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Abstract

Variable screening has emerged as a crucial first step in the analysis of high-throughput data, but 

existing procedures can be computationally cumbersome, difficult to justify theoretically, or 

inapplicable to certain types of analyses. Motivated by a high-dimensional censored quantile 

regression problem in multiple myeloma genomics, this paper makes three contributions. First, we 

establish a score test-based screening framework, which is widely applicable, extremely 

computationally efficient, and relatively simple to justify. Secondly, we propose a resampling-

based procedure for selecting the number of variables to retain after screening according to the 

principle of reproducibility. Finally, we propose a new iterative score test screening method which 

is closely related to sparse regression. In simulations we apply our methods to four different 

regression models and show that they can outperform existing procedures. We also apply score 

test screening to an analysis of gene expression data from multiple myeloma patients using a 

censored quantile regression model to identify high-risk genes.
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1 Introduction

High-dimensional datasets are now common in clinical genomics research. Though 

regularized estimation can consistently estimate sparse regression parameters even when p > 

n (Bühlmann et al., 2011), in practice these methods still perform poorly if p ≫ n (Fan and 

Lv, 2008). Variable screening is crucial for quickly reducing tens of thousands of covariates 

to a more manageable size. Our interest in screening is motivated by our work with censored 

quantile regression in the study of the genomics of multiple myeloma, a blood cancer 

characterized by the hyperproliferation of plasma cells in the bone marrow. We are 

interested in identifying genes highly associated with the 10% quantile of the conditional 
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survival distribution in order to better understand the biological basis of high-risk myeloma, 

in view of personalized medicine.

Perhaps the most popular screening framework is marginal screening, where each covariate 

is individually evaluated for association with the outcome and those with associations above 

some threshold are retained. Currently three major classes of marginal screening methods 

have been proposed. Wald screening retains covariates with the most significant marginal 

parameter estimates, and has been theoretically justified for generalized linear models and 

the Cox model (Fan and Lv, 2008; Fan and Song, 2010; Zhao and Li, 2012). Semiparametric 

screening assumes a functional form for the regression model but not for the probability 

distribution, and uses model-free statistics to quantify the associations between covariates 

and the outcome. Such methods have been proposed for single-index hazard models, linear 

transformation models, and general single-index models (Fan and Song, 2010; Zhu et al., 

2011; Li et al., 2012a). Finally, nonparametric screening does not assume a functional form 

for the regression model and instead approximates it, using for example a B-spline basis. It 

retains covariates whose estimated functional relationships have the largest L2-norms. Such 

methods have been studied for linear additive models and censored quantile regression (Fan 

et al., 2011; He et al., 2013). The distance correlation-based screening method of Li et al. 

(2012b) requires very few assumptions about both the regression model and the probability 

model. It is well-known that marginal screening can miss covariates that are only associated 

with the outcome conditional on other covariates. To address this difficulty, iterative 

versions of several of these procedures have been proposed, though without theoretical 

support.

However, there are several issues that make existing screening methods unsuitable for 

application to our multiple myeloma analysis. Wald screening using censored quantile 

regression estimators, such as those of Honore et al. (2002), Portnoy (2003), Peng and 

Huang (2008), or Wang and Wang (2009), has not been theoretically justified. 

Semiparametric screening is not appropriate because the probability model is actually 

critical in our case: we are interested only in genes that affect the 0.1 quantile, whereas 

semiparametric screening would identify genes that affect any quantile of the survival 

distribution. There were no nonparametric screening methods for censored quantile 

regression until very recently, with the work of He et al. (2013), but in practice their 

approach is still computationally cumbersome, especially for resampling or cross-validation 

procedures where screening must be repeated multiple times. There is also no efficient 

iterative screening procedure for this model.

To address these issues, we propose in this paper a marginal score testing framework, where 

we use score tests rather than Wald tests to effect variable screening. This has several 

advantages. First, score screening is a general approach which can be applied to any model 

that can be fit using an estimating equation, including censored quantile regression, as well 

as to semi- and nonparametric regression models. Second, theoretical justification for score 

test screening is much simpler than for other screening methods and generally requires only 

concentration inequalities. Third, because they only require fitting the null model, score tests 

are exceedingly computationally efficient. Finally, the score test perspective suggests a new 
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method for iterative screening that is easy to implement and is closely related to sparse 

regression, suggesting a possible approach to a theoretical justification.

