
Presentation and response timing accuracy in Adobe Flash
and HTML5/JavaScript Web experiments

Stian Reimers & Neil Stewart

The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Web-based research is becoming ubiquitous in the
behavioral sciences, facilitated by convenient, readily available
participant pools and relatively straightforward ways of running
experiments: most recently, through the development of the
HTML5 standard. Although in most studies participants give
untimed responses, there is a growing interest in being able to
record response times online. Existing data on the accuracy and
cross-machine variability of online timing measures are limited,
and generally they have compared behavioral data gathered on
theWeb with similar data gathered in the lab. For this article, we
took a more direct approach, examining two ways of running
experiments online—Adobe Flash and HTML5 with CSS3 and
JavaScript—across 19 different computer systems. We used
specialist hardware to measure stimulus display durations and
to generate precise response times to visual stimuli in order to
assess measurement accuracy, examining effects of duration,
browser, and system-to-system variability (such as across differ-
ent Windows versions), as well as effects of processing power
and graphics capability. We found that (a) Flash and JavaScript’s
presentation and response time measurement accuracy are simi-
lar; (b) within-system variability is generally small, even in low-
powered machines under high load; (c) the variability of mea-
sured response times across systems is somewhat larger; and (d)
browser type and system hardware appear to have relatively
small effects on measured response times. Modeling of the
effects of this technical variability suggests that for most

within- and between-subjects experiments, Flash and
JavaScript can both be used to accurately detect differences in
response times across conditions. Concerns are, however, noted
about using some correlational or longitudinal designs online.

Keywords Web . Internet . Reaction time . Response time .

Display

For nearly two decades, psychologists and behavioral scientists
have used the internet, particularly theWorldWideWeb, to gather
data for their research. Developing from crude early experiments
using simple HTML forms (see Musch & Reips, 2000, for an
overview of early research) to more recent complex studies repli-
cating within- and between-subjects response time effects seen in
laboratory studies (e.g., Crump, McDonnell, & Gureckis, 2013),
Web-based psychological research has become mainstream. Two
key factors have contributed to the rapid expansion in Web-based
research. First, it has become much easier to recruit participants,
using commercial panels, and allowing researchers to run experi-
ments thatmight takeweeks in the lab in amatter of days or hours.
Second, Web-based technology has developed to allow relatively
easy generation of experiments online.

The expansion inWeb-based experimentation has meant that
examining whether data collected online are valid and reliable is
becoming an increasingly important part of the research process.
In this article, we examine whether the response time data from
Web-based experiments are accurate enough to be potentially
useful to researchers. Before doing so, we will give a short
overview of how Web-based research has developed recently.

Participant recruitment

Early research online tended to rely on unpaid volunteers to
act as participants, recruited in several ways: via emailed links

Electronic supplementary material The online version of this article
(doi:10.3758/s13428-014-0471-1) contains supplementary material,
which is available to authorized users.

S. Reimers (*)
Department of Psychology, City University London, Northampton
Square, London EC1V 0HB, UK
e-mail: stian.reimers@city.ac.uk

N. Stewart
Department of Psychology, University of Warwick, Coventry, UK

DOI 10.3758/s13428-014-0471-1

Published online: 6 June 2014

Behav Res (2015) 47:309–327

http://dx.doi.org/10.3758/s13428-014-0471-1

to an online experiment, online advertising, referral from sites
indexing Web-based psychological research, and collabora-
tions with organizations that have large amounts of Web
traffic (e.g., Kinderman, Schwannauer, Pontin, & Tai, 2013;
Reimers, 2007). More recently, social networks such as twitter
and Facebook have been used to recruit experimental partic-
ipants. These approaches have had limited control over par-
ticipant numbers, meaning that experiments have often had to
remain active for long periods of time to gather enough data to
test a hypothesis. Recently, many of these problems have been
obviated by the emergence of crowdsourcing marketplaces
such as Amazon Mechanical Turk (AMT, or MTurk else-
where) in the US (seeMason& Suri, 2012), and reward panels
such as Maximiles in the UK (see Reimers, 2009, for a brief
overview). This has allowed researchers to recruit relatively
reliable, demographically diverse participants, quickly, with
minimum effort, and for low cost (see, e.g., Mason & Suri,
2012, for discussion of potential ethical issues around this).
The use of AMT is increasing rapidly. For example, of the 63
publications in psychology and the behavioral sciences that
include the phrase “mechanical turk,” listed by Web of
Science, over half (33) were published between January and
September 2013, the time of writing this article. Since there is
increasing evidence that traditional laboratory findings are
replicated in online samples (e.g., Crump et al., 2013;
Kassam, Morewedge, Gilbert, & Wilson, 2011; Keller,
Gunasekharan, Mayo, & Corley, 2009; Reimers & Maylor,
2005; Simcox & Fiez, 2014; Stewart, Reimers, & Harris,
2014), the use of Web-based methods and samples such as
those on AMT are being increasingly used in favor of more
time consuming laboratory experiments. Indeed, such is the
popularity of AMT among psychology researchers, that con-
cern has been raised about the over-participation of some
workers across multiple related studies (Chandler, Mueller,
& Paolacci, 2013).

Technological development

In parallel with the development of participant recruitment
techniques, the technology for conducting research online has
also progressed. The earliest studies tended to use simple
HTML to display text, and forms to gather data from partic-
ipants (e.g., Birnbaum, 2000), with limited use of images or
graphics. In contrast, survey software (e.g., Qualtrics,
SurveyMonkey, Google Consumer Surveys) now allows non-
programmers to set up studies with full randomization and
random allocation of participants to conditions, as well as
easily embed images and other rich content. The browser-
plugin-based software Adobe Flash and Java have both been
through several iterations in the past ten years, improving their
capacity for handing video and other material. The arrival of

the HTML5 standard now provides support for video, audio,
and animation natively within the browser.

Researchers have used some of these technologies to create
more user-friendly psychological testing software, such as
ScriptingRT (Schubert, Murteira, Collins, & Lopes, 2013),
WebExp (Keller et al., 2009), and WEXTOR (Reips &
Neuhaus, 2002).

In addition to new software, the processing power of hard-
ware has continued to follow Moore’s law, leading to an
approximate doubling of computer speed every two years,
meaningmachines are capable of handling ever more complex
dynamic stimuli and calculations.

Although it is now feasible to run a wide variety of exper-
iments quickly and reliably online, the majority of studies, for
example those listed on sites such as the Hanover College
http://www.psych.hanover.edu/research/exponnet.html and
http://www.socialpsychology.org/expts.htm, use untimed
surveys or questionnaires, rather than variables that are
captured in response times or speed–accuracy trade-offs.
This may to some degree reflect the field in general, and the
relative difficulty inherent in setting up response time mea-
sures online, but it is likely also to reflect a degree of skepti-
cism about the accuracy of response time measures recorded
in a Web browser online.

