comparisons of five techniques of two models.

Techniques 15t Model 2" Model

Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)
SVM-L 0.579 1 85.185 0.474 1 81.482
SVM-P 0.737 1 90.74 0.684 0.929 87.037
SVM-R 0.947 0.947 96.296 0.882 0.789 90.740

doi:10.1371/journal.pone.0125049.1004
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Fig 4. Prediction performance comparison based on specificity and sensitivity of the six models. A higher specificity and sensitivity suggest a better
prediction efficiency. Among the evaluated models, the SVM-R obtained the highest prediction performance by achieving sensitivity and specificity of 0.8747
using a 10-fold cross-validation performed on the test set data.

doi:10.1371/journal.pone.0125049.g004

and specificity of all techniques, whereas Fig 5 demonstrates the minimum, average, and maxi-
mum values of prediction accuracy obtained from the test set of the six forecasting models as
well as the average accuracy yielded from the training set (train-max). The square boxes in Fig
5 indicate the predictive accuracy differences between the training set and the test set. The
SVM-R was superior to the other techniques because it obtained the highest sensitivity
(0.8747) and specificity (0.8747), as shown in Fig 5, resulting in achieving a prediction accuracy
0f 96.26% in the training set and 88.37% in the test set.

Discussion

The results of this study illustrated that the infection rates in female mosquitoes and larvae
influenced the number of dengue cases in three provinces of Thailand. Fig 2(A) indicates that
the female mosquito infection rate is strongly related to the number of observed dengue cases
because they have similar line chart trends and because female mosquitoes typically forage and
bite humans. Transovarially infected mosquitoes are known to be capable of transmitting the
virus through biting [40]. Thus, a higher female mosquito infection rate results in higher biting
activity rates, and, consequently, more dengue cases. In contrast to Fig 2(B), the dengue cases
were not clearly associated with the male mosquito infection rate because their trends were di-
vergent. Male mosquitoes do not hunt; therefore, the number of dengue cases may not be
linked to the male mosquito infection rate. Fig 2(C) revealed that the high infection rate of Ae.
aegypti larvae mosquitoes found in the summer was correlated to the high number of dengue
cases in the following rainy season. When the infection rate of larvae declines, the morbidity
rate is also lower. This phenomenon occurs repeatedly every year because a high infection rate
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Fig 5. Prediction performance comparison based on the maximum, average, and minimum accuracy of the six models compared with the
accuracy of the training set. The experiment was conducted 10 times using 10-fold cross-validation performed on the training set and the test set data
using the SVM-L, SVM-P, SVM-R, NN, DT, and KNN techniques. All the collected results were averaged.

doi:10.1371/journal.pone.0125049.g005

of larvae in the summer leads to a high infection rate of female mosquitoes in the following
rainy season. This result supports the report of Scott et al. [41] regarding the largest female
populations being present in the rainy season (May-June) in Thailand. As a result, the biting
activity rate for female mosquitoes increases and, consequently, more dengue cases occur.
Thus, the larva infection rate in the summer was also positively correlated with the number of
observed cases in the following rainy season. This discovery is very useful because it is a signifi-
cant signal that indicates the severity of dengue outbreaks in the near future. In other words, if
we know the infection rate of Ae. aegypti larvae in the summer, we can effectively predict the
dengue incidence in the following rainy season. The amount of rainfall also seems to be associ-
ated with the number of cases, which results in a pattern that is similar to the pattern for the
number of dengue cases, as shown in Fig 2 (D). The large volumes of standing water on private
properties can revive mosquito eggs and subsequently create a surge in the emergence of in-
fected mosquitoes. While some studies [5,12] have reported that climate variables play a key
role in transmission during outbreaks, the data shown in Fig 2E-2G seem negatively associated
with the observed number of dengue cases. This result occurs primarily because the studied
areas are geographically similar, and thus, those climate factors are not very different. There-
fore, the biting activity rates of the Ae. aegypti females in the studied areas are similar. As such,
using only climate factors will lead to poorly predictive results.

Table 3 shows the importance of using the scaling method before forecasting data using var-
ious SVM kernels. The SVM-L and SVM-P suffered from high computational costs compared
to the SVM-R because both SVM kernels depend on inner products of feature vectors (Eq 1
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and 2). Therefore, these kernels are typically confronted with numerical problems due to the
large difference of numeric ranges in the feature vectors. For example, the population size in
each province in this study included over 100,000 people, while the mosquito infection rate
was less than 100. In this case, the population density has a wide range of values, and the dis-
tance will be governed by this particular feature. Therefore, standardizing the range of all fea-
tures allows for each feature to contribute in an approximately proportional manner to the
final distance. The data in this study were standardized to the range of the independent vari-
ables or the features of the data. As a result, the computational time dramatically decreased,
and more importantly, the prediction power significantly increased. Table 3 also shows that
the prediction performance of the SVM-R increased from 90.74 to 96.29% after scaling the
data, whereas the computational cost decreased slightly. Because computational time is crucial
when dealing with large datasets, scaling the data is a very useful process for constructing a
forecasting model for larger amounts of data in the future and for enhancing the

prediction efficiency.

