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Abstract In this paper, we investigate the abnormalities

of electroencephalograph (EEG) signals in the Alzheimer’s

disease (AD) by analyzing 16-scalp electrodes EEG signals

and make a comparison with the normal controls. The

power spectral density (PSD) which represents the power

distribution of EEG series in the frequency domain is used

to evaluate the abnormalities of AD brain. Spectrum ana-

lysis based on autoregressive Burg method shows that the

relative PSD of AD group is increased in the theta fre-

quency band while significantly reduced in the alpha2

frequency bands, particularly in parietal, temporal, and

occipital areas. Furthermore, the coherence of two EEG

series among different electrodes is analyzed in the alpha2

frequency band. It is demonstrated that the pair-wise

coherence between different brain areas in AD group are

remarkably decreased. Interestingly, this decrease of pair-

wise electrodes is much more significant in inter-hemi-

spheric areas than that in intra-hemispheric areas. More-

over, the linear cortico-cortical functional connectivity can

be extracted based on coherence matrix, from which it is

shown that the functional connections are obviously

decreased, the same variation trend as relative PSD. In

addition, we combine both features of the relative PSD and

the normalized degree of functional network to discrimi-

nate AD patients from the normal controls by applying a

support vector machine model in the alpha2 frequency

band. It is indicated that the two groups can be clearly

classified by the combined feature. Importantly, the accu-

racy of the classification is higher than that of any one

feature. The obtained results show that analysis of PSD and

coherence-based functional network can be taken as a

potential comprehensive measure to distinguish AD

patients from the normal, which may benefit our under-

standing of the disease.
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Introduction

Alzheimer’s disease (AD) is a progressive, disabling

neuro-degenerative disorder that affects mainly older per-

sons beyond the age of 70. Experimental studies show that

it is may be caused by the degeneration of synapses and

death of neurons in the brain regions, such as hippocampus,

entorhinal cortex, neocortex. It usually results in a loss in

cognition, memory, judgment, even language and func-

tional skills (Dauwels et al. 2010a, b, 2011; Mattson 2004).

It is asserted that a definite diagnosis is only possible by

necropsy (Dauwels et al. 2010a, b). For the symptoms in

early state are easily neglected as normal consequences of

aging, discriminating AD patients from the normal is

difficult.

Investigation of neuropsychiatric disorder using neuro-

scientific approaches, such as functional magnetic reso-

nance imaging (fMRI) (Chang and Glover 2010; Vemuri

et al. 2012; Zhou et al. 2010), magnetoencephalography

(MEG) (Stam et al. 2006; Zhang et al. 2014), electroen-

cephalography (EEG) (Dauwels et al. 2010a, b, 2013;

Jelles et al. 2008; Vialatte et al. 2012) and so on, attracts

more interests. As a noninvasive, simple, and relatively low

cost approach, resting-state EEG indirectly measures brain
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neural electric activity from the scalp of the head. It is

considered as an integrated appearance of different brain

functions, such as depth of anesthesia (Shalbaf et al. 2014),

Parkinson’s disease (Han et al. 2013), brain death (Chen

et al. 2008), even under manual acupuncture (Pei et al.

2014; Yi et al. 2013). Despite it has been around for dec-

ades, using EEG as cognitive biomarker to detect and

assess AD in individuals is a relatively new effort (Baker

et al. 2008; Czigler et al. 2008; Fraga et al. 2013; Hidasi

et al. 2007; Jelles et al. 2008). According to the rather

widely held view, the development of AD is associated

with the slowing of the EEG (Czigler et al. 2008; Dauwels

et al. 2010a, b; Moretti et al. 2009), reduction of com-

plexity in EEG (Dauwels et al. 2011) and perturbations in

EEG synchrony (Dauwels et al. 2010a, b; Wang et al.

2014).

Generally, the traditional power spectral density (PSD)

can be applied to measure the activity of cortical cells

arranged in parallel and space averaged over cortex phys-

iologically (Akin and Kiymik 2000; Nunez et al. 2001).

EEG PSD is commonly computed based on parametric

autoregressive (AR) model which provides information on

the signal power at each relatively narrow frequency sub-

band. Compared with classical spectrum estimation meth-

ods (e.g. FFT), AR Burg method can reduce the spectral

losses and give better frequency resolution (Akin and Ki-

ymik 2000; Han et al. 2013). Nowadays, quantitative

studies have shown that AD causes EEG signals to slow

down. Czigler et al. (2008) have found a significant

decrease of the alpha band and increase of the theta power

in the AD patients. Gianotti et al. (2007) and Jeong (2004)

have further proved that AD patients show an increase in

low frequencies bands (delta and theta band) power with a

simultaneous decrease in high frequencies (alpha and beta)

power in AD patients along with the development of the

disease. Moreover, it has been shown that the amount of

power in various frequency bands supposedly correlated

with the severity of AD (Bennys et al. 2001; Jeong 2004;

Sanz-Arigita et al. 1994).

Although EEG PSD could characterize the group dif-

ferences between AD group and the control group in fre-

quency domain, it only focuses on single-channel EEG and

cannot reflect the relation between different EEG series,

i.e. the connection between different brain areas. However,

it is extensively reported that AD is considered as a ‘dis-

connection syndrome’, characterized by widespread

degeneration of synapses and the death of neurons (Cook

and Leuchter 1996; Delbeuck et al. 2003; Tijms et al.