Although the technology and possibilities for online exper-
imentation have developed since the earliest, text-based ex-
periments in the mid-1990s, the discussion about the pros and
cons of Web versus lab research has tended to focus on the
same issues. Arguments for the use of Web-based research
include the ease, speed, and cost-effectiveness of using online
samples, and the more representative nature of online respon-
dents relative to the undergraduate psychology students who
typically participate in lab-based studies. Arguments against
the use of Web-based research include concerns about the
reliability of data, particularly with reference to repeat sub-
missions, “junk” responding, distractions, lack of motivation,
and possible variability in the way in which stimuli are pre-
sented, or responses collected, and technical variability across
participants’ computer systems.

Response time experiments online

Perhaps as a consequence of the increasing feasibility of
running experiments online, there has recently been renewed
interest in recording response times in online research.
Although early studies were able to gain coarse measures of
response times by logging the timing of server requests, most
attempts at accurate response time measurement have used
client-side processing, that is, running code and measuring
times on the user’s own machine, traditionally using browser
plugins such as Java and Adobe Flash, but more recently also

Behav Res (2015) 47:309–327310

http://dx.doi.org/10.1371/journal.pone.0076564
http://www.socialpsychology.org/expts.htm

JavaScript, which is natively supported by browsers. We give
a brief overview for each now.

Java Java is a powerful, flexible development platform,
which runs on a wide range of computing devices. In Web
browsers, Java runs as an ostensibly sandboxed client-side
virtual machine plugin. For users that have the Java plugin
installed, opening a webpage that contains a Java applet will
initialize Java, which will then run the applet. The sandboxed
nature of the Java virtual machine means that any code run
should be limited in what it is permitted to do with a user’s
machine, such as restricting access to files and prohibiting
installation of software. Advantages of Java include the fact
that is it a well-established programming language, and it is
theoretically platform-independent. It is also used extensively
on non-PC devices: For example, smartphone Android apps
are written in a customized version of Java, with about
675,000 apps and 25 billion downloads (Rosenberg, 2012).
Disadvantages include the fact that many browsers do not
have the plugin, the relatively long initialization time, the
number of different versions of the Java runtime, and the
complexity of the language, which makes designing simple
user interfaces less than straightforward. A further downside is
that in 2013, serious security issues in Java were uncovered,
prompting the US Department of Homeland Security to rec-
ommend that users uninstall Java to maintain security.
Browsers now often present a security warning before Java
applets are displayed, meaning that applets no longer start
automatically.

Flash Adobe Flash is an authoring platform primarily used
for the development of Web-based games, animations and
interactive tools. Flash is installed on a large majority of
Web-facing computers. Like Java, Flash Player runs as a
client-side sandboxed virtual machine. Advantages of Flash
include the ubiquity of its plugin; the complexity of the
programs that can be implemented, particularly since the
advent of ActionScript 3; its ostensible platform indepen-
dence; and the fact that the software has been designed spe-
cifically for authoring interactive materials on the Web.
Disadvantages include the proprietary nature of the software,
its absence from Apple touchscreen devices such as iPhones
and iPads, and its own potential security issues.

HTML5, CSS3, and JavaScript The combination of HTML5,
JavaScript, and CSS3 (hereafter abbreviated to HTML5) now
provides an alternative to Java and Flash. HTML, JavaScript,
and CSS3 are three different technologies that work together
to render webpages or apps. The HTML component provides
the static content like text, pictures, sounds and video. CSS3 is
used to style the content, setting fonts, colors, and positioning.
JavaScript is used to make the content dynamic, hiding and
showing elements of the HTML, making them draggable or

clickable, and so on. The HTML5 alternative is provided in all
major browsers on all desktop and mobile platforms, used
extensively on the Web (e.g., behind Wikipedia and Gmail),
and provides video, audio, and animation support not previ-
ously available without a plugin. Psychologists are also be-
ginning to make use of HTML5 as a way of running tradi-
tional lab-based studies across a range of devices and Web
browsers (see, e.g., www.ertslab.com). Applications both for
Windows and iOS operating systems can be developed in
HTML5. Since HTML5 is natively provided in most major
browsers without plugins, there are no security warnings to
the user. Libraries like jQuery have reduced cross-browser
differences that were problematic for earlier HTML and
JavaScript implementations. HTML5 provides an open and
free (cf. proprietary Flash) development environment. On the
downside, unlike Java and Flash, it is easy to view the source
code, which means that skilled participants could reverse
engineer an experiment to work out, for example, the exper-
imental manipulations, or to more easily program an automat-
ed “bot” to respond multiple times in the experiment. Relative
to Flash, HTML5’s capabilities are slightly more limited (e.g.,
the HTML5 standard does not support full-screen presentation
or streaming video, although many current HTML5-
compatible browsers do), and browsers vary in the elements
of HTML5 that they support, with many older, but still used,
browsers—such as Internet Explorer 8—supporting relatively
few HTML5 elements. Even where elements are supported,
differences in appearance and functionality can be seen across
browsers. However, with Adobe’s 2011 announcement that
they are no longer developing Flash for mobile devices and
instead will contribute to HTML5 (Winokur, 2011), as well as
the decline in Flash objects on top websites, an increasing
switch from Flash to HTML5 appears likely.

All three software approaches mentioned above have been
used in an attempt to examine the feasibility of collecting
response time data from online behavioral experiments. In
general, the results have been fairly similar across implemen-
tation, although it is rare to see examples of direct compari-
sons across different implementations. Research has generally
taken two approaches. The first approach has involved at-
tempts to replicate well-established response time effects on-
line; to see whether the same patterns of results can be found.
The second has been to use specialist hardware to examine
how accurately browser-based software can display stimuli
and record response times.

Comparisons of Web- versus lab-based experimental results

In the past few years, several authors have attempted to
compare response time data between online and lab-
based collection, or replicate classic response-time-based
findings online. We (Reimers & Stewart, 2007) compared

Behav Res (2015) 47:309–327 311

http://www.ertslab.com/

participant response times within subjects, using a C++-based
millisecond-accurate response system, and the same experi-
ment coded in Flash and run on a browser. Participants com-
pleted the same simple and choice reaction time experiments
using the accurate system, using Flash in a browser run on a
laboratory computer, and using Flash on their own computer
in their own time. We found that response times on the Flash
system were recorded as around 40 ms longer than those on
the accurate system, but that relatively little random noise was
introduced in the Flash conditions. We also examined re-
sponse times using cellphones running Adobe Flash Lite,
which gave much less reliable data in some cases (Reimers
& Stewart, 2008). More recently, Schubert et al. (2013) com-
pared Stroop task performance between laboratory and Web-
based Flash, and found broadly similar performance.

