
RESEARCH ARTICLE

Deterministic convergence of chaos injection-based gradient
method for training feedforward neural networks

Huisheng Zhang • Ying Zhang •

Dongpo Xu • Xiaodong Liu

Received: 13 October 2014 / Revised: 26 November 2014 / Accepted: 10 December 2014 / Published online: 1 January 2015

� Springer Science+Business Media Dordrecht 2014

Abstract It has been shown that, by adding a chaotic

sequence to the weight update during the training of neural

networks, the chaos injection-based gradient method (CI-

BGM) is superior to the standard backpropagation algo-

rithm. This paper presents the theoretical convergence

analysis of CIBGM for training feedforward neural net-

works. We consider both the case of batch learning as well

as the case of online learning. Under mild conditions, we

prove the weak convergence, i.e., the training error tends to

a constant and the gradient of the error function tends to

zero. Moreover, the strong convergence of CIBGM is also

obtained with the help of an extra condition. The theoret-

ical results are substantiated by a simulation example.

Keywords Feedforward neural networks � Chaos
injection-based gradient method � Batch learning �
Online learning � Convergence

Introduction

Gradient method (GM) has been widely used as a training

algorithm for feedforward neural networks. GM can be

implemented in two practical ways: the batch learning and

the online learning (Haykin 2008). The batch learning

approach accumulates the weight correction over all the

training samples before actually performing the update,

nevertheless the online learning approach updates the net-

work weights immediately after each training sample is fed.

Though GM is widely used in neural network fields, it also

has drawbacks of slow learning and getting trapped in local

minimum. To overcome those problems, many heuristic

improvements have been proposed, such as adding a penalty

term to the error function (Karnin 1990), adding a momen-

tum to the weight update (Zhang et al. 2006), injecting noise

into the learning procedure (Sum et al. 2012a, b; Ho et al.

2010), etc. Some other nonlinear optimization algorithms

such as theNewtonmethod (Osowski et al. 1996), conjugate-

gradient method (Charalambous 1992), extended Kalman

filtering (Iiguni et al. 1992), and Levenberg–Marquardt

method (Hagan and Mehnaj 1994) have also been used for

training neural networks. Though these algorithms converge

in fewer iterations than GM, they require much more com-

putation per pattern, which makes them not so suitable

especially for online learning (Behera et al. 2006). Thus,

gradient method remains attractive because of its simplicity

and ease of implementation.

As convergence is a precondition for the practical usage

of a learning algorithm, the convergence analysis of GM

and its various modifications have attracted many

researchers in neural network fields (Fine and Mukherjee

1999; Wu et al. 2005, 2011; Wang et al. 2011; Shao and

Zheng 2011; Zhang et al. 2007, 2008, 2009, 2012, 2014;

Fan et al. 2014; Yu and Chen 2012). Recently, Sum John,

Leung Chi-Sing and Ho Kevin theoretically investigated

the convergence of noise injection-based online gradient

methods (NIBOGM) in Sum et al. (2012a, b) and Ho et al.

(2010), where the noises are independent mean zero
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Gaussian-distributed random variables. For the stability of

the noise-induced neural systems and the effects of the

noise on neural networks, we refer to Wu et al. (2013),

Zheng et al. (2014) and Guo (2011). Besides the inde-

pendent and identically distributed (i.i.d) noises, chaos

noise is also widely used and has been shown to be

effective (Ahmed et al. 2011; Uwate et al. 2004) when

injected into the gradient training process of feedforward

neural networks. Chaos injection enhances the resemblance

to biological systems (Li and Nara 2008; Yoshida et al.

2010), and the dynamic variation that it introduces facili-

tates escaping from local minima and thus improves the

convergence (Ahmed et al. 2011). However, as the chaos is

not an i.i.d variable, the existing convergence results and

the corresponding analysis methods for noise injection-

based online gradient methods can not be directly applied

to the chaos injection-based gradient methods (CIBGM).

Motivated by the above issues, in this paper we try to

theoretically analyze the convergence of CIBGM, covering

both the batch learning and the online learning. The weak

convergence and strong convergence of the algorithms will

be established. The online learning we considered in this

paper is the case where the training samples are fed into the

network in a fixed sequence, which is also called cyclic

learning in literature (Heskes and Wiegerinck 1996). Thus,

compared with the convergence results for NIBOGM (Sum

et al. 2012a, b; Ho et al. 2010), where the training samples

are fed into the network in a totally random sequence, our

results will be of deterministic nature.

The remainder of this paper is organized as follows. The

network structure and CIBGM are described in ‘‘Network

structure and chaos injection-based gradient method’’ sec-

tion. ‘‘Convergence results’’ section presents some

assumptions and our main theorems. The detailed proof of

the theorems is given in ‘‘Proofs’’ section. In ‘‘Simulation

results’’ section, we use a simulation example to illustrate

the theoretical analysis. We conclude the paper in ‘‘Con-

clusion’’ section.

