Skip to main content
. 2015 May 11;10(5):e0126406. doi: 10.1371/journal.pone.0126406

Fig 3. Synergism between DEET and propoxur is effective in vivo, in female mosquitoes Aedes aegypti.

Fig 3

A) Mortality rates relative to the increasing concentrations of DEET (ng of active ingredient (a.i.) / mg female) applied on the thorax of females Aedes aegypti in the presence/absence of propoxur (red triangles represent the mortality rates induced by increasing doses of DEET alone and blue diamonds represented the increase of mortality rates when increasing doses of DEET were combined with propoxur at LD10). B) Variation of the estimate of DEET/propoxur interaction term in our general linear model relative to the applied doses of DEET. When the interaction term is significantly above 0 (non overlapping of 95%CI), the interaction between DEET and propoxur is synergistic; when the interaction term is significatly below 0, the interaction is antagonistic. C) Proposed model summarizing the essential components of the intracellular signaling pathway that may explain the synergism between DEET and propoxur in insect cell (see text for details). AChE, acetylcholinesterase; CaM, calmodulin; PI-PLC, phosphatidylinositol (PI)-specific phospholipase C; IP3, inositol 1,4,5-triphosphate; IP3R, receptor; mAChR, muscarinic ACh receptor.