Rather than directly compare experimental results across
Web and lab implementations, a number of recent studies have
attempted to replicate well-established response-time-based
phenomena online. The rationale behind this is that if well-
established, “classic” results can be replicated, then the details
of differences in timings online are relatively unimportant.
Most published replication attempts have shown very similar
results to those from lab-based studies. In one of the earliest
examples, Reimers and Maylor (2005) used Adobe Flash to
examine the effects of age on task-switching performance,
finding largely similar results to those from laboratory studies,
where data existed. Similarly, Keller at al. (2009) replicated a
response time effect in a psycholinguistic experiment; Simcox
and Fiez (2014) replicated flanker and lexical decision effects
online. In perhaps the most extensive set of replication at-
tempts, Crump et al. (2013) used AMT to attempt to replicate
Stroop, switching, flanker, Simon, Posner cueing, attentional
blink, subliminal priming, and category learning tasks. The
authors replicated the majority of the effects, including a small
20-ms visual cueing effect. The two situations in which effects
could not be replicated were for short-duration masked prim-
ing (with prime durations of 64 ms or less), and for category
learning (which was not response-time-based, and appeared to
be down to motivational issues in the participants).

Direct measurement of Web-based timing accuracy

The second strand of relevant research has examined the
timing performance of Web-based testing setups using spe-
cialist software or hardware. One of the earlier attempts to
examine system performance for browser-based experiments
was by Keller et al. (2009). They looked specifically at the
Java-based experimental software WebExp for measuring ap-
parent response times. They used keypress repetitions as a
known response time, noting that when a key on a keyboard is
pressed and held down, after a while the operating system
generates repeated keypresses with a known and adjustable
interval between them. Since all of the intervals are known,

keypress repeats can be used to assess the accuracy of a piece
of experimental software’s timings. For example, if an exper-
imenter sets the keystroke repetition rate to 300 ms, he or she
can generate a stream of keypresses with a known 300-ms
interval between them, and examine what the software mea-
sured as the interval, giving a measure of timing accuracy.

A similar software-based approach was used by Simcox
and Fiez (2014), who used a script running on the test machine
to generate a stream of keypresses with fixed intervals be-
tween them and measured the accuracy with which these
intervals replicated across repeated runs of the same script.
Like Keller et al. (2009), they found very good timing
performance.

Although the findings of Keller et al. (2009) and Simcox
and Fiez (2014) are informative, there are two reasons why
they may lead to underestimation of timing errors. The first is
that in both cases the input keypresses are generated by the
same system as is used for recording the keypress timing
accuracy. Although this is an understandable approach to take,
it means that both stimulus generation and response time
recording rely on the same system clock. If the clock infor-
mation available to generation and recording software is con-
sistent but inaccurate, there is no way to detect this. The
second potential problem is that software-based approaches
tend to measure the gaps between multiple keypress events,
rather than the gap between presentation of a stimulus and a
keypress, which is typically the focus of behavioral research.
In a system in which, for example, the testing software re-
corded all events as occurring 100 ms after they actually did,
the gaps between keypresses would remain the same and
would be measured accurately, but response times to stimuli
would be measured as 100 ms longer than they actually were.
Just looking at the gap between keypresses would risk giving
a false impression that the system was recording responses
accurately. For that reason, a better setup would be to use
external hardware to respond to stimuli displayed on the
screen with a fixed, known response time, and compare with
the response times measured by the software under consider-
ation. In other words, using hardware to mimic a human
participant, but with known response parameters.

We are aware of two studies that have done this. The first
was conducted by Neath, Earle, Hallett, and Surprenant
(2011) on two Apple Macintosh computers. They used a
photodiode to detect visual stimuli presented on the screen,
and then triggered a solenoid to press a key after a known
period of time. The authors examined Web-based software
such as Java, JavaScript, and Flash, among other things. They
found increased variability and overestimation of response
times, and some quantizing of response times with Flash.

The second study was conducted by Schubert et al. (2013),
using their bespoke Flash-based testing setup ScriptingRT.
They used a photodiode attached to the screen to generate
responses either directly, or using a solenoid to press a key on

Behav Res (2015) 47:309–327312

a standard keyboard. Their main focus was on comparing
response time variability using ScriptingRT with that using
testing software such as E-Prime and DMDX. They found
somewhat higher variance in their Flash-based setup, although
it was still small, relative to other testing software, and 10- to
35-ms longer measured response times. Since the response
system was not validated, it was not possible to estimate the
absolute overestimation of response times using ScriptingRT,
but the overestimation was not markedly longer than using
traditional testing packages.

Finally, in contrast to research that has examined the accu-
racy of response times in online experiments, a much smaller
literature has examined the accuracy of presentation durations
online. Although for most research, the precise control over
stimulus durations is not vital, several research areas—such
as, for example, masked priming, iconic memory, and change
blindness—require more accurate presentation timings.
Existing research suggests that stimulus duration accuracies
are reasonably good. For example, Simcox and Fiez (2014)
used a photodiode to compare actual and intended visual
presentation durations under Adobe Flash, and found reason-
ably accurate presentations. Schubert et al. (2013) found that
their Flash-based stimulus presentation was around 24 ms
longer than intended, across three presentation durations.

Research rationale

This evidence using specialist hardware suggests that it might
be feasible to run timing-sensitive experiments online, both
those that require accurate stimulus presentation durations,
and those that measure response times online. However, even
the most extensive existing studies (Neath et al., 2011;
Schubert et al., 2013) have been run on just one or two
systems, meaning the although we have some idea of how
much within-system variability may arise from running an
experiment in a Web browser, we have no idea how much
between-system variability exists.

For within-subjects experiments, or tacitly within-subjects
experiment in which participant performance is compared to a
baseline condition (e.g., switch costs, Simon effect magnitude,
priming magnitude, Stroop effect), between-system variability
is not an issue. Measured Stroop effects or switch costs would
be the same even if measured response times were much
longer than actual response times. However, within-system
variability would be an issue. If a system introduced large
amounts of noise into eachmeasured response time, the power
to detect differences between conditions would be reduced.
This could be compensated for by using a larger number of
trials (see, e.g., Damian, 2010, for a discussion).

For between-subjects experiments, between-system vari-
ability is more of an issue, as it introduces random noise into
estimates of group means for response times in different
conditions. Large variability between systems would make it

harder to detect differences between groups. Without having
an estimate of between-system variability, it is not possible to
estimate howmuch power would be lost in a givenWeb-based
response time experiment as a result of variability in perfor-
mance across different machines.

Of more concern, there appear to be two areas in which
between-system variability risks leading to false positive find-
ings: Correlational studies and longitudinal studies. If, for
example, older operating systems measured much longer re-
sponse times than newer ones, and older people tended to use
older operating systems, spurious age effects might arise.
Similarly, if, say, the browser Firefox is used by a greater
proportion of men than other browsers, and it happens to
record faster response times, then spurious sex differences
could be obtained. For longitudinal data, if upgrades to oper-
ating systems or hardware mean that overestimation of re-
sponse times decreases, it may appear that a cohort is getting
faster (or not getting slower) with age.