2013). EEG coherence is a promising approach to evaluate

functional cortical connections between different cortical

areas of the brain (Dauwels et al. 2010a, b; Koenig et al.

2005; Pereda et al. 2005; Stam et al. 2003, 2005). The

higher the coherence is, the higher the linear synchrony is,

which indicates a strong functional linkage (Dauwels et al.

2010a, b; Pereda et al. 2005), and even the information

transmission, synergies and collaborative activity between

different brain areas. It has been extensively reported that

EEG coherence of AD patients is characterized by a pattern

of statistically significant decrease among cortical regions

in the alpha frequency band (Adler et al. 2003; Hogan et al.

2003; Jeong 2004; Jiang 2005; Koenig et al. 2005; Loca-

telli et al. 1998; Sankari et al. 2011; Uhlhaas and Singer,

2006). Knott et al. (2000) have further demonstrated that

the significantly decreased EEG coherence located in

temporo-parietal brain areas can be taken as a discriminant

variable between AD patients and the normal. However,

most of these studies are based on the feature of coherence

estimated from multi-electrodes EEG signals. Whether the

combination of both single and multi-electrodes features

could improve the classification of AD patients and the

normal controls is still unclear.

In order to explore this problem, in this work we aim to

detect and assess the abnormalities of AD by characterizing

the alteration of both PSD and degree of the functional

network extracted from coherence between multiple cor-

tical regions on EEG signals. We first explore the group

differences of the relative PSD as a feature to make a

preliminary distinction between AD patients and the con-

trols. We further estimate the coherence of different brain

areas in certain frequency bands. In particular, the global

pattern of coherence and the local pair-wise coherence in

inter-hemisphere and intra-hemisphere are explored.

Moreover, the functional connectivity is extracted from

coherence, and the normalized network degree is charac-

terized as another feature. We also seek to combine the two

features to discriminate the spontaneous EEG recordings of

the two groups by applying a support vector machine

model. Accordingly, the subsequent parts of this paper are

organized as follows: in ‘‘Experiment design and EEG

recording’’ section, we give a description of experiment

design and EEG recording, including the subjects, the EEG

data recording and preprocessing; in ‘‘Analysis methods’’

section, we formulate the estimation of PSD and coher-

ence, and explain the statistical analysis in detail; in

‘‘Results’’ section, analysis results of the two groups are

presented; which is followed by discussion in ‘‘Discus-

sion’’ and ‘‘Conclusion’’ sections.

Experiment design and EEG recording

Subjects

Experiments were performed in two groups of subjects.

(a) Fourteen right-handed patients with a diagnosis of

probable AD (age 74–78 years old; eight females and six
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males). All patients recruited from the Department of

Neurology of Beijing Hospital were determined according

to the international Classification of diseases (ICD-10) of

the world health organization and the diagnostic criteria of

dementia in the Diagnostic and Statistical Manual of Psy-

chiatric Disorders (DSM-IV) (Cooper 1995). Moreover, all

of them had undergone a thorough clinical neuroimaging

and neurological examination to evaluate cognitive func-

tion, which included computed tomography (CT), struc-

tural MRI, cerebellar testing, cranial nerve examination

and Mini-Mental-Status examination (MMSE). The MMSE

scores were ranged from 11.7 to 14.9. In addition, clinical

history was also considered. Exclusion criteria included use

of drugs of antipsychotics, antidepressants, and anxiolytics,

and presence of other neurological or psychiatric illness,

such as vascular dementia (VD), other cerebrovascular

diseases (i.e. cerebral infarction, cerebral hemorrhage),

metabolic disorder, and severe depression. (b) Fourteen

healthy age-matched subjects served as the controls (age

70–76 years old; ten females and four males). Their

MMSE scores were ranged from 28.1 to 30.0. They were

healthy and intellectual, with no symptoms or personal

history of neurological or psychiatric disorders. Besides,

they were not abusing alcohol or illicit drugs. All of them

were normal by these examinations.

Our study was performed with the approval of the Ethics

Committee of Health Department of Beijing hospital. All

the subjects or their legal representatives had been pro-

vided with informed consent with the adequate under-

standing of the purpose and procedure of the study. In

addition, their informed written consent was obtained

according to the declaration of Helsinki.

EEG recordings and preprocessing

The continuous EEG data were collected for 10 min with

the subjects in a relaxed state and under the eyes-closed

condition in order to avoid the additional artifacts caused

by visual input and attention. During the experiment, all the

subjects were seated upright in a dedicated semi-dark quiet

room which was electromagnetic shielded. Additionally,

they were told in advance to avoid any movements, such as

body actions, eye movements and blinks. To keep adequate

alertness of subjects, their state and ongoing EEGs were

continuously monitored by experimenters during the

experiment.

EEGs were recorded from the 16 active shielded scalp

loci of the international standard 10–20 system using

Symtop recorder (model: UEA-B; sampling frequency:

1,024 Hz; electrode impedances: B3 kX) which was

widely used for clinical settings and research purposes. The

16 Ag–AgCl channels were Fp1, Fp2, F3, F4, C3, C4, P3,

P4, O1, O2, F7, F8, T3, T4, T5, T6, with all electrodes

referenced to the bilateral ear (A1, A2), as shown in

Fig. 1a.