Network structure and chaos injection-based gradient

method

In this section, we first introduce the network structure,

which is a typical three-layer neural network. Then we

describe the chaos injection-based batch gradient method

and the chaos injection-based online gradient method.

Network structure

Consider a three-layer network consisting of p input nodes,

q hidden nodes, and 1 output node. Let w0 ¼
ðw01;w02; . . .;w0qÞT 2 R

q be the weight vector between all

the hidden units and the output unit, and wi ¼
ðwi1;wi2; . . .;wipÞT 2 R

p be the weight vector between all

the input units and the hidden unit i ði ¼ 1; 2; . . .; qÞ. To
simplify the presentation, we write all the weight parameters

in a compact form, i.e.,w ¼ wT
0 ;w

T
1 ; . . .;w

T
q

� �T
2 R

qþpq and

we define a matrix V ¼ ðw1;w2; . . .;wqÞT 2 R
q�p.

Given activation functions f ; g : R ! R for the hidden

layer and output layer, respectively, we define a vector

function FðxÞ ¼ ðf ðx1Þ; f ðx2Þ; . . .; f ðxqÞÞT for x ¼ ðx1; x2;
. . .; xqÞT 2 R

q. For an input n 2 R
p, the output vector of the

hidden layer can be written as FðVnÞ and the final output of
the network can be written as

f ¼ gðw0 � FðVnÞÞ; ð1Þ

where w0 � FðVnÞ represents the inner product between the

two vectors w0 and FðVnÞ.

Chaos injection-based batch gradient method

Suppose that fn j;OjgJj¼1 � R
p � R is a given set of

training samples. The aim of the network training is to find

the appropriate network weights w� that can minimize the

error function

EðwÞ ¼ 1

2

XJ
j¼1

Oj � gðw0 � FðVn jÞÞ
� �2

¼
XJ
j¼1

ej w0 � FðVnjÞ
� �

;

ð2Þ

where ejðtÞ :¼ 1
2
ðOj � gðtÞÞ2.

The gradient of the error function is given by

EwðwÞ ¼ ET
w0
ðwÞ;ET

w1
ðwÞ; . . .;ET

wq
ðwÞ

� �T
ð3Þ

with

Ew0
ðwÞ ¼

XJ
j¼1

e0j w0 � FðVnjÞ
� �

FðVnjÞ; ð4aÞ

Ewi
ðwÞ¼

XJ
j¼1

e0j w0 �FðVnjÞ
� �

w0if
0ðwi �njÞnj; i¼ 1;2; . . .;q:

ð4bÞ

Starting from an arbitrary initial value w0, the chaos

injection-based batch gradient method updates the weights

fwng iteratively by

wnþ1 ¼ wn � gn EwðwnÞ þ gnAvðnÞIð Þ; n ¼ 0; 1; 2; . . .;

ð5Þ

where gn [ 0 is the learning rate, A is a positive parameter,

I ¼ ð1; . . .; 1ÞT , and
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vðnÞ ¼ avðn� 1Þð1� vðn� 1ÞÞ ð6Þ

is the logistic map/Verhust equation which is highly sen-

sitive to the initial value vð0Þ and the parameter a. For
specific values of vð0Þ (e.g., 0\vð0Þ\1) and a (e.g.,

3:6\a\4), the logistic map produces a chaotic time series.

Chaos injection-based online gradient method

The batch gradient method given in (5) updates the weights

after all the training samples are fed into the network. This

seems not so efficient if the training set is made up of a large

number of samples. In this case, the online gradient method is

preferred.

We consider the case that the training samples are supplied

to the network in a fixed order in the training process. Starting

from an arbitrary initial value w0, the chaos injection-based

online gradient method updates the weights iteratively by

wnJþj
0 ¼ wnJþj�1

0 þ Mjw
nJþj�1
0 ð7aÞ

wnJþj
i ¼ wnJþj�1

i þ Mjw
nJþj�1
i ; i ¼ 1; 2; . . .; q ð7bÞ

with

Mkw
nJþj�1
0 ¼ �gn e0k wnJþj�1

0 � F VnJþj�1nk
� �� ��

FðVnJþj�1nkÞ þ gnAvðnÞI
� ð8aÞ

Mkw
nJþj�1
i ¼ �gn e0k wnJþj�1

0 � F VnJþj�1nk
� �� �

w
nJþj�1
0i

�

f 0 wnJþj�1
i � nk

� �
nk þ gnAvðnÞI

�

ð8bÞ

for j; k ¼ 1; 2; . . .; J, where gn [ 0 is the learning rate, whose

value may be changed after each cycle of the training pro-

cedure, A is a positive parameter, and vðnÞ is defined by (6).