When the SVM is chosen as a forecasting technique for the dengue severity level prediction,
we need to first consider what kernel function is the most suitable for the dengue data. A dy-
namic feature of the data used to predict the dengue severity level, e.g., climate factors and the
mosquito infection rate, is that they are nonlinear. It has been suggested that using nonlinear
kernel functions could achieve a better performance than linear kernel functions. Therefore,
the SVM-R is used as the kernel function of SVM because it can effectively handle instances in
which the relationship between the independent and dependent variables is nonlinear. In addi-
tion, the RBF kernel has less complexity (Table 3) than the polynomial kernel because it has
less hyperparameters, which influences the complexity of model selection. This experiment
demonstrates the performance of prediction (Table 3) obtained from the RBF kernel compared
with the polynomial and linear kernels. However, Chih-Wei et al. [39] suggested that the RBF
kernel will not improve the performance of classification when the number of features is very
large; in that case, the linear kernel is preferred. Selecting the most suitable SVM-R kernel pa-
rameters for a predictive model is another challenging task of this research. The determinations
of the optimal values of two important parameters, C and ¢°, for the SVM-R, are shown in Fig
3 (A) and 3 (B). This experiment explains that the performance of the kernel depends on the
adjustable parameter o> and should be carefully tuned to the problem at hand. Manually tuned
parameters in this study seemed naive and required a high experimental time. However, only
two parameters did not need much more computational time than the heuristic methods. In
addition, C and ¢” are independent, and thus, the grid search can be easily parallelized, while
this is difficult in several advanced methods because they are iterative processes [39].

In addition, we compared the SVM-R with other state-of-the-art techniques. The SVR-R
provided the best values of all the evaluation criteria, sensitivity and specificity (Fig 4). The NN
is an alternative model that can achieve a high prediction performance in terms of sensitivity
and specificity. However, the SVM-R obtained a higher specificity and sensitivity than the NN.
The SVM-R often outperforms the NN in practice because it addresses the biggest problem of
the NN; SVMs are less prone to overfitting. The main drawback of the NN is that it has an ex-
pensive computational cost due to its algorithm complexity and curse of the dimension prob-
lem. Learning too much of the complexity of the NN results in overfitting the training set [38].
Another issue to note is that even if the NN solutions used tend to converge, this may not result
in a unique solution [42]. Although the DT and KNN are simple and have a reduced computa-
tional cost, their prediction powers are significantly lower than the NN and SVM. The KNN
had a specificity of 0.105, indicating that 10.5% of the high morbidity rate data instances were
predicted as low morbidity rates, whereas the DT had only 31.6% specificity. These results are
consistent with Fig 5, which shows that both the DT and KNN techniques obtained low
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prediction accuracies compared to the others. Among those techniques, the SVM-R outper-
formed the other state-of-the-art techniques measured by the maximum, average, and mini-
mum accuracy. In addition, the difference of prediction accuracy obtained from the training
set and test set of the SVM-R was small (demonstrated by the height of the rectangular boxes),
which indicates that the model was not overfit.

The results in Table 4 suggest the significance of the two introduced predictors for the fore-
casting model. Infected dengue viruses in larvae and female mosquitoes have been demonstrat-
ed as the main determinants of outbreaks. They can increase the prediction accuracy by 4.32%
on average for all models. The sensitivity and specificity also have been shown to vary depend-
ing on those two new parameters because they decrease when these predictors are omitted.
Therefore, removing these parameters from the predictive model results in a decline of all the
evaluation criteria, which has never been studied in any previous research.

Unlike other state-of-the-art frameworks, the originality and novelty of this work was intro-
ducing the use of the Ae. aegypti female mosquito and larva infection rates in the forecasting
model to extrapolate the morbidity rate of DF. Our study results demonstrate that newly intro-
duced predictors could effectively signal the risk of epidemics to local authorities in Thailand
and help to reduce the severity of the outbreak in the country. It provides better prediction ac-
curacy compared to state-of-the-art forecasting models such as the NN, DT, and KNN models
In addition, the predictive model will inevitably complement and enhance the success of na-
tional dengue control. However, there are some limitations to our study. First, mosquito infec-
tion rate data have a limited availability in other areas. Even with the impressive efforts of the
research team from Chulalongkorn University in collecting mosquito data from the studied
areas, detecting the dengue virus in mosquitoes using the RT-PCR technique is time-consum-
ing and an expensive laboratory cost. It was impossible to collect data and obtain the infection
rate of mosquitoes for the whole country within a limited time (12 months) for this research
project, which leads to the second limitation; the studied areas were small and fixed. However,
the dynamic of the morbidity rate in the community is usually influenced by local factors.
Therefore, the prediction model for a dengue outbreak is usually applicable only to a specific
study area [5]. Although the prototype in this research exploits local dengue data, the proposed
methodology in this research could be applicable for other geographical areas. Furthermore,
the findings of this research could apply to other viral infectious diseases transmitted by mos-
quitoes, e.g., malaria or yellow fever.

Further studies are suggested to implement the forecasting model as a web-based applica-
tion accessible by a user or non-technical user. All relevant data for prediction should be trans-
formed into a data warehouse that is able to rapidly generate reports for users, which will also
create advantages for supporting decision making by policy makers to strengthen dengue con-
trol and take precautions to prevent dengue epidemics from becoming pervasive.
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