The raw EEG data recorded during the experiment were

shown in Fig. 1b. In order to achieve high confidence of

the data, 16-channel EEGs of each subject were segmented

into 5 non-overlapping epochs which last 8 s continuously

by using the EEGLAB toolbox. Besides, the artifacts

caused by eye movement, muscular movement or other

visible disturbances were removed manually on the basis of

a thorough visual inspection off-line. Then each channel of

intercepted EEG was decomposed into the six EEG sub-

bands of interest: delta (0.5–4 Hz), theta (4–7 Hz), alpha1

(8–10 Hz), alpha2 (10–12 Hz), beta (13–30 Hz) and

gamma (30–40 Hz) via the band-passed FIR filter. More-

over, the digitized EEG data were processed and analyzed

in a MATLAB environment (version 7.12.0.635, R2011a).

Analysis methods

Power spectral density estimation

Due to finite size of the EEG data, one can only have an

estimate of the true spectrum via a parametric approach,

thus the PSD is estimated using AR Burg method. Addi-

tionally, we take a sliding Hamming window with a length

of 256 sampling points (250 ms) and overlap of 128

sampling points (125 ms) to improve the performance of

the spectral estimation. There are two steps in the spectrum

estimation procedure. Firstly, estimate the parameters of

the model-based method from a given data sequence x(n),

0 B n B N - 1. Secondly, compute the PSD estimated

from these estimations.

The AR method is based on modeling the data sequence

x(n) as the output of a causal and discrete filter whose input

is white noise, which is expressed as the follows

x nð Þ ¼ �
Xp

k¼1

a kð Þ � x n� kð Þ þ x nð Þ ð1Þ

where a(k) is the AR coefficient, x(n) is the white noise of

variance equal to r2, and p is the order of the AR model.

In this work, AR coefficients are estimated by the

recursive Burg method, which is based on minimizing the

forward and backward prediction errors. From the estima-

tion of AR parameters by the Burg algorithm, PSD esti-

mation is formed as (Akin and Kiymik 2000; Kay 1988)

P̂BURG fð Þ ¼ êp

1 þ
Pp

k¼1 âp kð Þe�j2pfk
�� �� ð2Þ

where êp is the total least squares error. The model order p

of AR method is determined by using Akaike information

criterion (AIC). In this study, the model order is taken as
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p = 10. Then the PSD results of each frequency band are

normalized to obtain the relative PSD of one band to the

whole frequency band.

Prelative ¼
Pf¼f2

f¼f1
P fð Þ

Pf¼fH
f¼fL

P fð Þ
ð3Þ

where [fL, fH] = [0.5, 40]and [f1, f2] is determined by the

frequency sub-band selected.

Coherence estimation

Coherence represents the normalized covariance of two

time series in the frequency domain. Mathematically, the

coherence function Cxy(f) at a frequency f for signal x and y

is obtained by the normalization of cross-spectral spectrum

as follows:

Cxy fð Þ ¼
Pxy fð Þ
� ��� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pxx fð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pyy fð Þ

p ; ð4Þ

where the notation h�i denotes the mean value over 5

epochs of time series. Pii(f),i 2 {x, y} is the corresponding

auto-spectra of signals i, Pxy (f) is the cross-power spec-

trum, which can be estimated from Eq. (3).

The estimated coherence ranges from 0 to 1 whereby 0

means that the corresponding frequency components of

both signals are linearly independent, while 1 means the

frequency components of the two signals give the maxi-

mum linear correlation. And further, high EEG coherence

indicates high cooperation and more information trans-

mission between the underlying brain regions. Thus,

coherence estimation is a useful measure to monitor and

quantify the synchrony property of two EEG series, espe-

cially when they are limited to some particular frequency

bands (Dauwels et al. 2010a, b; Pereda et al. 2005).

The EEG coherence calculation for each electrode pair

generates a 16 9 16 (16 is the number of recorded EEG

channels) matrix showing the connectivity between all

possible functionally independent brain areas in each fre-

quency band. After thresholding, such a coupling structure

reduces to a binary, undirected connectivity matrix. The

connectivity matrix in each frequency band defines a

functional network and its structural properties can be

further quantified by the normalized degree of nodes (Ru-

binov and Sporns 2010; Gerhard et al. 2011), which is

defined as follows:

Knormalized ¼
log Kið Þ

log
PN

i¼1

Ki

� � ð5Þ

where Ki is the degree of the node i in the functional

network.

Statistical analysis

One-way ANOVA test is used to assess the statistical group

differences of the relative PSD and pair-wise coherence for

AD group and the control group. ANOVA returns several

statistics, involving the sum of squares (SS), degrees of

freedom (df), mean squares (MS = SS/df), F-value and

P value. F-value which is the ratio of MS between groups

(MSB) to MS within groups (MSW) indicates the degree of

group difference. P-value is in inverse proportion to the F-

value, and it means the error probability when the group

difference is not significant. Generally, P\ 0.01 is con-

sidered as the significance level in statistics. A larger F-

value and a smaller P-value suggest a more significant

group difference, and vice versa. Moreover, SS, df and MS

are interim parameters used to calculate the value of F and

P, and they could not reflect the group difference intui-

tively (Freund and Littell 1981). Additionally, in order to

minimize the type I error and improve the accuracy of

statistical analysis, Bonferroni correction is applied as the

multi-comparisons are conducted (Cabin and Mitchell

2000). Therefore, the significance level is set at p\ 0.01/

p\ 0.016.6 = 0.00167 for the relative PSD in six fre-

quency bands and p\ 0.01/0.018.8 = 0.00125 for the

coherence of eight electrode-pairs after correction.