Finally, we note that we are only referring to simple exper-
imental designs that present individual stimuli, and require no
specialist hardware. For experiments that require synchroni-
zation of input or output across modalities or different pieces
of hardware, small timing differences could have substantial
effects on the results.

The aim of the research reported here was therefore to
attempt to quantify the extent to which display durations and
measured response times may vary across participants for
nonbehavioral reasons. To do this, we use specialist hardware
to measure stimulus display durations accurately, and generate
responses to stimuli with fixed, known latencies.

In Study 1, we used four different systems to examine
systematically the effects of implementation (Flash vs.
HTML5), browser type (Internet Explorer, Firefox, or
Chrome), and duration or stimulus or response latency (short,
medium, or long). For the least powerful system in this group,
we also examine the effect of concurrent processor load on
timing performance. In Study 2, we use a single duration and
latency, on a single browser, to examine variability across a
further 15 systems running the same code.

We constrained this analysis just to Windows PCs. We
found that 85 %–90 % of participants who complete our
online experiments do so using a Windows PC. Most of the
remainder use a Mac. Very few (<1 %) participants use other
operating systems, such as Linux. We refer readers interested
in Mac response time measurements to Neath et al.’s (2011)
article.

The unique contributions of this article include (a) a direct
comparison of the timing properties of two popular ways of
running online experiments—Flash and HTML5; (b) a sys-
tematic test of stimulus presentation and response recording
accuracy across different browsers and durations; and (c) an
examination of system-to-system variability and exploration
of the potential causes of that variability.

Behav Res (2015) 47:309–327 313

Study 1

The aim of Study 1 was to examine the ways and extent to
which timings in online researchmight be subject to noise.We
were interested both in the variability in timing within a given
computer system, and across systems. We used a Black Box
Toolkit Version 2 (www.blackboxtoolkit.com; see also Plant,
Hammond, & Turner, 2004, for an introduction to its Version
1 predecessor) to examine timing accuracy. The toolkit is a
piece of hardware designed for use by psychologists and
neuroscientists to record stimulus presentation timings and
respond with known response times. Specifically it can
detect and record visual and auditory stimulus onset and
offset with sub-millisecond accuracy, using opto-detectors
attached to a computer monitor, and microphones placed in
front of a computer’s loudspeakers. It can also generate events
with precise latencies, such as sounds and switch closures. By
dismantling a keyboard or mouse, and attaching wires on
either side of a key or mouse button, the switch closure can
then generate an event like a keypress or mouse click. This
allows the toolkit to generate responses to stimuli with a
known, precise latency. For example, it can generate a
keypress exactly 300 ms after a stimulus appears on a screen
(although this setup does not take into account key travel time
or switch registration time that would be a part of a real
human’s response time). The testing software can measure
the apparent response time, allowing examination of how it
deviates from the actual response time.

For these tests, we use a simple setup, coded as simply as
possible in Flash (ActionScript 3) and HTML5, presenting a
white square on a black background (to maximize contrast and
aid detection of stimulus onset). For the visual display dura-
tion test, the square remains on the screen for a period of time
specified in the Flash or JavaScript code. For the response
time test, the square remains onscreen until a keypress re-
sponse is recorded. The materials, code, and data from these
studies are available as Supplementary Materials.

Visual display duration (VDD)

This procedure measures the actual duration of visual stimuli,
to allow comparison with intended duration. Once started,
Flash or JavaScript code presents a white square on a black
background for a fixed period of time, after which it disap-
pears. This is followed by a 500-ms intertrial interval (ITI) and
the next presentation. A total of 100 trials were presented for
each condition. Three different display durations were set in
Flash and JavaScript: 50, 150, and 500 ms. We used 50 ms to
examine the potential for running, for example, masked prim-
ing experiments online; 150 ms for stimuli that might be
presented for a single fixation; and 500 ms for more conven-
tional stimuli that allow multiple fixations.

The Flash version of this procedure was coded in
ActionScript 3 with a presentation rate of 60 frames per
second (fps). It used the Timer() procedure linked to an event
listener to specify how long after the square was presented the
square should be hidden again. [We separately used the alter-
native setInterval() method in initial testing, which gave sim-
ilar results.]

The HTML5 implementation was coded with the jQuery
library. The square was an HTML5 <div> element formatted
in CSS3. The square was hidden and shown using JavaScript
using the hide() and show() methods. We provided callback
functions to these methods to chain hiding and showing. For
example, when the show() method was called it displayed the
square and ran a callback function that used the hide() method
to hide the square after the display duration had elapsed. And
when the hide() method was called it hid the square and ran a
callback function that used the show() method to show the
square after the ITI has elapsed. Timing was provided by the
delay() method.

Actual durations were recorded using the black box toolkit,
using its inbuilt Digital Stimulus Capture procedure. An opto-
detector was attached to the screen to detect stimulus presen-
tation durations. The toolkit recorded only onsets and offsets
of stimuli, so a brightness threshold had to be set tomark onset
and offset. Thresholds set for triggering varied according to
ambient light and monitor brightness and contrast, but were
between 100 (78 %) and 115 (90 %) on the toolkit’s internal
scale.

Response time measurement

This procedure simulates a participant with a known response
time. Once started, Flash/HTML5 code presents a white
square on a black background (as in VDD), starts a timer,
and awaits a keypress response. On receiving a response, the
timer is stopped, the time elapsed is recorded, the white
square disappears, and a 500-ms ITI begins, followed
by the next trial, for a total of 100 trials. After 100 trials, the
recorded response times for all trials are displayed by the
Flash/HTML5 code on the screen and can be copied and
pasted for analysis.

Here, we had the black box toolkit respond with response
times of precisely 150, 300, and 600 ms. We used 150 ms as
the lower bound for response times in a simple reaction time
experiment; 300 ms as the lower bound for response times in a
basic choice reaction time experiment; and 600 ms for a more
typical response time in a speeded categorization or judgment
experiment. Since response variability is largely in proportion
to response time, the types of experiment that are most sus-
ceptible to the effects of hardware or software variability are
those with the shorter response times.

Behav Res (2015) 47:309–327314

http://www.blackboxtoolkit.com/

As before, the Flash version of this procedure was coded in
ActionScript 3 with a frame rate of 60 fps. It used the getTimer()
procedure to record the times at which the stimulus was pre-
sented and the keypress detected. The HTML5 implementation
detected keypresses by binding an event-handler function to the
JavaScript “keydown” event. Timing of the onset of the square
was recorded using the jQuery function $.now(), which pro-
vides the time in milliseconds in a callback function for the
javascript show()method. Timing of the key press was recorded
with $.now() in the “keydown” event handler.

The tests were run using the toolkit’s inbuilt Digital
Stimulus Capture and Response procedure. As before, an
opto-detector was attached to the screen to detect stimulus
onset. To allow the toolkit to generate a keypress, a standard
Dell USB keyboard (model SK-8115) was dismantled, and
wires placed on top and bottom contacts for the space bar.
These wires were connected to the active switch closure
terminals in the toolkit’s breakout board. The toolkit was
programmed to generate a switch closure a precise, constant
period of time after stimulus onset. This would be detected by
the system running the Flash or HTML5 experiments as a
space bar press.