In this paper we make three contributions. First, in Section 2 we propose marginal score test 

screening procedure and illustrate its application to several popular models. We give 

theoretical justifications for these procedures in Web Appendix A. Second, in Section 3 we 

propose a resampling-based method for choosing the number of covariates to retain after 

screening, based on the principle of reproducible screening. This procedure is only practical 

because score screening can be quickly computed. Third, in Section 4 we propose an 

iterative score test screening procedure based on projected subgradient methods from the 

numerical optimization literature. We illustrate our procedures on simulated data in Section 

5, use them in our MM analysis in Section 6, conclude with a discussion in Section 7.

2 Score test screening

2.1 Method

Let  be the vector of covariates measured at the kth observation on 

the ith subject, where k = 1, …, Ki and i = 1,…, n, and let β0 be a set of possibly infinite-

dimensional parameters quantifying the association of the Xik with the outcome. For 

example, in linear models the outcome is a function of  and β0 is a vector of scalar 

coefficients, and in additive models the outcome is a function of  and β0 is the 

set of functions fj. We will say that β0j = 0 implies that the jth covariate is not functionally 

associated with the outcome and is thus unimportant, though this is a slight abuse of 

notation, as β0j for irrelevant covariates would equal the scalar zero in linear models but the 

zero function in additive models. Finally, let U(β) be an estimating equation for β0, such that 

U(β0) → 0 in probability as n → ∞.

Denote the set of important covariates by . We assume that its size 

is small and fixed or growing slowly. Our proposed marginal score test screening proceeds 

as follows:

1. Center and standardize each covariate to have mean 0 and variance 1.

2. For each covariate j, construct an estimating equation for β0j assuming the marginal 

model that all other covariates are unrelated to the outcome. Denote this marginal 

estimating equation by 

3. Retain the parameters  for some threshold γn.

Each  is the numerator of the score test statistic for H0 : β0j = 0 under the jth 

marginal model and thus is a sensible screening statistic. We could also screen after dividing 

each  by an estimate of its standard deviation. However, this would add 

computational complexity to our procedure, and even without doing so we will be able to 

achieve good results and give theoretical performance guarantees. In the presence of 

nuisance parameters, such as intercept terms, we propose using profiled score tests, where 
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we first estimate the nuisance parameters under the null model and then evaluate the 

fixing the value of nuisance terms at these estimates. To avoid theoretical difficulties we will 

assume that nuisance parameters are either known, or can be well-estimated in independent 

datasets, so that in the screening step they can be treated as constants.

In order for score screening to have desirable theoretical properties, we need the sample 

 to quickly approach its population limit. Let  be the limiting marginal 

estimating equation, such that .

Condition 1—For κ ∈ (0, 1/2) and c2 > 0, .

In Web Appendix A we discuss the verification of Condition 1, which is often a simple 

consequence of a concentration inequality, and explicitly verify it for censored quantile 

regression. We also show that under this condition and a few other mild assumptions:

Theorem 1—If γn = c1n−κ/2, then .

Theorem 2—If γn = c1n−κ/2, then , where  is related to 

the largest singular value of the negative Jacobian of the limiting estimating equation.

Theorem 1 shows that marginal score testing can capture all of the important covariates with 

high probability. This holds even if pn grows exponentially in n. Theorem 2 shows that the 

number of selected covariates is not too large, with high probability. For example, if 

increased only polynomially in n,  would increase polynomially, and the false positive 

rate would decrease quickly to zero.

2.2 Examples

When applied to the models studied thus far in the screening literature, score test screening 

gives procedures that are very similar to previously proposed procedures. Throughout this 

section we let Ki = 1, with each covariate vector . We also assume that 

the Xij have mean 0 and variance 1.

First consider the usual ordinary least squares model studied by Fan and Lv (2008), where Yi 

is a continuous outcome. The full model is , so the jth marginal score 

equation is . Score test screening then retains 

, which is exactly the correlation screening procedure 

originally proposed by Fan and Lv (2008).

Next consider the Cox model. Let Ti be the survival time, Ci the censoring time, Yi = min(Ti, 

Ci), δi = I(Ti ≤ Ci), Ñi(s) = I(Ti ≤ s, δi = 1), and Ŷi(s) = I(Yi ≥ s). The marginal score 

equations are 
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and . This is exactly the screening procedure used by Gorst-

Rasmussen and Scheike (2013).