Furthermore, receiver operating characteristic (ROC)

curves are applied to visually evaluate the ability of the

Fig. 1 Electrode names and

positions on the brain (a) and

16-channel EEG signals

recorded for one AD patient (b)
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features in discriminating AD patients from the normal

controls in certain frequency bands where the group dif-

ference is significant by ANOVA. This statistical method

summarizes the performance of a two-class classifier across

the range of possible thresholds from 0 to 1. It is a

graphical representation of the trade-offs between sensi-

tivity and specificity. Sensitivity is the true positive rate

while specificity is equal to the true negative rate:

Sensitivity ¼ TP

TPþ FN

Specificity ¼ TN

TN þ FP

ð6Þ

where false negatives (FN) are the number of AD patients

classified as the normal controls, and false positives (FP)

are the number of the normal controls classified as patients.

True positives (TP) and true negatives (TN) are the number

of AD patients and the normal controls correctly recog-

nized, respectively. Accuracy quantifies the total number of

subjects precisely classified, which is defined as follows:

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN
ð7Þ

The optimum threshold is the cut-off point where the

highest accuracy (minimal FN and FP) is obtained. It can

be determined from the ROC curve as the closest value to

the left top point (100 % sensitivity, 100 % specificity).

The area under the ROC curve (AUC) characterizes the

performance of classification, for a perfect classification

the area is 1 while an AUC of 0.5 represents a worthless

test (Abásolo et al. 2005; Zweig and Campbell 1993).

Additionally, Fig. 2 shows a block diagram with the dif-

ferent steps followed in this study.

Results

Relative PSD analysis

EEG contains different specific frequency bands. Features

in sub-bands are particularly important to characterize

different brain states. The sub-bands of interest are: delta

(0.5–4 Hz), theta (4–7 Hz), alpha1 (8–10 Hz), alpha2

(10–12 Hz), beta (13–30 Hz) and gamma (30–40 Hz). The

relative PSD can be obtained by dividing the PSD of each

frequency band by the total PSD of the whole frequency

band estimated by the AR Burg method.

Figure 3 showed that the relative PSD of 16 EEG

channels in six frequency bands for AD group and the

control group. It was shown that, for the both two groups,

the relative PSD decreased with the increase of the fre-

quency. Particularly, in the delta frequency band the rela-

tive PSD values were ranged in [0.3, 0.65], while in the

gamma frequency band the relative PSD fluctuated in

[0.005, 0.02], indicating that most energy focused on the

lower frequency when the subjects were in the resting state.

Then comparing the relative PSD values for AD group and

the control group, we obtained the following interesting

results: (1) in the delta and alpha1 frequency bands

(Fig. 3a, c), the variation trends of the relative PSD in

different electrodes for the two groups were similar, and

there was no significant group difference, except several

electrodes, such as FP1, FP2, and F8 in the delta frequency

band and C4, P4, O1, and O2 in the alpha2 frequency band;

(2) in the theta frequency band (Fig. 3b), the relative PSD

values of AD group were much larger than that of the

control group; (3) in the higher frequency band (Fig. 3d–f),

the relative PSD values of AD group were smaller than that

of the control group, particularly in parietal (C3, C4, P3,

P4), temporal (T3, T4, T5, T6), and occipital (O1, O2)

areas in the alpha2 frequency (Fig. 4).

In order to get insight into the overall relative PSD, we

further averaged the relative PSD values of all 16 electrodes

in the six frequency bands, and the statistical analysis of

ANOVA were shown in Fig. 4 and Table 1. It was found

that, compared to the control group, the relative PSD values

in the delta and theta frequency bands were increased,

whereas they were decreased in the remaining four higher

frequency bands, such as the alpha1, alpha2, beta and gamma

frequency bands. Moreover, it was shown that the group

differences of the relative PSD estimated by the AR Burg

Fig. 2 Block diagram of classification between AD patients and

control subjects from the EEG analysis and classification
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method were statistically significant in the theta

(F = 17.80, P = 1.47 9 10-4\ 0.00167) and alpha2 fre-

quency bands (F = 39.13, P = 0.25 9 10-7\ 0.00167)

after statistical postcorrection.

Coherence analysis

Coherence can be considered as a measure of normalized

linear synchrony of different EEG series in the frequency

domain. Here, coherence analysis was applied to all pair-

wise EEG channels for AD group and the control group in

the alpha2 frequency band, where the relative PSD men-

tioned above had significant group difference.