Remark 1 During the training process, the injected chaos

should be large at the beginning in order to help the gra-

dient method avoid trapping into a local minimum, and

then be smaller and smaller as the iteration (cycle) pro-

ceeds for the sake of ensuring the convergence of the

algorithm to a minimum. Thus, in (5) and (8), we use gnA
to control the magnitude of the chaos injected. Here p is

used to magnify the effect of the chaos in the early training

stage, and gn [as suggested by Assumption (A2) in the next

section, limn!1 gn ¼ 0] is for the purpose of diminishing

the effect of the injected chaos on the convergence of the

algorithm with the iteration (cycle) increasing.

Convergence results

In this section, we give the convergence results of the

CIBGM, covering both the batch learning case (5) and the

online learning case (7).

Let U ¼ fw : EwðwÞ ¼ 0g be the stationary point set of

the error function EðwÞ, and Us ¼ fwij : w ¼
ðw01; . . .;wij; . . .;wqpÞ 2 U; s ¼ qþ ði� 1Þpþ j ðif i[ 0Þ
or j ð if i ¼ 0Þg be the projection of U onto the (s)th

coordinate axis, for s ¼ 1; . . .; pqþ q. The following

assumptions are needed for our convergence results.

(A1) f 0ðtÞ and g0ðtÞ are Lipschitz continuous on any

bounded closed interval;

(A2) gn [ 0;
P1

n¼0 gn ¼ 1;
P1

n¼0 g
2
n\1;

(A3) fwng generated by (5) is bounded over Rpqþq;

(A30) fwnJþjg (or simply denoted by fwmg with

m ¼ nJ þ j) generated by (7) is bounded over Rpqþq;

(A4) The set Us does not contain any interior point for

every s ¼ 1; . . .; pqþ q.

Remark 2 Assumption (A1) is satisfied by most of the

activation functions, such as sigmoid functions and linear

functions. Assumption (A2) is a traditional condition for

the convergence analysis of the online gradient method

(Sum et al. 2012a, b; Ho et al. 2010). Here we also use this

condition in the convergence analysis of the chaos injec-

tion-based batch gradient method for the sake of control-

ling the impact of the chaos on the convergence of the

algorithm. Assumption (A3) [or Assumption (A30)] is a

commonly used condition for the convergence analysis of

the gradient method in the literature (Wu et al. 2011). In

fact, this condition can be easily satisfied by adding a

penalty term to the error function (Zhang et al. 2009,

2012). Assumption (A4) is provided to establish the strong

convergence.

Now we present our convergence results, where we use

‘‘k � k’’ to denote the Euclidean norm of a vector.

Theorem 1 Suppose that the error function is given by

(2) and that the weight sequence fwng is generated by the

algorithm (5) for any initial value w0. Assume the condi-

tions (A1)–(A3) are valid. Then there hold the weak con-

vergence results

ðaÞ There is E� [ 0 such that lim
n!1

EðwnÞ ¼ E�; ð9Þ

ðbÞ lim
n!1

EwðwnÞk k ¼ 0: ð10Þ

Moreover, if Assumption (A4) is valid, then there holds the

strong convergence, i.e., there exists a point w� 2 U such

that

ðcÞ lim
n!1

wn ¼ w�: ð11Þ

Theorem 2 Suppose that the conditions (A1),

(A2) and (A30) are valid. Then, starting from an arbitrary

initial value w0, the weight sequence fwmg defined by (7)

satisfies the following weak convergence
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ðaÞ There is EH [ 0 such that lim
m!1

EðwmÞ ¼ EH; ð12Þ

ðbÞ lim
m!1

EwðwmÞk k ¼ 0: ð13Þ

Moreover, if Assumption (A4) is valid, then there holds the

strong convergence: there exists wH 2 U such that

ðcÞ lim
m!1

wm ¼ wH: ð14Þ

Proofs

In this section, we first list several lemmas in the literature, then

we conduct the proofs of theorems 1 and 2 in ‘‘Proof of The-

orem 1’’ and ‘‘Proof of Theorem 2’’ subsections, respectively.

Lemma 1 (See Lemma 1 in Bertsekas and Tsitsiklis

2000) Let Yn;Wn and Zn be three sequences such that

Wn is nonnegative for all n. Assume that

Ynþ1 � Yn �Wn þ Zn; n ¼ 0; 1. . .

and that the series
P1

n¼0 Zn is convergent. Then

either Yn ! �1 or else Yn converges to a finite value

and
P1

n¼0 Wn\1.