Finally consider a nonparametric model, where we assume only that P(Yi < y |Xi) has a 

continuous distribution function F0(y; Xi, β0) whose dependence on Xi is parametrized by 

β0. Conditional on Xl and Xm, F0(Yl; Xl, β0) and F0(Ym; Xm, β0) are independent and 

identically distributed uniform random variables. This motivates defining U(β) =

Since E{U(β0)} = 0, this is an unbiased estimating equation for β0. Though it cannot be used 

to estimate β0 because the functional form of F0 is unknown, it is still useful for constructing 

a screening procedure. The marginal score equations are 

When βj = 0, F0(y; Xlj, 0) is a monotone function that does not depend on Xlj, which implies 

that  and therefore 

. This is very similar to proposal of Zhu et al. 

(2011), who suggested .

Each of these screening procedures can be implemented as or more quickly than the 

corresponding Wald screening. In addition, the nonparametric screening procedure is 

impossible in the Wald framework. Each of these screening procedures can be theoretically 

justified by verifying Condition 1 and applying Theorems 1 and 2.

3 Reproducible screening threshold

In practice, it is unclear how best to choose the screening threshold γn. Fan and Lv (2008) 

suggested retaining the top n/log n covariates. Zhao and Li (2012) proposed a method to 

choose γn based on the desired false positive rate of the set of retained covariates. Similarly, 

Zhu et al. (2011) suggested simulating auxiliary variables and setting the threshold so that 

no auxiliary variables are retained, and proved that this procedure controls the false positive 

rate of screening. Finally, He and Lin (2011) used the stability selection approach of 

Meinshausen and Bühlmann (2010) to retain covariates that are frequently selected when 

screening is performed on multiple subsamples of the data.
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Though controlling the false positive rate is important, we believe that in practice the more 

relevant issue is the reproducibility of the screening procedure. Let  be the top j 

variables retained after screening our observed data. Suppose we had B other independent 

samples of the same size, from the same generating distribution, and let  be the top j 

variables we retain after screening the bth sample. Finally, let  be the 

size of the overlap between the two sets. We would like to choose j such that the  are 

large on average, so that our screening results are reproducible across different samples. On 

the other hand, when j is large, the  will be large even if no variables were truly 

associated with the outcome, so reproducibility would be uninformative.

We propose comparing the size of the overlap to the number we would expect by chance 

under the null hypothesis that none of the pn variables are associated with the outcome. The 

variables in  can then be thought of as having been chosen at random. Conditional on 

the observed dataset, the  would therefore follow a hypergeometric distribution, with

where the subscripts indicate that the expectation and variance are calculated under H0. We 

propose to retain the top j variables such that the average of the  shows the greatest 

deviation from , standardized by .

Because we do not have B independent datasets, we approximate the  using bootstrap 

samples of our observed data. Specifically, our threshold for reproducible screening is 

calculated as follows:

1. Choose a step size s and let .

2. For each , screen the observed data to obtain .

3. For each , generate B bootstrap samples and screen the bth sample to get 

.

4.
Let .

5. Retain , where

When the step size s = 1, we search for the optimal j across all j = {1, …, pn}. In practice, to 

reduce computation time we can search over a smaller subset by taking a larger step size. 
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Our method is closely related to higher criticism thresholding (Donoho and Jin, 2008), but 

evaluates the reproducibility of each potential set of retained covariates, whereas higher 

criticism does not.

4 Iterative score test screening

When the covariates are highly correlated, marginal screening may incur a large number of 

false positives, and may miss covariates that are only important conditional on other 

covariates. Fan and Lv (2008) and Fan et al. (2009) therefore proposed iterative screening: 

an initial set of covariates is first identified using marginal screening. Next a multivariate 

regularized selection procedure is used to further select a subset of these covariates. Finally 

the remaining covariates are again screened individually, but this time controlling for the 

covariates in the subset. All selected covariates are subjected to multivariate selection again, 

and the procedure iterates until some stopping rule is achieved.

However, this algorithm requires fitting regularized regression estimates at each step, which 

for complicated models can be difficult to implement and computationally intensive. 

Furthermore, its theoretical properties are very difficult to analyze. Zhu et al. (2011) 

proposed an alternative method which at each step performs marginal screening on the 

projections of each remaining covariate onto the orthogonal complement of the columns 

space of the already selected covariates. This method is akin to forward selection, so a 

covariate cannot be dropped from the selected set once it has been added.