The mean coherence between 16 channels of AD and the

control group in the alpha2 frequency band was shown in

Fig. 5a, b). Obviously, the mean coherence distributions of

the two groups were symmetry, which might indicate the

presence of fast bidirectional transmission of information

between brain areas. The entries on the diagonal of

coherence matrix were all 1, as one EEG signal could

achieve complete synchrony with itself. It was obvious that

the coherence matrices of the two groups were complex

and different. In the control group (Fig. 5b), there were

more areas of high (red color) values of coherence than that

of AD group. While in AD group (Fig. 5a), the high values

Fig. 3 The overall relative power spectrum density (PSD) of 16 EEG channels in the (a) delta, (b) theta, (c) alpha1, (d) alpha2, (e) beta, and

(f) gamma frequency band for AD group and the control group

Fig. 4 Relative PSD averaged over the 16 electrodes in six frequency

bands for AD and the control group. Standard deviations are shown

with error bars. Asterisk and black down-pointing triangle represent

significant difference between the two groups with P\ 0.01 after

ANOVA and P\ 0.00167 after statistical postcorrection

Table 1 Results of ANOVA for relative PSD of six frequency bands

between AD and the control group

Sub-band F-value P-value

Delta 0.3539 0.5554

Theta 17.8002 1.4666e-004

Alpha1 0.6122 0.4388

Alpha2 39.1348 2.5390e-007

Beta 3.1246 0.0851

Gamma 5.1914 0.0584
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of coherence were scatteredly distributed in some areas like

frontal, temporo-parietal, and parieto-occipital areas (FP1/

FP2-F3/F4, FP1/FP2-F7/F8, T3/T4-C3/C4, O1/O2-P3/P4)

for the alpha2 band. The matrix of P values returned by

ANOVA between AD and the control group (Fig. 5c)

showed the significance of the group difference on coher-

ence. It was found that P values were extremely small,

which were all less than 0.02, suggesting that the group

differences of coherence matrix were large enough to dif-

ferentiate AD patients from the normal. A threshold was set

to 0.01 which corresponded to the significant level. Then

the matrix Pij of P values was transformed into a binary

matrix Aij (Fig. 5d). If the entry pij was less than the

threshold 0.01, the corresponding entry aij of the binary

matrix Aij as set to 1 with white color, indicating the group

difference of coherence between electrode i and j was

significant, otherwise the entry equaled to 0 with black

color. As one could see that most areas in Fig. 5d were

white, indicating that the group difference of coherence

was significant. It seemed that compared with the controls,

the coherence between different areas in AD group would

be remarkably decreased in the alpha2 frequency band.

The statistical analysis results of coherence of AD

patients and the controls were further analyzed for inter-

hemispheric and intra-hemispheric electrode pairs which

had significant group difference in the alpha2 frequency

band, as shown in Fig. 6 and Table 2. These electrode-

pairs covered typical scalp regions: C3–C4, F3–F4, F7–F8

and T5–T6 in inter-hemispheric areas, and C4–F8, P4–F8,

P4–F4 and T6–F8 in intra-hemispheric areas. From Fig. 6,

it was found that for both the inter-hemispheric and intra-

hemispheric areas, the coherence values of AD patients

were much lower than that of the control group. Moreover,

statistical results (Table 2) revealed that group differences

of coherence in inter-hemispheric areas were much more

significant than that in intra-hemispheric areas, manifested

as the significant difference with P\ 0.00125 after statis-

tical postcorrection. Furthermore, the largest coherences of

Fig. 5 Coherence matrix for pair-wise electrodes for (a) AD and

(b) the control group in the alpha2 frequency band; (c) matrix of

P value of the two groups obtained by ANOVA, in which all the

diagonal entries are defined as the largest value with red color;

(d) binary connectivity matrix of P value. Here, the threshold is set to

0.01, when the entry of the P value matrix is smaller than 1, it is set to

1 with white color, otherwise 0 with black color. (Color figure online)
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the two groups appeared in frontal areas (F3–F4) in inter-

hemispheric areas and parietal areas (C3–C4) in intra-

hemispheric areas, whereas the smallest coherence

emerged in temporal areas (T5–T6) in inter-hemispheric

areas and fronto-temporal areas (T5–F8) in intra-hemi-

spheric areas.

Based on the coherence analysis, the functional network

can be reconstructed. When the entry of the coherence

matrix (Fig. 5a, b) is larger than the threshold h (Here we

set h = 0.34), the entry is set to 1, otherwise 0. By thres-

holding, a binary adjacency matrix Aij is obtained where a

non-zero entry aij represented a connection is existed

between electrode i and electrode j. Thus, functional con-

nectivity can be extracted from the coherence matrix for

the two groups and its structural properties could be further

quantified.

Figure 7 showed the topographic maps of the relative

PSD in the alpha2 frequency band for AD and the control

group. Meanwhile, the functional connections based on

coherence (gray links in Fig. 7) were investigated between

the electrodes with high relative PSD values in red color:

C3, C4, P3, P4, O1, O2, T5, and T6. It was found that, for

both groups, the electrode with high PSD values had more

local functional connections. Moreover, it was suggested

that, for AD group, the local functional connections in

parieto-occipital areas were much sparser than that of the

control group, indicating that the synchrony level, such as

information transmission and synergies, were much lower.

We further investigated the normalized degree of the

functional network of the whole brain in the alpha2 fre-

quency band for AD and the control group, as shown in

Fig. 8. The node with red color was with high degree. It

was found that the values of normalized degree range in the

interval [0.26, 0.46] for AD group, while they ranged in the

interval [0.38, 0.5] for the control group, suggesting that

the functional connections in AD groups decreased mark-

edly. Moreover, it was revealed that the important regions

in the brain network of the two groups were both parietal

regions. For the control group, the electrode with the

largest degree was C3 (left-parietal region) and with rela-

tively low degree in T5, T6, O1 and O2. While for AD

group, the electrode with the largest degree was shifted to

C4 (right-parietal region) and the smallest degree was T6.