Hardware and operating systems

We ran the tests on the following PC systems (fuller system
information can be found in Table 6 below):

Dell OptiPlex 760 Desktop PC This was a machine
running Windows XP that had until recently been used
in an academic’s office, but had been replaced as its
processing capacity was limited.
Sony Vaio VPCW11S1E netbook, low load This was a
four-year-old netbook running Windows XP as an exam-
ple of a very low-end computer that might be used to run
an experiment.
Sony Vaio VPCW11S1E netbook, high load This setup
examined what we defined as a boundary case for Web-
based response time testing: An obsolescent machine
with slow processor and low memory, running multiple
applications during the test. For this test, we used the
same netbook as above; this time before running the tests,
we started a Skype video call (transmitting but not re-
ceiving video), and played a YouTube video in another—
nonvisible—browser tab. According to the task manager

Table 1 Top: Differences between intended and actual presentation
(positive = longer duration than intended) on a Dell OptiPlex 760 desktop
computer for intended durations of 50, 150, and 500 ms. Bottom:

Differences between actual and measured response times (positive =
overestimation) on a Dell OptiPlex 760 desktop for actual response times
of 150, 300, and 600 ms

Flash HTML5

MSIE Firefox Chrome MSIE Firefox Chrome

Presentation Time

50 ms

Mean (SD) +15.2 (7.9) +14.6 (8.5) +16.3 (7.9) +36.5 (1.7) +22.3 (9.6) +4.3 (9.5)

Range +3, +36 +4, +25 –13, +26 +20, +37 +1, +35 –12, +25

150 ms

Mean (SD) +6.1 (8.3) +9.4 (8.2) +3.0 (8.4) +25.2 (8.3) +4.9 (14.5) –1.9 (10.2)

Range –1, +16 0, +19 –5, +29 +17, +33 –15, +35 –16, +19

500 ms

Mean (SD) +0.6 (1.7) –0.5 (1.7) +1.1 (7.0) +17.1 (1.9) –0.2 (5.4) +7.0 (8.4)

Range 0, +17 –1, +16 –16, +17 +16, +34 –18, +32 –15, +18

Response Time

150 ms

Mean (SD) +26.7 (7.8) +32.9 (7.3) +28.8 (8.0) +33.6 (7.5) +45.0 (7.6) +38.7 (12.4)

Range +6, +38 +22, +83 +21, +52 +21, +53 +22, +56 +7, +67

300 ms

Mean (SD) +27.3 (8.1) +35.3 (8.2) +29.6 (7.4) +33.2 (8.4) +42.8 (6.7) +43.4 (12.9)

Range +12, +44 +19, +50 +12, +44 +12, +44 +20, +64 +8, +69

600 ms

Mean (SD) +28.1 (8.0) +36.7 (5.1) +28.5 (7.9) +34.7 (8.7) +43.9 (9.8) +41.8 (16.4)

Range +9, +41 +27, +48 +9, +41 +24, +56 +6, +70 +10, +71

MSIE, Microsoft Internet Explorer

Behav Res (2015) 47:309–327 315

application, this took CPU use up from less than 10 % in
the low load configuration to 60 %–100 %. The Skype
call and video played throughout the display and re-
sponse time measurement process.
Dell OptiPlex 790 Desktop PC This PC is the standard
build of machine used in City University’s undergraduate
research labs.
Dell OptiPlex 9010 Desktop PC This PC is used for
analysis and modeling work, so has a higher specification
than the standard testing machines.

Test results

Dell OptiPlex 760 These results are given in Table 1. It
appears that, in general, within-machine variability was very
low, both for display duration and response time measures.
Display durations were longer than those intended in some
cases, particularly for the shorter (50- and 150-ms) durations.
Overall, there were minimal effects of implementation or
browser type, with the exception perhaps of longer display
durations for HTML5 and Internet Explorer.

Sony Vaio Netbook, low load These results are given in
Table 2. As before, variability was generally low, with a

couple of exceptions in the HTML5 response time conditions,
both of which stem from a single outlying long measured
response time. Again, as before, measured display durations
and response times were largely unaffected by browser and
implementation, except again for longer durations in the
HTML5/Internet Explorer combination.

Sony Vaio Netbook, high load These results are given in
Table 3. The effect of load on timing in this machine was
relatively small. Response times were slightly longer, and
variability rather larger (often caused by a small number of
very long durations) than in the low-load condition.

Dell OptiPlex 790 These results are given in Table 4.
Although the means and SDs for stimulus presentation are
relatively good, response times are overestimated by around
80 ms. Despite these large overestimations, standard devia-
tions are small.

Dell OptiPlex 9010 These results are given in Table 5.
The results are fairly similar to those from the other
Windows 7 machine, in Table 4. Again, although stan-
dard deviations are small, overestimation of response
times was around 80 ms. The results could also be com-
pared with those from the Dell OptiPlex 760 running

Table 2 Deviations from intended stimulus durations (top) and actual response times (bottom) using a Sony Vaio under low load

Flash HTML5

MSIE Firefox Chrome MSIE Firefox Chrome

Stimulus Duration

50 ms

Mean (SD) +17.2 (9.4) +16.5 (9.0) +19.8 (9.7) +46.4 (6.6) +18.7 (8.3) +16.8 (7.6)

Range –7, +45 –6, +44 –5, +47 +27, +63 +8, +31 +8, +30

150 ms

Mean (SD) +27.3 (5.9) +27.5 (3.0) +20.5 (8.7) +39.7 (10.1) +19.5 (8.4) +15.7 (7.4)

Range –14, +32 +12, +3 +9, +39 +26, +98 +8, +31 +8, +31

500 ms

Mean (SD) +11.0 (4.2) +11.2 (3.2) +11.5 (2.7) +32.3 (7.1) +20.0 (8.6) +14.9 (6.3)

Range –7, +15 –6, +15 –4, +15 +12, +48 +10, +43 +10, +31

Response Time

150 ms

Mean (SD) +32.4 (8.6) +41.9 (6.1) +47.0 (6.7) +41.7 (9.0) +57.6 (7.0) +45.5 (5.9)

Range +21, +53 +29, +56 +31, +62 +21, +69 +40, +71 +32, +60

300 ms

Mean (SD) +41.9 (7.4) +41.8 (6.6) +46.7 (7.0) +45.3 (8.5) +60.0 (32.3) +46.1 (6.9)

Range +26, +57 +28, +58 +31, +64 +28, +60 +40, +373 +28, +61

600 ms

Mean (SD) +43.9 (6.9) +43.4 (6.5) +48.1 (6.6) +51.2 (7.4) +56.4 (4.8) +50.0 (36.3)

Range +26, +57 +30, +57 +34, +62 +40, +57 +43, +63 +31, +405

MSIE, Microsoft Internet Explorer

Behav Res (2015) 47:309–327316

Windows XP, in Table 1, since both used the same monitor,
removing a source of variance. The standard deviations are
similar, but response times are around 30 ms longer on this
Windows 7 machine.