Our score-test screening perspective suggests a new approach to iterative screening:

1. Set β(0) = 0.

2. For k = 1, …, K:

a. Let b(k) = β(k−1) − αk U(β(k−1) for some step size αk.

b.
Let β(k) = ∏R(b(k)), where  is the Euclidean projection onto 

the ℓ1-ball of radius R.

3.
Retain covariates , where  j is the jth component of β(k).

The intuition is that when k = 1, step 2(a) is equivalent to calculating the marginal score 

statistics  and step 2(b) sets all but the largest of them to zero. Thus after a single 

iteration, this procedure is identical to score test screening. When k > 1, step 2(a) controls 

for the covariates selected in β(k−1) by using −αk U(β(k−1)) to update the importance of the 

covariate. Step 2(b) then again selects only the top covariates. In the ideal case where the 

sample size is infinite and β(k−1) = β0, step 2(a) gives b(k) = β0 and step 2(b) selects the 

largest components of β0.

Our algorithm has several advantages. First, it does not require fitting any regularized 

regression estimates and is relatively computationally convenient. The evaluations of the 

U(β(k−1) are quick to compute, and a simple algorithm for implementing the projection ΠR 

can be found in Daubechies et al. (2008), with a more efficient procedure proposed by Duchi 
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et al. (2008). Second, covariates can be dropped from the retained set as the iteration 

progresses, which is an improvement over forward selection. Third, our algorithm exactly 

corresponds to projected subgradient methods for minimizing nonsmooth functions. In fact, 

if U(β) is the subdifferential of some loss function f(β), it has been shown that

for certain choices of αk (Shor et al., 1985). The minimization problem on the right-hand 

side is exactly equivalent to the lasso (Tibshirani, 1996) with loss function f, and this links 

our iterative screening algorithm to sparse regression methods. Finally, when f is smooth, 

Agarwal et al. (2012) proved that β(k) converges to β0 under certain conditions, and if a 

similar result holds for nonsmooth f, this connection may allow for a theoretical analysis of 

iterative score test screening.

There are three tuning parameters we must set when implementing iterative screening: the 

radius R, the step sizes αk, and the maximum number of iterations. We can choose R by 

either guessing the ℓ1-norm of the true β0. Since our algorithm can be viewed as a regression 

estimator, we can also minimize information criteria or cross-validated prediction errors. 

Since iterative screening tends to be time-consuming in high-dimensions, it is easiest to 

avoid cross-validation and to use a liberal guess for ‖β0‖1. To set the step sizes, one popular 

rule is to let the αk be square summable but not summable, with αk = γ/k. To choose γ, we 

first note that it can be shown that

where D is the Euclidean distance from β(0) to a point that minimizes f and G is an upper 

bound on U(β(k)) for all k (Shor et al., 1985). When αk = γ/k, this converges to zero as K → 

∞, but fixing K we can derive that the right-hand side is minimized at 

. We propose approximating D by R and G by 

‖U(β(0))‖2 to get step sizes . Finally, the maximum number of 

iterations should ideally be as large as possible, with the speed of convergence depending on 

the restricted convexity and smoothness of f (Agarwal et al., 2012). In practice we stop after 

either U(β(k)) ≈ 0, β(k−1) ≈ β(k), or K = 250 iterations. Early stopping can be viewed as 

another way of regularizing the regression estimate β.

5 Simulations

5.1 Settings

We illustrate our marginal and iterative score test screening on data simulated from four 

models, described below along with their corresponding estimating equations. We ran 100 

simulations, each with n = 400 observations and pn = 10,000 covariates. We compared our 
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methods to the semiparametric screening of Zhu et al. (2011), and when possible we also 

compared to Wald and nonparametric screening.

Example 1 (accelerated failure time model)—The accelerated failure time model is a 

useful alternative to the Cox model for survival outcomes (Wei, 1992) and posits that 

where Ti are the survival times, Xi are pn × 1 covariate vectors, and ∈i 

are independent of Xi. We only observe follow-up times Yi = min(Ti, Ci) and censoring 

indicators δi = I(Ti ≤ Ci), but the β0 can be estimated using the estimating equation U(β) =

where  (Tsiatis, 1996; Jin et al., 2003; Cai et al., 2009).