Analysis of the combined feature

The average values of relative PSD and the normalized

degree for three electrodes were calculated in each moving

window in the alpha2 frequency band, as shown in Fig. 9a,

b). The three electrodes were C3, C4 and F4/P4/O2. C3 and

C4 were chosen as they show significant changes of the

normalized degree between the two groups, and F4, P4, O2

were chosen from frontal, parietal and occipital brain areas

respectively. Then taking these average relative PSD or the

normalized degree of three electrodes as coordinates, we

Fig. 6 Coherence of the eight specific electrode pairs in the alpha2

frequency band for AD and the control group. Standard deviations are

shown with error bars. Asterisk and black down-pointing triangle

represent significant difference between the two groups with P\ 0.01

after ANOVA and P\ 0.00125 after statistical postcorrection

Fig. 7 Topographic maps of the relative PSD in the alpha2 frequency

band for (a) AD group and (b) the control group. Meanwhile, the

local functional connections based on coherence are shown between

the electrodes with high relative PSD values in red color: C3, C4, P3,

P4, O1, O2, T5, and T6. Here, the threshold is 0.34. When the

coherence value between two electrodes is larger than 0.34, an edge in

gray is existed. (Color figure online)

Table 2 Results of ANOVA for coherence of eight specific electrode

pairs in the alpha2 frequency band between AD and the control group

Electrode-pairs F-value P-value

C3–C4 29.3156 3.62E-06

F3–F4 20.84225 5.11E-05

F7–F8 44.9152 6.24E-08

T5–T6 11.97177 0.001249007

C4–F8 7.538349 0.009175772

F4–P4 6.639514 0.013982402

P4–F8 8.606642 0.005651174

T5–F8 8.253178 0.006622278
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could draw a 3D figure for the two groups. Seen from

Fig. 9a, it was found that the average relative PSD of two

groups was mainly distributed in two shaded areas.

Moreover, the shading areas of AD group were smaller

than that of the control group, as the relative PSD values

were much more concentrated in a smaller range in the

alpha2 frequency band. Although the 3D PSD distribution

of the two groups were different, the overlapped shading

areas were too large, thus it was difficult to discriminate

AD patients from the controls only with this parameter.

And similar results could also be obtained with the nor-

malized degree (Fig. 9b). In sum, the classification of AD

patients and the controls with only one feature might be

less efficient. Thus we considered the combination of the

two features in the next work.

In this part, cluster analysis was used for the primary

classification in the feature space consisting of relative

PSD value, normalized degree value, and the both in the

alpha2 frequency band, as shown in Fig. 10. The dimen-

sionality of features was first reduced via principal com-

ponents analysis (PCA), a well-known technique for

dimensionality reduction (Jolliffe 1986). We found the first

two principal components provided 88.6 % of the total

variance explained, while each of the remaining compo-

nents explains less than 5 %. Thus the first two principal

components were retained and the two scores, projections

Fig. 8 Topographic maps of

the normalized degree of

functional connectivity

extracted from coherence matrix

in the alpha2 frequency band for

(a) AD group and (b) the

control group. The color marked

the degree value of each

corresponding electrode (blue a

low value; red a high value).

(Color figure online)

Fig. 9 3D figures of (a) the relative PSD; and (b) the normalized

degree of functional connectivity extracted from coherence for three

electrodes in the alpha2 frequency band. The three electrodes chosen

are C3, C4 and F4/P4/O2, respectively. Here, the moving window is

set to 128 sampling points (125 ms)
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of the original data onto the two principal component axes,

were calculated. Seen from Fig. 10, the combined feature

of the relative PSD and normalized degree achieved a

better result in the clustering compared with the results

classified with only one feature, manifested as smaller

overlap area between AD group and the control group.

Finally, the corresponding ROC curves which summa-

rized the performance of a two-class classifier for different

threshold were shown in Fig. 11. We calculated the areas

under the ROC curve (AUC) of the three features in the

figure. Generally, the larger the AUC is, the better the

classification. From Fig. 11, it was shown that the AUC of

the combined feature was larger than the other two cases

with only one feature. In addition, the results of the

threshold, sensitivity, specificity, AUC and accuracy for

the three features were shown in Table 3. It was found that

the best classification was achieved using the combined

feature with an accuracy of 91.4 % corresponding to the

optimum threshold 0.5104. Moreover, the highest sensi-

tivity, specificity and AUC were reached, which are 100,

82.9 % and 0.9886, respectively. It could be concluded that

the combined feature provided a better classification

between the two groups than any other features.

Discussion

In this study, we have analyzed the EEG signals of 14 AD

patients and 14 age-matched normal controls during resting

conditions. It has been shown that EEG analysis could give

information and reflects the disturbed brain functions of

patients with advanced AD (Claus et al. 1999; Dauwels

et al. 2010a, b; Hidasi et al. 2007; Jelles et al. 2008). Rel-

ative PSD and functional connectivity extracted from

coherence were calculated to quantify the abnormalities of

spectrum and synchrony in AD patients. The PSD of EEG

has been widely applied to show the power of different

brain areas (Akin and Kiymik 2000), and the coherence

measures the synchrony between two cortical regions of the

brain in frequency domain (Dauwels et al. 2010a, b; Koenig

et al. 2005; Pereda et al. 2005; Stam et al. 2003, 2005).