Display duration deviations

Overall, the actual time for which a stimulus was displayed
was significantly longer than the specified duration. The
size of this overlength was around 20 ms. For the
majority of the tests, there appears to be an interaction
between browser and implementation. Overlong display
durations under HTML5 were larger in Internet Explorer
than Firefox or Chrome, by around 20 ms, although this
effect was smaller for longer durations and for more
powerful machines. For a given duration, the maximum
difference in means between browsers running Flash was
around 5 ms.

Response time overestimations

In all cases, response times were overestimated. We found no
obvious systematic effect of browser type. It did appear that
response times were overestimated more in the HTML5

implementation, although this effect was relatively small.
However, the clearest effect was in variability across systems.
It appeared that the older systems running Windows XP,
despite being much less powerful than their newer,
Windows 7 counterparts, were much more accurate in their
response time measurement. The two Windows 7 machines
measured response times that were 30–40 ms longer than the
XP machines. It is, of course, possible that the difference
would have been larger had we been able to control for
processor speed and graphics capability.

Distribution of display and response times

It is also useful to examine the distribution of response times,
to see whether it appears normally distributed, or whether, as
Neath et al. (2011) and Reimers and Stewart (2007) found,
quantizing is seen, with a large number of observations of a
particular measured response time, or actual display time, but
occurrences of neighboring values. We found clear evidence
in many cases for quantizing in both Flash and HTML5.
However, the circumstances under which this occurred
seemed to vary by machine, and by browser on the
same machine. Figure 1 shows the cumulative distribu-
tions of response times for one machine with various

Table 3 Deviations from intended stimulus durations (top) and actual response times (bottom) using a Sony Vaio under high load

Flash HTML5

MSIE Firefox Chrome MSIE Firefox Chrome

Stimulus Duration

50 ms

Mean (SD) +15.6 (8.9) +26.6 (41.0) +19.9 (15.1) +50.6 (9.3) +24.2 (12.6) +22.1 (8.3)

Range –7, +31 –7, +346 –7, +96 +27, +64 –6, +63 +9, +46

150 ms

Mean (SD) +23.8 (8.3) +23.7 (23.9) +23.5 (17.1) +50.7 (11.7) +24.5 (10.2) +19.6 (9.3)

Range –8, +45 –7, +143 –7, +96 +26, +93 +8, +62 +8, +45

500 ms

Mean (SD) +10.8 (5.6) +22.8 (20.7) +15.1 (13.4) +43.6 (11.3) +25.6 (14.5) +19.7 (9.2)

Range –7, +29 –4, +128 –23, +62 +26, +77 +9, +94 +8, +47

Response Time

150 ms

Mean (SD) +37.3 (6.9) +45.2 (29.4) +46.7* (11.2) +42.9 (10.5) +55.6 (10.7) +44.0 (5.8)

Range +23, +58 +22, +283 +28, +113 +21, +69 +35, +100 +29, +62

300 ms

Mean (SD) +37.1 (7.4) +48.2 (31.0) +47.6 (12.2) +44.9 (10.5) +52.0 (7.2) +42.2 (6.4)

Range +24, +51 +22, +234 +30, +89 +28, +75 +36, +71 +24, +57

600 ms

Mean (SD) +39.0 (7.3) +48.9 (34.7) +48.9 (11.6) +44.8 (15.5) +53.9 (7.4) +43.8 (6.7)

Range +24, +68 +24, +280 +31, +108 +25, +165 +40, +102 +27, +61

MSIE, Microsoft Internet Explorer. *This was run initially and showed a slightly worse performance. Unfortunately the black box toolkit logs were
inadvertently discarded, so it was rerun

Behav Res (2015) 47:309–327 317

browsers (similar plots for all machines tested can be
seen in the Supplementary Materials). For Internet
Explorer, there is a clear step-like function for the
Flash response times, suggesting substantial quantizing,
which is absent from the HTML5 distribution.
Conversely, on the same computer, running the same
code under Chrome shows more quantizing for
HTML5 than for Flash. There were some obvious idio-
syncrasies. For example, we did note that across several
tests using Firefox, response times measured by Flash
were multiples of 10 ms, something that we did not
observe for other browsers on the same system. Some
quantizing may be attributable to the fact the Flash uses
movie-like frames for its display updates, which are not
synchronized with screen refreshes.

For stimulus display durations (Fig. 2), similar quantizing
can be seen for both Flash and HTML5. Some quantizing
would be expected, since the visual stimulus must remain on
the screen for a fixed number of refreshes, so a monitor
refreshing at a 100-Hz rate would show quantizing of
display durations to the nearest 10 ms. Similarly, key-
board responses are polled intermittently. It is therefore
possible that the quantizing observed here is not related to
Flash or HTML5 per se.

Discussion

The results of this systematic evaluation of different potential
sources of variance in response times and stimulus durations
across participants showed a number of things. First, all sys-
tems overestimated response times, by at least 30 ms. Second,
all systems presented visual stimuli for longer than specified,
sometimes by over 50 ms, although more generally by around
10–20 ms. Third, within-system variability appears to have
been small, with standard deviations in presentation durations
or recorded response times generally around 10 ms. Fourth,
Flash and HTML5 gave, overall, fairly similar timing results.
The only consistent difference that we noted was that display
durations tended to be longer for HTML5 run on Internet
Explorer, at least on less powerful systems. Fifth, apart from
this, there were minimal differences between browsers in
recorded response times and presentation durations. Sixth,
we found nontrivial differences across systems in measured
response times and duration timings.

Overall, these findings suggest that within-subjects Web-
based experiments should not be constrained by technical
limitations. All of the systems we tested showed low standard
deviations for response times, meaning that minimal power
would be lost by the random noise introduced by the system.