Score test screening retains

and it is simple to verify Condition 1 for this procedure using Berstein’s inequality for U-

statistics (Hoeffding, 1963). We implemented Wald test screening using the estimator of Jin 

et al. (2003), available in the R package lss. Nonparametric screening has not been 

developed for this model.

We generated the covariates from a p-dimensional multivariate normal with a covariance 

matrix whose jkth entry equaled 0.8|j−k|. We then let β0j = 1.5 for j = 5, 10, 15, 20, 25 and j = 

35, 40, 45, 50, β0j = −1.5 for j = 30, and β0j = 0 for all other j. Under this construction the 

30th covariate is marginally unimportant. We separated the nonzero entries of β0 so that 

important covariates would be fairly correlated with a few unimportant covariates. Finally, 

we generated ∈i from a standard normal distribution, Ti according to the model, and Ci from 

an exponential distribution with rate parameter 0.3 to give 30% censoring.

Example 2 (linear censored quantile regression)—For a quantile τ ∈ (0, 1), 

censored quantile regression models posit , where the 

intercept βint(τ) and the coefficients β0(τ) depend on τ and ei(τ) has τth quantile equal to 0 

conditional on Xi. The h function is a known monotone transformation, and here we let it be 

the log function. In contrast to global models such as the Cox or accelerated failure time 

model, this censored quantile regression directly models the τ conditional quantile and 

makes no assumptions about the other quantiles. Honore et al. (2002) proposed the 

estimating equation U(β) =
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where Ŝh(C) is an estimate of Sh(C)(t) = P{h(Ci) ≥ t |Xi}. This estimate could be obtained by 

positing a regression model for h(Ci) conditional on the Xi, but for theoretical and practical 

simplicity we will make the common assumption that Ci is completely independent of Ti and 

Xi and use the Kaplan-Meier estimator (see for example Cheng et al. (1995), Uno et al. 

(2011), and He et al. (2013)).

Score test screening retains the parameters  where 

In Web Appendix A we verify Condition 1 for this screening procedure. To use score test 

screening, we first estimated the nuisance parameter βint under the null model in an 

independently simulated dataset. We implemented Wald screening using the estimator of of 

Peng and Huang (2008), available in the package quantreg. He et al. (2013) developed a 

nonparametric screening method for quantile regression, which we also applied.

We used the β0 and covariate structure as in Example 1, except that we thresholded each Xij 

to have a magnitude of at most 2. We then 

, where ∈i followed a standard 

normal distribution. Under this construction covariates j ∈ {5, …, 50} are associated with 

the τ = 0.5 conditional quantile, and j ∈ {10, …, 55} are relevant to the τ = 0.25 conditional 

quantile. Here the 30th covariate is again marginally unimportant. Finally, we simulated Ci 

from an exponential distribution with rate 0.15 to give 30% censoring.

Example 3 (nonlinear censored quantile regression)—We generated survival times 

from a nonlinear censored quantile regression model adapted from Example 4 of He et al. 

(2013). If g1(x) = x, g2(x) = (2x − 1)2, g3(x) = sin(2πx)/{2 − sin(2πx)}, g4(x) = 0.1 sin(2πx) + 

0.2 cos(2πx) + 0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3, we simulated

where ∈i followed a standard normal distribution. We generated the Xi as in Example 1 and 

log(Ci) from an exponential distribution with rate 0.15 to give 30% censoring.

Under the null hypothesis the functions gj = 0 for all j, so the marginal estimating equations 

 evaluated at zero are identical to those from Example 2. The theoretical justifications 

thus also follow from Example 2. We applied the nonparametric screening of He et al. 

(2013) as well, which was designed for this nonlinear setting.

Example 4 (Cox model with measurement error)—The Cox model is the most 

popular method for modeling the effect of covariates on survival, but in many cases the 

covariates may be measured with errors, where instead of observing Xi we observe only Wi 
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= Xi + ∈i. Not accounting for measurement error can result in bias, and to address this issue 

Song and Huang (2005) proposed the corrected score equation U(β) =

where , , 

 is the observed failure process, and Ŷi(s) = I(Yi ≥ s) is the at-risk 

process. The D(β) term is unknown in general unless the distribution of εi is known.

Under the null hypothesis of β0 = 0, D(0) = 0, so score test screening retains

regardless of the distribution of εi. Condition 1 can be verified using Lemmas 2 and 3 of 

Gorst-Rasmussen and Scheike (2013). Wald screening is not possible without knowing the 

distribution of εi, and nonparametric screening has not been developed for this model.