Lemma 2 (See Lemma 4.2 in Wu et al. 2011) Suppose

that the learning rate gn satisfies Assumption (A2) and that

the sequence fangðn 2 NÞ satisfies an � 0;
P1

n¼0 gna
b
n\1

and janþ1 � anj � lgn for some positive constants b and l.
Then there holds limn!1 an ¼ 0.

Lemma 3 (See Lemma 5.3 in Wang et al. 2011) Let

F : X � R
k ! R; ðk� 1Þ be continuous for a bounded

closed region X, and U ¼ fz 2 X : FðzÞ ¼ 0g. The pro-

jection of U on each coordinate axis does not contain any

interior point. Let the sequence fzng satisfy:

(i) limn!1 FðznÞ ¼ 0;

(ii) limn!1 kznþ1 � znk ¼ 0.

Then, there exists a unique z� 2 U such that

limn!1 zn ¼ z�:

Proof of Theorem 1

Lemma 4 Suppose the conditions (A1) and (A3) are

valid, then EwðwÞ satisfies Lipschitz conditon, that is, there
exists a positive constant L, such that

Ewðwnþ1Þ � EwðwnÞ
�� ��� L wnþ1 � wn

�� ��: ð15Þ

Specially, for h 2 ½0; 1	, there holds

Ewðwn þ hðwnþ1 � wnÞÞ � EwðwnÞ
�� ��� Lhkwnþ1 � wnk:

ð16Þ

Proof The proof of this lemma is similar to Lemma 2 of

Zhang et al. (2012) and thus omitted. h

Proof of (9) Given that 0\vð0Þ\1 and 3:6\a\4, it is

easy to see

0\vðnÞ ¼ avðn� 1Þð1� vðn� 1ÞÞ

� a
ðvðn� 1Þ þ 1� vðn� 1ÞÞ2

4
¼ a

4
\1:

ð17Þ

By the differential mean value theorem, there exists a

constant h 2 ½0; 1	, such that

Eðwnþ1Þ�EðwnÞ

¼ Ewðwn þ hðwnþ1�wnÞÞ
� �Tðwnþ1�wnÞ

¼ EwðwnÞð ÞTðwnþ1 �wnÞ

þ Ewðwnþ hðwnþ1 �wnÞÞ� ðEwðwnÞÞ
� �Tðwnþ1 �wnÞ

� EwðwnÞð ÞTðwnþ1 �wnÞþLhkwnþ1�wnk2; ð18Þ

where the last inequality is due to (16). Considering (5) and

(18), we have

Eðwnþ1Þ�EðwnÞ þ gn EwðwnÞð ÞT �EwðwnÞ � gnAvðnÞIð Þ
þ Lhgn EwðwnÞ þ AgnvðnÞIk k2:

ð19Þ

Using (17) and the inequality EwðwnÞk k� 1þkEwðwnÞk2ð Þ
2

, the

second term on the right hand side of (19) can be evaluated

EwðwnÞð ÞT �EwðwnÞ � gnAvðnÞI½ 	
� � ðEwðwnÞÞk k2þgnA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ q

p
kEwðwnÞk

¼ � ðEwðwnÞÞk k2þgn
A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ q

p
1þ kEwðwnÞk2
� �

:

ð20Þ

Using inequality ðaþ bÞ2 � 2ða2 þ b2Þ, the third term on

the right hand side of (19) can be evaluated

gnEwðwnÞ þ Ag2nvðnÞI
�� ��2

� 2g2n EwðwnÞk k2þ2g4nA
2kIk2

� 2g2n EwðwnÞk k2þ2A2ðpqþ qÞg4n:

ð21Þ

Combining (19)–(21), we have

Eðwnþ1Þ�EðwnÞ � gn EwðwnÞk k2

þ g2n
A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ q

p
1þ kEwðwnÞk2
� �

þ 2Lhg2n EwðwnÞk k2þ2LhA2ðpqþ qÞg4n
¼ EðwnÞ � gnkEwðwnÞk2

þ g2n
A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ q

p
þ 2LhA2g2nðpqþ qÞ

�

þ 2Lhþ A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ q

p� 	
EwðwnÞk k2

	
: ð22Þ

By Assumptions (A1) and (A3), there is a constant C1 [ 0

such that for all n ¼ 0; 1; . . .
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EwðwnÞk k�C1: ð23Þ

Thus, there exists a positive constant C2, such that

Eðwnþ1Þ�EðwnÞ � gn EwðwnÞÞk k2þg2nC2: ð24Þ

Combining
P1

n¼1 g
2
nC2\1;EðwnÞ[ 0, and according to

Lemma 1, we can conclude that there exists a constant E�

such that

lim
n!1

EðwnÞ ¼ E� ð25Þ

and

X1
n¼0

EwðwnÞk k2gn\1: ð26Þ

This completes the proof of (9). h

Proof of (10) Using (5), (15) and (23), we have

Ewðwnþ1Þ
�� ��� EwðwnÞk k


 