Table 4 Deviations from intended stimulus durations (top) and actual response times (bottom) using a Dell OptiPlex 790

Flash HTML5

MSIE Firefox Chrome MSIE Firefox Chrome

Stimulus Duration

50 ms

Mean (SD) +26.1 (9.4) +10.1 (9.7) +21.5 (9.0) +24.7 (6.1) +20.5 (8.3) +19.1 (9.7)

Range +10, +61 –8, 29 –5, +29 +8, +29 +8, +29 –8, +42

150 ms

Mean (SD) +18.8 (9.2) +10.5 (3.5) +16.6 (10.7) +24.4 (13.3) +18.4 (8.4) +11.8 (4.3)

Range +11, +46 –8, +13 –6, +44 –5, +46 +10, +29 –6, +29

500 ms

Mean (SD) +21.4 (9.7) +10.6 (4.6) +10.7 (4.6) +10.1 (7.6) +22.3 (8.1) +12.6 (4.1)

Range –7, +46 –6, +13 –6, +13 –7, +30 +11, +30 –4, +30

Response Time

150 ms

Mean (SD) +77.0 (7.8) +79.6 (13.5) +88.2 (8.9) +77.9 (6.6) +89.6 (9.5) +82.8 (10.1)

Range +68, +84 +60, +190 +70, +103 +65, +97 +72, +113 +65, +101

300 ms

Mean (SD) +76.7 (9.3) +81.4 (8.5) +85.6 (6.7) +84.0 (7.8) +88.8* (6.4) +88.0 (8.1)

Range +58, +90 +70, +100 +71, +101 +67, +104 +77, +105 +63, +96

600 ms

Mean (SD) +75.6 (8.0) +81.2 (5.7) +81.5 (7.8) +82.5 (6.8) +90.2 (6.1) +75.5 (7.6)

Range +55, +87 +70, +100 +67, +99 +70, +100 +71, +111 +63, +84

MSIE, Microsoft Internet Explorer. *The first trial of this run recorded a response time of 81 ms, which was excluded. All other recorded response times
were >350 ms

Behav Res (2015) 47:309–327318

In fact, the standard deviations measured here were often not
much larger than those we obtained using the psychological
testing software E-Prime.

The results also suggest that between-subjects experimen-
tal results will be largely unaffected by the choice of browser
or the time duration to be measured. However, the results do
suggest that there may be more substantial variability across
systems. This means that between-subjects experiments may
be subject to greater noise, and may have implications for
correlational studies in which system performance is con-
founded with other variables of interest. In the present results
we examined only four systems. To get a better idea of the
cross-system variability of timing performance in Flash and
HTML5, we examined timing on a further 15 systems.

Study 2

In Study 1, we found differences in measured response times
and, to a lesser degree, stimulus presentation durations, across
the four systems tested, but it is unclear how representative
this variability might be of the general Web-experiment-
participating public. This second study expanded on the re-
sults of Study 1 by running a series of shorter timing tests on a
larger number of PCs. By examining a greater number of PCs,

which were selected to vary in Windows operating system
version, processing speed, graphics capability, and memory, it
would be possible to start to determine how much between-
system variability we should expect in Web-based research,
and the sources of some of this variability.

In this study, we repeated the measures used in Study 1:
visual display duration and response time measurement.
However, given the relatively small effect of duration, and
the fact that we have documented it already, we used just a
single duration for these wider tests, selecting the middle
durations from Study 1: 150 ms for presentation, and
300 ms for response time. Since many of the machines tested
in Study 2 were borrowed from friends and colleagues, we did
not want to install new software onto the machine, and only
used the browser installed on the machine. For each machine
in this study, we ran each test of 100 trials three times and took
the average of the means and SDs.

Details of the machines used, and their specs, can be seen in
Table 6.

Test results

Deviations from the 300-ms response time and 150-ms
presentation duration are given in Table 6. All systems

Table 5 Deviations from intended stimulus durations (top) and actual response times (bottom) using a Dell OptiPlex 9010 machine

Flash HTML5

MSIE Firefox Chrome MSIE Firefox Chrome

Stimulus Duration

50 ms

Mean (SD) +33.1 (7.8) +19.5 (6.2) +17.6 (4.7) +27.9 (10.3) +18.5 (4.0) +19.6 (5.0)

Range +18, +68 +18, +51 +1, +35 +1, +51 +1, +35 +18, +35

150 ms

Mean (SD) +21.9 (8.5) +16.6 (4.6) +15.0 (0.2) +29.3 (13.1) +17.3 (6.2) +16.1 (8.7)

Range +14, +49 +15, +32 +14, +15 +15, +49 –1, +32 –2, +48

500 ms

Mean (SD) +27.3 (8.7) +15.6 (7.0) +14.6 (0.6) +13.9 (9.5) +19.7 (7.9) +15.9 (4.3)

Range +14, +49 –2, +48 +14, +15 –2, +32 +14, +31 +15, +32

Response Time

150 ms

Mean (SD) +65.8 (9.9) +76.2 (6.0) +77.5 (8.2) +77.8 (6.8) +90.5 (7.8) +76.4 (8.1)

Range +52, +84 +60, +90 +64, +98 +63, +94 +75, +102 +65, +87

300 ms

Mean (SD) +69.3 (8.3) +75.0 (5.2) +79.0 (6.1) +80.8 (7.1) +95.9 (7.3) +78.8 (4.8)

Range +58, +90 +70, +90 +69, +100 +65, +95 +81, +110 +61, +95

600 ms

Mean (SD) +71.3 (8.9) +77.3 (5.5) +87.9 (7.2) +126.3 (8.9) +92.9 (10.7) +88.4 (8.0)

Range +55, +87 +60, +80 +70, +102 +110,+149 +72, +109 +78, +99

MSIE, Microsoft Internet Explorer

Behav Res (2015) 47:309–327 319

overestimated response times, and all systems displayed
stimuli for longer than specified. The correlation be-
tween overestimation in Flash and overestimation in
HTML5 was .82, p < .001, and the correlation between

overpresentation in the two systems was .64, p = .003.
There was no correlation between overestimation and
overpresentation across the systems tested. These results
suggest that the cross-system variability is mainly due

Fig. 1 Cumulative frequencies of measured response times on a single machine, for actual response times of 150, 300, and 600 ms, as a function ofWeb
browser and Flash/HTML5 implementation

Behav Res (2015) 47:309–327320

to factors common to both Flash and HTML5, rather
than specific to each of the program implementations.

Quantizing varied significantly across systems. We give
three examples of different patterns found for response time

measurements (Fig. 3) and display durations (Fig. 4).
Distributions for all systems can be seen in the Supplementary
Materials. As before, we could detect no systematic predictors
of smooth or quantized timings.