We generated the covariates and set β0 as in Example 1. We then generated the Ti from the 

usual Cox model with baseline hazard function equal to 1. Next we let Wi = Xi + εi, where 

the εi were independent of the Xi and normally distributed with a compound symmetry 

covariance matrix with correlation parameter 0.5. We generated log(Ci) from an exponential 

distribution with rate parameter 0.3 to give 30% censoring.

5.2 Results

These simulations were run on machines with 2 GHz Intel Xeon cores with 4GB of memory 

per core. Table 1 reports the average runtimes of these various screening methods and shows 

that our marginal score test procedure is by far the most computationally efficient. In 

Example 1 it is many orders of magnitude faster than Wald screening, and in Examples 2 

and 3 it is 60 times faster than the nonparametric method of He et al. (2013). In each 

example it is also at least twice as fast as the semiparametric estimator of Zhu et al. (2011).

Table 2 compares score test screening to existing methods in terms of the minimum number 

of variables that need to be retained in order to capture all of the important covariates. All 

methods were comparable in Example 1. In Example 2, score screening was comparable to 

Wald screening and outperformed the nonparametric screening of He et al. (2013). 

Semiparametric screening performed the best but was unable to identify the fact that β0,5 

was important only to the 0.5 quantile and β0,55 was important only to the 0.25 quantile. 

Screening was difficult for all methods in Example 3. In Example 4 the only two screening 

methods that could accommodate the unknown measurement error distribution were score 

and semiparametric screening, which performed similarly.
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Table 3 compares the performance of our threshold for reproducible screening to the n/log n 

rule of Fan and Lv (2008) and the auxiliary variables method of Zhu et al. (2011). The 

calculate our reproducible screening threshold we generated 100 bootstrap samples and 

searched for the optimal threshold j across j = {10, 20, …, pn}. All methods performed well 

in Example 1, giving high true positive rates along with substantial dimension reduction. In 

Example 2 at τ = 0.5, Wald and score screening gave the best true positive rates, but score 

screening had a higher true discovery rate and frequently retained fewer covariates. On the 

other hand, at τ = 0.25 the final model sizes after score screening were close to 2000. 

However, even retaining 2000 covariates still represents an 80% reduction in dimension. 

Screening procedures are designed to be followed by a second sparse regression step like 

lasso, and 2000 covariates is very manageable by these follow-up procedures. In Examples 3 

and 4, score screening was able to retain very few covariates while still giving very high true 

positive rates.

Table 4 reports the performance of our iterative screening procedure from Section 4, which 

we applied to the parametric models in Examples 1 and 2 with R = 20. In those models the 

30th covariate had a nonzero coefficient in the true model but was marginally unassociated 

with the outcome. In Example 1 iterative screening was able to capture that covariate in 

nearly all of the simulations. In Example 2, iterative screening was still to capture the 

variable after retaining only around 200–300 variables, as opposed to marginal score 

screening, which had to retain thousands of variables. However, the hidden covariate was 

only captured in very few simulations, indicating that variable screening for Example 2 is a 

difficult problem.

6 Data analysis

6.1 Analysis methods

We were interested in identifying genes highly associated with the 10% conditional quantile 

of the survival distribution of MM patients, because these genes are likely to important in 

high-risk MM. Previous studies have searched for genes associated with patient survival 

(Shaughnessy et al., 2007; Decaux et al., 2008), but their analyses did not recognize that 

some genes may only affect certain quantiles of the conditional survival distribution.

We used gene expression and survival outcome data from newly diagnosed multiple 

myeloma patients who were recruited into clinical trials UARK 98-026 and UARK 2003-33, 

which studied the total therapy II (TT2) and total therapy III (TT3) treatment regimes, 

respectively. These data are described in Zhan et al. (2006) and Shaughnessy et al. (2007), 

and can be obtained through the MicroArray Quality Control Consortium II study (Shi et al., 

2010), available on GEO (GSE24080). Gene expression profiling was performed using 

Affymetrix U133Plus2.0 microarrays, and we averaged the expression levels of probesets 

corresponding to the same gene, resulting in 33,326 covariates. We used the TT2 arm as a 

training set, giving us 340 subjects and 126 observed deaths, we validated the results on the 

TT3 arm.

To identify these high-risk genes we used the censored quantile regression of Honore et al. 