� Ewðwnþ1Þ � EwðwnÞ

�� ��
� Lkwnþ1 � wnk
� gnL kEwðwnð Þk þ gnAkIkÞ
�C3gn;

ð27Þ

where C3 ¼ LðC1 þ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ q

p
supn2N gnÞ. Thus, by (26),

(27), and Lemma 2, we conclude

lim
n!1

EwðwnÞ ¼ 0: h

Proof of (11) Obviously kEwðwÞk is a continuous func-

tion under the Assumption (A1). Using (5), (17) and (23),

we have

lim
n!1

kwnþ1 � wnk ¼ lim
n!1

gn EwðwnÞ þ AgnvðnÞIk k ¼ 0:

ð28Þ

Furthermore, the Assumption (A4) is valid. Thus, applying

Lemma 3, there exists a unique w� 2 U such that

limn!1 wn ¼ w�. h

Proof of Theorem 2

Let the sequence fwnJþjgðn 2 N; j ¼ 1; 2; . . .; JÞ be gener-

ated by (7). For brevity, we introduce the following

notations:

FnJþj;k ¼ FðVnJþjnkÞ; ð29aÞ

rn;ji ¼ Mjw
nJþj�1
i � Mjw

nJ
i ; ð29bÞ

hn;li ¼ wnJþl
i �wnJ

i ¼
Xl
j¼1

Mjw
nJþj�1
i ¼

Xl
j¼1

Mjw
nJ
i þ

Xl
j¼1

rn;ji ;

ð29cÞ

wn;l;j ¼ FnJþl;j � FnJ;j; ð29dÞ

for n 2 N; j; k; l ¼ 1; 2; . . .; J; i ¼ 0; 1; 2; . . .; q:

Lemma 5 (See Lemma 4.1 in Wu et al. 2011)

Let hðxÞ be a function defined on a bounded closed inter-

val ½a; b	 such that h0ðxÞ is Lipschitz continuous with

Lipschitz constant K[ 0. Then, h0ðxÞ is differentiable

almost everywhere in ½a; b	 and
jh00ðxÞj �K; x 2 ½a; b	: ð30Þ

Moreover, there exists a constant C4 [ 0 such that

hðxÞ� hðx0Þ þ h0ðx0Þðx� x0Þ þ C4ðx� x0Þ2;
8x0; x 2 ½a; b	:

ð31Þ

Lemma 6 Suppose the conditions (A1) and (A30) are

valid, and the sequence fwnJþjg is generated by (7). Then

there are C5 � C8 such that

kFnJþj;kk�C5; ð32Þ

khn;li k�C6gn; ð33Þ

kwn;l;jk�C7gn; ð34Þ

krn;ji k�C8g
2
n; ð35Þ

where n 2 N; j; k; l ¼ 1; 2; . . .; J; i ¼ 0; 1; 2; . . .; q:

Proof According to Assumption (A30), we can define a

constant Cw ¼ sup kwmk. Then we have

wnJþj
i � nk



 

� wnJþj
i

�� �� nk
�� ���Cw max

1� k� J
knkk ¼ C9: ð36Þ

Accordingly, there exist two positive constants Cf and Cf 0

such that

sup
jtj �C9

jf ðtÞj ¼ Cf ; sup
jtj � 2C9

jf 0ðtÞj ¼ Cf 0 : ð37Þ

Thus we have

kFnJþj;kk ¼ kFðVnJþjnkÞk� ffiffiffi
q

p
Cf ¼ C5; ð38Þ

and

wnJþj
0 � FnJþj;k



 

� wnJþj
0

�� �� FnJþj;k
�� ���CwC5: ð39Þ

Then, there is a positive constant Ce0
j
such that

max
jtj �CwC5

e0jðtÞ








�Ce0
j
: ð40Þ
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Using (8), (17), (29c), (38) and (40), we have

hn;l0

���
��� ¼

Xl
j¼1

Mjw
nJþj�1
0

�����

�����

¼ �gn
Xl
j¼1

e0jðw
nJþj�1
0 � FnJþj�1;j

� �
FnJþj�1;j þ gnAvðnÞIÞ

�����

�����
� gnJCe0

j
C5 þ g2nAJ

ffiffiffi
q

p

� J Ce0
j
C5 þ A

ffiffiffi
q

p
sup gn

� �
gn:

ð41Þ

Similarly, for i ¼ 1; . . .; q, we have

hn;li

���
��� ¼

Xl
j¼1

Mjw
nJþj�1
i

�����

�����

¼ �gn
Xl
j¼1

e0j wnJþj�1
0 � FnJþj�1;j

� �
w
nJþj�1
0i

������
f 0 wnJþj�1

i � nj
� �

n j þ gnAvðnÞI
����

� gnJCe0
j
Cf 0C9 þ g2nAJ

ffiffiffi
p

p

� J Ce0
j
Cf 0C9 þ A

ffiffiffi
p

p
sup gn

� �
gn:

Let

C6 ¼ JmaxfCe0
j
C5 þ A

ffiffiffi
q

p
sup gn;Ce0

j
Cf 0C9 þ A

ffiffiffi
p

p
sup gng,

then we have khn;li k�C6gn for i ¼ 0; 1; . . .; q.