As for spectrum analysis, compared to the normal con-

trols, the relative PSD values of AD patients were higher in

the delta and theta frequency bands, and lower in the

alpha1, alpha2, beta, and gamma frequency bands. Con-

sidering the fact that the relative PSD is positively corre-

lated with the energy (Elgendi et al. 2011; Vecchio et al.

2003), the results obtained suggest that brains affected by

AD show a much slower physiological behavior. These

abnormalities could reflect two different pathophysiologi-

cal changes: the relative PSD decrease for higher fre-

quencies could be related to alterations in cortico-cortical

connections, whereas the increase for lower frequencies

could be related to the lack of influence of subcortical

cholinergic structures on cortical electrical activity (Jeong

2004; Molnár et al. 2006; Moretti et al. 2009). And the loss

of cholinergic neurons in the basal forebrain projecting to

Fig. 10 Clustering analysis based on PCA for AD group and the control group with (a) the relative PSD; (b) the normalized degree of the

functional connectivity extracted from coherence; and (c) the combined feature

Fig. 11 ROC curves which assesses the classification performance

between AD patients and the normal controls in the alpha2 frequency

band with the relative PSD, the normalized degree, and the combined

feature. Moreover, the green dotted line is known as the ‘‘no-

discrimination line’’ and corresponds to a classifier which returns

random guesses. (Color figure online)
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the hippocampus and the neocortex may play an important

role in this process (Dringenberg 2000). In addition, the

relative PSD values were increased in the theta frequency

band and significantly decreased in the alpha2 frequency

band for AD patients. From the view of global cognition,

decreased alpha2 reactivity is associated with the worse

performance on memory (Jelic et al. 2000; van der Hiele

et al. 2007). Thus, only the alpha2 frequency band where

the group difference was significant was chosen to further

assess the abnormalities of AD brain in this work.

Our findings are in accordance with other studies showing

spectral ‘‘slowing’’ in AD (Czigler et al. 2008; Dauwels et al.

2010a, b, 2011; van der Hiele et al. 2007). For instance, Jeong

(2004) have observed a slowing of the resting EEG in AD

patients, reflected by a higher power in the theta frequency

band. Dauwels et al. (2010a, b) have further demonstrated

that AD patients showed an increase of delta and theta

spectrum and a decrease of alpha and/or beta spectrum. The

increase in theta power generally appears during the early

stage of AD, whereas the decrease in the alpha frequency is

regarded as a characteristic of the developed stage of AD

(Ponomareva et al. 2003). Moreover, Fernández et al. (2006)

have drawn the similar conclusion by the analysis of spon-

taneous magnetoencephalography (MEG) signals. However,

van Deursen et al. (2008) have indicated the increased

oscillations in the gamma frequency band in AD patients,

while in this work the relative PSD in the gamma frequency

was slightly decreased. The possible explanation of the dif-

ference may be that the gamma frequency band we set was

narrow, which was just ranged from 30 to 40 Hz here, thus

few spectral information was obtained. In spite of this, the

results of relative PSD estimated from recorded EEG signals

in AD group observed by the AR Burg method might be used

as a potential method to discriminate between AD patients

and the controls.

It is generally accepted that there are alterations of EEG

rhythms in the AD brain: (1) EEG slowing; that is, a shift

of the power spectrum toward the lower frequency bands

(delta and theta band) along with a decrease of oscillations

in the higher frequency bands (alpha and beta); (2)

decreased complexity, which is strongly related to the

slowing of EEG; and (3) decreased synchrony, from which

the functional network can be extracted (Dauwels et al.

2010a, b, 2011, 2013; Stam et al. 2003, 2005, 2007).

Notably, AD has been described as a disconnection

syndrome, where functional interactions in the brain are

strongly affected by anatomical abnormalities among dif-

ferent cortical areas (Jelles et al. 1999) and altered cho-

linergic coupling interactions among cortical neurons

(Jeong 2004). Thus, nowadays, several studies about

functional networks have been carried out to explore the

dysconnectivity of AD from neurophysiological signals

(He et al. 2009; Joudaki et al. 2012; Stam et al. 2007, Stam

2010). Recent studies have proposed that AD is charac-

terized by the conversion from small-world network

architecture to less optimal functional topologies (Sanz-

Arigita et al. 1994; He et al. 2008; Supekar et al. 2008).

Our findings also support this idea. It was found that the

functional connections of different brain areas in AD group

were significantly decreased in the alpha2 frequency band,

which may be associated with the AD deficiencies in

information processing physiologically (Delbeuck et al.

2003; Reid and Evans 2013). Moreover, a lower level of

synchronization in alpha band has been reported consis-

tently by the most earlier EEG and MEG studies (Adler

et al. 2003; Dauwels et al. 2010a, b; Koenig et al. 2005;

Knott et al. 2000; Locatelli et al. 1998; Stam et al. 2006).

The main reasons for the lower synchrony might be the

widespread degeneration of synapses and death of neurons,

a general effect of neurotransmitter deficiency or a

decrease in the connectivity of local neural networks due to

nerve cell death (Jelles et al. 1999; Jeong 2004). While the

results of EEG synchrony obtained from other frequency

bands are different, for instance, Gallego-Jutglà et al.

(2012) have found that EEG of AD patients is more syn-

chronous than in healthy subjects within the optimized

range 5–6 Hz, which is in contrast with the loss of syn-

chrony in AD EEG reported earlier.