(2002), described earlier in Example 2 in Section 5.1, with the transformation function h = 
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log. First, in the screening step we compared Wald screening with the estimator of Peng and 

Huang (2008), marginal score screening, the semiparametric method of Zhu et al. (2011), 

the nonparametric method of He et al. (2013), and iterative score screening. In the score 

screening procedures we estimated the nuisance intercept parameter from another MM 

dataset collected by Avet-Loiseau et al. (2009). For iterative score screening we set R = 20.

Second, to set a screening threshold we retained the top n/log n covariates from Wald and 

nonparametric screening, used our reproducible screening threshold for score screening, and 

used the auxiliary variables procedure of Zhu et al. (2011) for semiparametric screening. For 

reproducible screening we generated 100 bootstrap samples and searched for the optimal 

threshold j across j = {10, 20, …, pn}, as in the simulations.

Finally, we used the screened covariates to estimate regression models. To our knowledge 

there do not exist any computationally convenient procedures for censored quantile 

regression for arbitrary quantiles that can be computed in high-dimensions, so we used our 

projected subgradient method from Section 4 to serve as a regression estimator. We tuned 

the procedure by selecting the value of R that minimized an approximate Bayesian 

Information Criterion, which we calculated as  log n with U the 

estimating equation of Honore et al. (2002) and  the regression estimate for a given value 

of R.

6.2 Results

Wald screening required 930 seconds, the nonparametric screening of He et al. (2013) 

required 240 seconds, iterative score screening required 84 seconds, the semiparametric 

screening of Zhu et al. (2011) required 44 seconds, and marginal score screening took only 5 

seconds. Because of the computational efficiency of score screening, calculating the 

reproducible screening threshold required only 934 seconds, which was still just as fast as 

Wald screening.

Table 5 reports the genes selected in the final censored quantile regression models. Iterative 

and reproducible score screening behaved very similarly, giving nearly identical final 

models. However, they shared no genes in common with the results of the other screening 

methods. One possible reason is that the correlations between the selected genes were not 

low. For example, among the top 100 genes selected by Wald screening, 20% of the 

pairwise correlations were above 0.25 and the largest reached 0.73, and for score screening 

20% of the correlations were at least 0.58 and reached 0.99. In other words, the different 

screening methods most likely selected blocks of correlated covariates together, and the 

same covariates could be ranked very differently by different methods if they were in 

different blocks. This highlights the importance of reproducibility.

To choose between the four models, we used the fitted regression models to predict the 0.1 

conditional quantiles in the TT3 arm and calculated validation metrics in two ways. First, to 

estimate the quantile prediction error we used the loss function
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(1)

where δi is the censoring indicator, Yi is the observed follow-up time, τ = 0.1 is the target 

quantile, and Ŷi is the predicted τ conditional quantile. A similar loss function was described 

by Honore et al. (2002). Second, we used the censored quantile regression approach of Peng 

and Huang (2008) to estimate the associations between the predicted quantiles and the true 

0.1 quantile. We report the t-statistics of association. Table 5 shows that the models selected 

after score screening performed the best under both validation metrics, followed by 

semiparametric screening. In contrast, the quantiles predicted after Wald and semiparametric 

screening were actually negatively associated with the true quantile. This suggests that the 

true relationship between the genes and the quantile may be significantly nonlinear. This 

nonlinearity can still be detected by the score screening methods.

7 Discussion

Motivated by our analysis of genomic factors influencing the high risk multiple myeloma 

patients, we introduced a new framework for variable screening based on score tests. Score 

screening is widely applicable to parametric, semiparametric, and nonparametric models, 

relatively easy to theoretically justify, and computationally efficient. Using score test 

screening in our MM analysis resulted in a predictive model for the conditional 10% 

quantile (high risk group) which was more accurate the models obtained using other 

screening methods.

We introduced a method for selecting the number of covariates to retain based on the 

principle of reproducible screening. It would be interesting to investigate the sure screening 

and false positive control properties of this procedure, in the context of Theorems 1 and 2. 

Our score testing framework also suggested a new approach to iterative screening based on 

projected subgradient methods, which can be applied even to nonsmooth estimating 

equations. It is related to sparse regression techniques and it is possible that this connection 

can lead to better a theoretical understanding of iterative screening, which is still elusive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Average runtime (seconds) of different screening methods.