Using (29c), (29d), (33) and the mean value theorem, we

have

kwn;l;jk ¼ kFðVnJþlnjÞ � FðVnJnjÞk

¼
Xq

i¼1

f wnJþl
i � nj

� �
� f wnJ

i � nj
� �� �2

" #1
2

¼
Xq

i¼1

f 0 wnJ
i � nj þ hi w

nJþl
i � nj � wnJ

i � nj
� �� �

hn;li � nj
h i2" #1

2

�Cf 0 knjk
Xq

i¼1

khn;li k� qCf 0 max
1� j� J

knjkC6gn ¼ C7gn;

ð42Þ

where hi 2 ð0; 1Þ and C7 ¼ qCf 0 max1� j� J knjkC6.

As Assumptions (A1) and (A30) are valid, it is easy to see
that there exists a constant L0 such that for any n ¼ 0; 1; . . .;

and 1� k1; k2; j1; j2; l1; l2 � J, there holds

e0j w
nJþk1
0 � FnJþj1;l1

� �
� e0j w

nJþk2
0 � FnJþj2;l2

� �








� L0 wnJþk1
0 � FnJþj1;l1 � wnJþk2

0 � FnJþj2;l2


 

:

ð43Þ

Combining (8), (29), (32)–(34) and (43), we have

rn;j0

�� �� ¼ Mjw
nJþj�1
0 � Mjw

nJ
0

���
���

¼ �gn e0j wnJþj�1
0 � FnJþj�1;j

� �
FnJþj�1;j

����
� e0j w

nJ
0 � FnJ;j

� �
FnJ;j

����
¼ �gn e0j wnJþj�1

0 � FnJþj�1;j
� �

wn;j�1;j
h���

þ e0j wnJþj�1
0 � FnJþj�1;j

� �
� e0j w

nJ
0 � FnJþj�1;j

� �� �
FnJ;j

þ e0j w
nJ
0 � FnJþj�1;j

� �
� e0j w

nJ
0 � FnJ;j

� �� �
FnJ;j

i���
� gn e0j wnJþj�1

0 � FnJþj�1;j
� �







 kwn;j�1;jk
�

þ e0j wnJþj�1
0 � FnJþj�1;j

� �
� e0j w

nJ
0 � FnJþj�1;j

� �






 kFnJ;jk

þ e0j w
nJ
0 � FnJþj�1;j

� �
� e0j w

nJ
0 � FnJ;j

� �






 kFnJ;jk

�

� gn Ce0
j
kwn;j�1;jk þ L0 wnJþj�1

0





�

�FnJþj�1;j � wnJ
0 � FnJþj�1;j



 kFnJ;jk
þ L0 wnJ

0 � FnJþj�1;j � wnJ
0 � FnJ;j



 

 kFnJ;jk
�

� gn Ce0
j
kwn;j�1;jk þ L0C2

5 hn;j�1
0

���
���þ L0CwC5kwn;j�1;jk

� �

� g2n Ce0
j
C7 þ L0C2

5C6 þ L0CwC5C7

� �
¼ C10g

2
n;

ð44Þ

where C10 ¼ Ce0
j
C7 þ L0C2

5C6 þ L0CwC5C7. Similarly, we

can show the existence of a constant C11 [ 0 such that

krn;ji k�C11g
2
n: ð45Þ

Let C8 ¼ maxfC10;C11g, then we have krn;ji k�C8g2n for
i ¼ 0; 1; 2; . . .; q. h

Lemma 7 Let the sequence fwnJþjg be generated by (7).

Under assumptions (A1) and ðA30Þ, there holds

Eðwðnþ1ÞJÞ�EðwnJÞ � gnkEwðwnJÞk2 þ C12g
2
n;

ðn ¼ 0; 1; . . .Þ
ð46Þ

where C12 [ 0 is a positive constant.