Taken as a synchrony measure, EEG coherence is

commonly interpreted as a linear measure of functional

connectivity in the frequency domain between different

brain areas (Dauwels et al. 2010a, b; Koenig et al. 2005;

Pereda et al. 2005; Stam et al. 2003, 2005). The higher the

coherence is, the higher the synchrony is, which indicates a

strong functional coupling between the brain areas of

interest, thus an increased neural information exchange,

functional coordination, and integrity of cortical neural

pathways in physiology (Dauwels et al. 2010a, b; Lizio

et al.2011; Pereda et al. 2005). Using conventional coher-

ence to study the EEG of patients with AD, changes of

Table 3 Results of the ROC analysis for the relative PSD, the normalized degree of the functional connectivity and the combined feature, which

includes threshold, sensitivity, specificity, area under the ROC curve (AUC) and accuracy

Threshold Sensitivity (100 %) Specificity (100 %) AUC Accuracy (100 %)

Relative PSD 0.4644 97.1 80.0 0.8955 88.5

Degree of network 0.4937 91.4 74.3 0.9478 82.9

The combined feature 0.5104 100.0 82.9 0.9886 91.4
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coherence in the alpha band have been reported frequently.

Jelles et al. (2008) have found a decrease in AD global

coherence in the alpha2 frequency band. Moreover, Sank-

ari et al. (2012) have indicated that the parietal and central

areas of AD brain show significant declines in cortical

connections in the alpha band. However, Stam et al. (2006)

have demonstrated that coherence showed a pattern of

parieto-occipital increase in the alpha2 frequency in AD.

Three possible factors may be involved in the divergent

findings: (1) the different composition of AD patient

samples, including the difference of sex, age and degree of

the disease’s severity (reflected by the MMSE scored); (2)

the different data types and data smoothing processing; (3)

the different choice of frequency bands.

It has also been found that both the relative PSD and

coherence of AD group are lower than that of control group

in the alpha2 frequency band, particularly in parieto-occip-

ital brain areas, which might represent the cognitive dys-

function. Similar to our findings, Spiegel et al. (2006) have

found that cognitive impairment of AD is characterized by

decreased power and coherence in the alpha/beta frequency

band while increased power and coherence in the delta/theta

frequency band. Rossini et al. (2006) have also distinguished

subjects of mild cognitive impairment (MCI) from AD

subjects reliably by the analysis of EEG power and coher-

ence. However, these studies only apply one separate feature,

either PSD or coherence, to classify AD patients and the

normal controls. Here, we attempted to improve the accuracy

of the classification of the two groups by combining the

relative PSD and the normalized degree of functional net-

work extracted from coherence. A ROC curve was used to

assess the ability of the combined feature in classifying AD

patients and the normal controls. Using the combined fea-

ture, an accuracy of 91.4 % (100 % sensitivity; 82.9 %

specificity) was achieved. With single relative PSD, an

accuracy of 88.5 % (97.1 % sensitivity; 80.0 % specificity)

was reached, and the accuracy was 82.9 % (91.4 % sensi-

tivity; 74.3 % specificity) for the normalized network

degree. Thus the proposed combined feature might be a

potential method to detect the abnormalities of AD and

distinguish AD patients from the normal controls.

Some limitations of this paper need to be paid attention

to. First of all, the sample size was small. Although the

number of subjects in the present study was relatively low,

the statistically significant findings might potentially dis-

tinguish AD patients from the normal controls. Moreover,

the application of Bonferroni correction could minimize

the type I error and improve the accuracy of statistical

analysis. In addition, only severe AD patients were chosen

as the subjects to compare with the normal controls in this

study, and the mild cognitive impairment (MCI) patients,

moderate AD patients were not considered. Therefore,

although the results seem to indicate that the spectral and

synchrony features could help in the discrimination of AD

patients and the normal controls, our findings are pre-

liminary. The study need be extended on a much larger

patient population before it could be accepted as a diag-

nostic tool with clinical value.

Conclusion

In this paper, we have investigated the abnormalities of

corticocortical response of AD patients by analyzing rela-

tive PSD and coherence of EEG signals. By the analysis of

relative PSD estimated by AR Burg method, it is found that

compared with the control group, the relative PSD is

increased in the theta frequency band while significantly

decreased in the alpha2 frequency bands. Furthermore,

coherence analysis is applied to investigate the pair-wise

linear synchrony between different electrodes in the alpha2

frequency band. It is shown that the coherence between

different brain areas in AD group would be remarkably

decreased. Moreover, this descending trend of pair-wise

electrodes is much more significant in inter-hemispheric

areas than that in intra-hemispheric areas. Based on the

coherence matrix, we extract the functional network of

brain. It is demonstrates that the functional connections of

different brain areas in AD group would be markedly

decreased. Particularly, the electrode C3 and C4 in parietal

areas undergo great changes on the normalized degree of

nodes. Finally, the combined feature of relative PSD and the

normalized degree of the functional connectivity extracted

from coherence is used to improve the classification of the

two groups. The results indicate that the combined feature

performs better than any one feature. Thus, the abnormali-

ties of AD brain in the alpha2 frequency band: relative PSD

and normalized degree of functional connectivity extracted

from coherence matrix can be used as potential features to

distinguish AD patients from the normal effectively.

Although the sample size of the subjects is small, the results

obtained in this paper may facilitate our understanding of

the functional alteration in AD brain.
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