Example Wald Score Zhu et al. (2011) He et al. (2013)

1 16533.06 1.91 8.20

2 1206.89 2.42 7.16 123.27

3 0.21 0.88 5.41

4 2.19 5.76
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Table 2

Medians (interquartile ranges) of minimum model sizes required to retain the covariates in the second column. 

In Example 2, β0,5 is relevant only when τ = 0.5 and β0,55 is relevant only when τ = 0.25. Similarly, in 

Example 3 β0,5 is relevant only when τ = 0.5 and β0,25 is relevant only when τ = 0.25.

Covariates Wald Score Zhu et al. (2011) He et al. (2013)

Example 1

All 5699.5 (4231) 5500 (4091) 5645 (5022.25)

Example 2, τ = 0.5

All 6070.5 (4655.75) 6168.5 (3832.5) 5742 (4609.25) 9166 (2057)

β0,5 30.5 (62.75) 36.5 (94.25) 23 (28.25) 3451 (5856.5)

β0,55 2393 (4184.5) 1882.5 (5565.75) 547.5 (1028.25) 3708.5 (5094.5)

Example 2, τ = 0.25

All 5111 (4736.5) 5094 (4104.5) 5742 (4376) 9720 (554)

β0,5 1724.5 (4758.25) 1763 (5112.75) 23 (28.25) 5516.5 (5380.5)

β0,55 67.5 (309) 88.5 (273.5) 547.5 (1028.25) 2381 (6252.5)

Example 3, τ = 0.5

All 9620 (548.25) 9729 (337.75) 9277.5 (361.75) 9945 (243)

Example 4

All 5495.5 (4365.5) 5584.5 (4367.5) 5483 (4237.25)
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Table 3

Performance of different methods for choosing the screening threshold. Methods: RS = reproducible 

screening, described in Section 3; Auxiliary = auxiliary variables method of Zhu et al. (2011). Average 

performance metrics (standard deviation): TP = true positive rate, TD = true discovery rate. Median size is 

reported (interquartile range).

Screening Threshold TP TD Size

Example 1

Wald n/log n 90 (0) 13.64 (0) 66 (0)

Score RS 86.2 (7.49) 22.84 (1.52) 40 (0)

Zhu et al. (2011) Auxiliary 89.4 (2.39) 21.02 (1.46) 43 (4)

Example 2, τ = 0.5

Wald n/log n 68.9 (13.25) 10.44 (2.01) 66 (0)

Score RS 62.9 (27.35) 13.26 (13) 30 (1602.5)

Zhu et al. (2011) Auxiliary 40.7 (17.25) 31.18 (15.09) 15 (10.25)

He et al. (2013) n/log n 3.9 (5.84) 0.59 (0.89) 66 (0)

Example 2, τ = 0.25

Wald n/log n 62.8 (12.56) 9.52 (1.9) 66 (0)

Score RS 72 (25.74) 7.73 (12.06) 1540 (1642.5)

Zhu et al. (2011) Auxiliary 36.9 (15.87) 28.66 (15.87) 15 (10.25)

He et al. (2013) n/log n 5.5 (8.57) 0.83 (1.3) 66 (0)

Example 3, τ = 0.5

Score RS 62.38 (15.02) 29.76 (22.56) 10 (130)

Zhu et al. (2011) Auxiliary 16.38 (17.65) 49.49 (44.36) 2 (2)

He et al. (2013) n/log n 56.25 (22.86) 6.82 (2.77) 66 (0)

Example 4

Score RS 68 (15.04) 26.26 (6.76) 30 (10)

Zhu et al. (2011) Auxiliary 72.4 (14.36) 25.15 (4.23) 30.5 (12)

Biometrics. Author manuscript; available in PMC 2015 May 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao and Li Page 20

Table 4

Performance of iterative screening. The second column reports the average percentage of times (SD) the 

marginally unimportant variables (see Section 5.1) were capture by iterative screening. Average performance 

metrics (standard deviation): TP = true positive rate, TD = true discovery rate. Median size is reported 

(interquartile range).

Hidden TP TD Size

Example 1

91 (28.76) 95.9 (6.21) 1.66 (0.42) 652 (259.5)

Example 2, τ = 0.5

1 (10) 79.8 (11.97) 2.71 (0.73) 282 (44.25)

Example 2, τ = 0.25

1 (10) 71.7 (10.83) 3.29 (0.93) 210 (64.5)
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