Proof By virtue of Assumption (A1) and Lemma 5, we

know that f 00ðwnJ
i � nj þ tðhn;Ji � njÞÞ is integrable almost

everywhere on t 2 ½0; 1	. Then, using Taylor’s mean value

theorem we arrive at

wnJ
0 � wn;J;j ¼

Xq

i¼1

wnJ
0i f w

ðnþ1ÞJ
i � nj

� �
� f wnJ

i � nj
� �h i

¼
Xq

i¼1

wnJ
0i f

0 wnJ
i � nj

� �
hn;Ji � nj

þ
Xq

i¼1

wnJ
0i hn;Ji � nj
� �2

�
Z 1

0

ð1� tÞf 00 wnJ
i � nj þ t hn;Ji � nj

� �� �
dt:

ð47Þ
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By virtue of (8), (29), (47) and Lemma 5, there is a con-

stant C13 [ 0 such that

ej w
ðnþ1ÞJ
0 �Fðnþ1ÞJ;j

� �

�ej w
nJ
0 �FnJ;j

� �
þ e0j w

nJ
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w
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� �

þ C13 w
ðnþ1ÞJ
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0 �FnJ;j
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þ e0j w
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0 �wn;J;jþhn;J0 �wn;J;j
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FnJ;j �hn;J0
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0 �FnJ;j

� �Xq

i¼1

wnJ
0i f

0 wnJ
i � nj

� �
nj �hn;Ji þ d1

¼ ej w
nJ
0 �FnJ;j

� �
þ e0j w

nJ
0 �FnJ;j

� �
FnJ;j
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XJ
k¼1

e0k wnJ
0 �FnJ;k

� �
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XJ
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0i f

0 wnJ
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nj�
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k¼1

e0k
� 

wnJ
0 �FnJ;k

� �
wnJ
0i f

0 wnJ
i � nk

� �
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XJ
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rn;ki Þþ d1 ¼ ej w
nJ
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� �
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0
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0 �FnJ;j

� �
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0 �FnJ;k

� �
FnJ;k

�gne
0
j w

nJ
0 �FnJ;j

� �Xq

i¼1

wnJ
0i f

0 wnJ
i � nj

� �
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�
XJ
k¼1

e0k wnJ
0 �FnJ;k

� �
wnJ
0i f

0 wnJ
i � nk

� �
nk þ d2;

ð48Þ

where

d1 ¼ e0j w
nJ
0 � FnJ;j

� �Xq

i¼1

wnJ
0i hn;Ji � nj
� �2

�
Z 1

0

ð1� tÞf 00 wnJ
i � nj þ t hn;Ji � nj

� �� �
dt

þ e0j w
nJ
0 � FnJ;j

� �
hn;J0 � wn;J;j

þ C13 hn;J0 � FnJ;j þ wnJ
0 � wn;J;j þ hn;J0 � wn;J;j

� �2

ð49Þ

and

d2 ¼ e0j w
nJ
0 � FnJ;j

� �
FnJ;j � �g2nJAvðnÞIþ

XJ
k¼1

rn;k0

 !

þ e0j w
nJ
0 � FnJ;j

� �Xq

i¼1

wnJ
0i f

0 wnJ
i � nj

� �
nj

� �g2nJAvðnÞIþ
XJ
k¼1

rn;ki

 !
þ d1: ð50Þ

Summing (48) for j from 1 to J up, and noticing (2), (4a,

4b), (29a), (49) and (50), we have

Eðwðnþ1ÞJÞ�EðwnJÞ � gn
Xq

i¼0

Ewi
ðwnJÞ

�� ��2þd3

¼ EðwnJÞ � gn EwðwnJÞ
�� ��2þd3;

ð51Þ

where

d3 ¼ Ew0
ðwnJÞ � �g2nJAvðnÞIþ

XJ
k¼1

rn;k0

 !

þ
Xq

i¼1

Ewi
ðwnJÞ � �g2nJAvðnÞIþ

XJ
k¼1

rn;ki

 !

þ
XJ
j¼1

e0j w
nJ
0 � FnJ;j

� �Xq

i¼1

wnJ
0i hn;Ji � nj
� �2

�
Z 1

0

ð1� tÞf 00 wnJ
i � nj þ t hn;Ji � nj

� �� �
dt

þ
XJ
j¼1

e0j w
nJ
0 � FnJ;j

� �
hn;J0 � wn;J;j

þ C13

XJ
j¼1

hn;J0 � FnJ;j þ wnJ
0 � wn;J;j þ hn;J0 � wn;J;j

� �2
:

ð52Þ

Considering (17) and (32)–(40), it is easy to see that there

exists a constant C12 such that

d3\C12g
2
n: ð53Þ

Thus, the desired estimate is deduced by combining (51)

and (53). h

Now we are ready to prove the convergence theorem.

Proof of (12) According to Lemmas 1 and 7, there exists

a constant EH such that limm!1 EðwmÞ ¼ EH or

limm!1 EðwmÞ ¼ �1. Recall EðwmÞ > 0, then we have

(12). h

Proof of (13) Using Lemmas 1 and 7, we have that

X1
n¼0

gn EwðwnJÞ
�� ��2\1: ð54Þ

Similarly to Lemma 4, there exists a Lipschitz constant

L00 such that

EwðwmþlÞ � EwðwmÞ
�� ��� L00 wmþl � wm

�� ��: ð55Þ

where wm is the weight sequence generated by (7) and l is a

positive integer.

Using (55) and (33), for n ¼ 0; 1; . . ., and j ¼ 1; . . .; J,
we have
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Ewðwðnþ1ÞJÞ
�� ��� EwðwnJÞ

�� ��

 

� Ewðwðnþ1ÞJÞ � EwðwnJÞ
�� ��

� L00kwðnþ1ÞJ � wnJk

¼ L00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i¼0
hn;Ji

�� ��2
r

�
ffiffiffiffiffiffiffiffiffiffiffi
qþ 1

p
L00C6gn:

ð56Þ

Combining (54), (56) and Lemma 2, we have

lim
n!1

EwðwnJÞ
�� �� ¼ 0: ð57Þ

Since

EwðwnJþjÞ
�� ��� EwðwnJþjÞ � EwðwnJÞ

�� ��þ EwðwnJÞ
�� ��

� L00C6

ffiffiffiffiffiffiffiffiffiffiffi
qþ 1

p
gn þ EwðwnJÞ

�� ��;
ð58Þ

we have limn!1 EwðwnJþjÞk k ¼ 0 for j ¼ 1; 2; . . .; J. h

Proof of (14) The proof is almost the same as the proof of

(11) and thus it is omitted here. h

Simulation results

In this section, we illustrate the convergence behavior of

the CIBGM using the sonar signal classification problem.

Sonar signal classification is one of the benchmark

problems in neural network field. Our task is to train a

network to discriminate between sonar returns bounced off

a metal cylinder and those bounced off a roughly cylin-

drical rock. We obtained the data set from UCI machine

learning repository (http://archive.ics.uci.edu/ml/), which

comprises 208 samples, each with 60 components. In this

simulation, we stochastically choose 164 samples for

training and 44 samples for test.

The network for training is with the structure of

60–25–2. The activation functions for both the hidden and

output layers are set to be logsigð�Þ in MATLAB, which

is a commonly used sigmoid function. We choose the

initial weights to be random numbers in the interval

½�0:5; 0:5	.
The simulation is carried out by choosing the parameters

A ¼ 500; vð0Þ ¼ 0:5 and a ¼ 3:8. We set the learning rate

gn ¼ 0:08
164

if n� 120 and n�0:5

164
if n[ 120, which satisfies

Assumption ðA2Þ. Here 164 is the number of the training

samples. The maximum training iteration (cycle) is 2,000.

The learning curves for the chaos injection-based batch

gradient method are depicted in Fig. 1, which shows the

training error tends to a constant and the gradient of the

error function tends to zero. This supports our theoretical

analysis. The learning curves for the chaos injection-based

online gradient method are almost the same with Fig. 1,

with the only change that we should replace the x label

‘‘Number of iterations’’ with ‘‘Number of cycles’’.

In order to show the effectiveness of the chaos injection

method, we compare the test error curves of CIBGM and

the standard GM (with no chaos injected) in Fig. 2. We can

see that the test error of CIBGM converges faster and tends

to a smaller number than that of the standard GM.

We mention that, though there is no restriction for the

parameter A in Theorems 1 and 2, the choice of A is still of

great importance. If A is too small, CIBGM will reduce to

the standard GM. On the other hand, if A is too large, then

the chaos term will dominate the update of the CIBGM
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especially in the early stage of the training procedure. As a

result, the algorithm will converge very slowly and the

performance may even be unacceptable. Figure 3 shows

the results of the chaos injection-based batch gradient

method for A ¼ 5;000. We can find that the algorithm still

converges. However, the performance is much worse than

that for A ¼ 500.

Conclusion

This paper investigates the chaos injection-based gradient

method (CIBGM) for the feedforward neural networks.

Two learning mode cases, batch learning and online

learning, are considered. Under the conditions that the

derivatives of activation functions are Lipschitz continuous

on any bounded closed interval and the learning rate gn is

positive and satisfies
P1

n¼0 gn ¼ 1 and
P1

n¼0 g
2
n\1, we

derive the weak convergence of the CIBGM, that is the

gradient of the error function tends to zero and the error

function tends to a constant. The strong convergence is also

derived with the assumption that the set Us does not con-

tain any interior point. The theoretical findings and the

effectiveness of the CIBGM are illustrated by a simulation

example. Future research includes the study on the con-

vergence of the chaos injection-based stochastic gradient

method.
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