Fig. 2 Cumulative frequencies of actual display durations on a single machine, for intended durations of 50, 150, and 500 ms, as a function of Web
browser and Flash/HTML5 implementation

Behav Res (2015) 47:309–327 321

T
ab

le
6

C
om

pa
ri
so
n
of

re
sp
on
se

tim
es

(R
Ts
)
an
d
di
sp
la
y
pe
rf
or
m
an
ce

fo
r
al
lm

ac
hi
ne
s
in
cl
ud
ed

in
th
e
te
st
,f
or

30
0-
m
s
R
Ts

an
d
15
0-
m
s
pr
es
en
ta
tio

n
du
ra
tio

ns

Sy
st
em

O
S

C
PU

(s
pe
ed
)

R
A
M

G
ra
ph
ic
s
(s
pe
ed
)

M
on
ito

r
D
ev
ia
tio

n
Fr
om

A
ct
ua
lR

T
(m

s)
D
ev
ia
tio

n
F
ro
m

S
pe
ci
fi
ed

D
is
pl
ay

D
ur
at
io
n
(m

s)

F
la
sh

H
T
M
L
5

F
la
sh

H
T
M
L
5

F
ul
lT

es
t

D
el
lO

pt
iP
le
x
76
0

X
P

E
22
20

(1
35
1)

3G
b

H
D
24
00

Pr
o
(1
34
)

D
el
lP

22
11
H

+
30
.7
(7
.9
)

+
39
.8
(9
.3
)

+
6.
2
(8
.3
)

+
9.
4
(1
1.
0)

D
el
lO

pt
iP
le
x
90
10

W
in

7
i3
-3
22
0
(4
23
7)

8G
b

In
te
lH

D
25
00

(~
22
5)

D
el
lP

22
11
H

+
74
.4
(6
.5
)

+
85
.2
(6
.4
)

+
17
.8

(4
.5
)

+
20
.9

(9
.3
)

S
on
y
L
ow

L
oa
d

X
P

A
to
m

N
28
0
(3
00
)

1G
b

In
te
lG

M
A
25
0
(~
25
)

O
w
n

+
43
.4
(7
.0
)

+
45
.7
(7
.7
)

+
25
.1

(5
.9
)

+
25
.0

(8
.6
)

So
ny

H
ig
h
L
oa
d

+
44
.3
(1
6.
9)

+
46
.4
(8
.0
)

+
23
.7

(1
6.
4)

+
31
.6

(1
0.
4)

D
el
lO

pt
iP
le
x
79
0

W
in

7
i3
-2
10
0
(3
59
6)

4G
b

In
te
lH

D
20
00

(~
20
0)

Sh
ar
p
L
LT

15
A
4B

+
81
.2
(8
.2
)

+
86
.9
(7
.4
)

+
15
.3

(7
.8
)

+
18
.2

(8
.7
)

C
on

ci
se

T
es
t

To
sh
ib
a
L
30
0-
1B

V
V
is
ta

T
16
00

(9
99
)

2G
b

G
M
A
45
00
M

(~
50
)

O
w
n

+
67
.5
(7
.4
)

+
68
.2
(1
5.
4)

+
30
.7

(9
.6
)

+
20
.0

(4
.2
)

To
sh
ib
a
L
95
5-
10
N

W
in

8
i3
-3
22
7U

(2
58
7)

4G
b

In
te
lH

D
40
00

(4
65
)

O
w
n

+
55
.1
(8
.5
)

+
74
.8
(7
.1
)

+
24
.8

(9
.3
)

+
32
.5

(1
3.
1)

To
sh
ib
a
L
50
0-
1X

J
W
in

7
T
31
00

(1
15
3)

3G
b

G
M
A
45
00
M

(~
50
)

O
w
n

+
74
.0
(8
.3
)

+
95
.4
(7
.5
)

+
21
.9

(8
.4
)

+
23
.7

(7
.0
)

R
M

E
xp
er
t3

04
0M

a
W
in

7
E
75
00

(1
87
1)

4G
b

In
te
lG

M
A
45
00

(~
50
)

H
an
ns
.g
H
W
19
1D

+
62
.5
(6
.4
)

+
67
.0
(7
.3
)

+
34
.9

(7
.1
)

+
35
.8

(1
0.
7)

R
M

E
xp
er
t3

04
0M

b
W
in

7
E
75
00

(1
87
1)

4G
b

In
te
lG

M
A
45
00

(~
50
)

H
an
ns
.g
H
W
19
1D

+
67
.9
(8
.2
)

+
76
.4
(8
.0
)

+
26
.4

(8
.9
)

+
36
.5

(1
2.
7)

A
su
s
K
40
C
/K
50
C

W
in

7
C
el
.D

22
0
(4
02
)

2G
b

S
IS

M
ir
ag
e
3
(~
15
)

O
w
n

+
70
.8
(1
2.
4)

+
83
.6
(7
.3
)

+
24
.3

(8
.7
)

+
36
.2

(9
.4
)

H
P
Pa
vi
lio

n
g6

W
in

7
i5

M
48
0
(2
45
1)

4G
b

In
te
lH

D
(C
or
e
i5
)
(~
75
)

O
w
n

+
92
.6
(7
.1
)

+
89
.2
(8
.5
)

+
13
.3

(1
0.
3)

+
11
.8
(5
.4
)

R
M

D
es
kt
op

32
0a

W
in

7
i3
-3
22
0
(4
23
7)

4G
b

In
te
lH

D
25
00

(~
25
0)

H
an
ns
.g
H
W
19
1D

+
75
.1
(8
.4
)

+
79
.3
(7
.6
)

+
23
.4

(8
.5
)

+
18
.5

(5
.8
)

To
sh
ib
a
L
30
0-
1G

8
V
is
ta

T
34
00

(1
10
8)

4G
b

G
M
A
45
00
M

(~
50
)

O
w
n

+
64
.6
(6
.6
)

+
78
.9
(8
.1
)

+
11
.3
(6
.2
)

+
20
.4

(8
.5
)

R
M

D
es
kt
op

32
0b

W
in

7
i3
-2
10
0
(3
60
4)

4G
b

In
te
lH

D
20
00

(~
20
0)

H
an
ns
.g
H
P1

91
D
J0

+
32
.0
(8
.5
)

+
61
.3
(1
1.
0)

+
24
.8

(9
.2
)

+
22
.5

(1
4.
1)

R
M

D
es
kt
op

31
0

W
in

7
i7
-3
77
0
(9
42
6)

4G
b

G
eF
or
ce

G
T
63
0
(7
22
)

H
an
ns
.g
H
P1

98
D
JB

+
67
.9
(8
.3
)

+
75
.4
(8
.0
)

+
24
.9

(8
.1
)

+
25
.5

(8
.3
)

R
M

M
IN

IP
C
21
4

W
in

7
i7
-3
77
0
(9
42
6)

16
G
b

In
te
lH

D
40
00

(4
65
)

Ph
ili
ps

22
6V

+
71
.4
(7
.6
)

+
81
.6
(7
.7
)

+
18
.5

(4
.8
)

+
27
.6

(8
.3
)

D
el
lO

pt
iP
le
x
78
0

W
in

7
E
75
00

(1
87
1)

4G
b

In
te
lG

M
A
45
00

(~
50
)

D
el
lP

22
10

+
74
.0
(6
.8
)

+
73
.9
(7
.7
)

+
18
.3

(4
.2
)

+
32
.4

(8
.5
)

D
el
lO

pt
iP
le
x

W
in

7
i7
-2
60
0
(8
31
2)

8G
b

In
te
lH

D
20
00

(~
20
0)

D
el
lP

22
10

+
67
.4
(9
.1
)

+
62
.5
(8
.6
)

+
21
.2

(1
0.
8)

+
20
.3

(7
.9
)

To
sh
ib
a
R
70
0-
15
U

W
in

7
i3

M
35
0
(1
91
1)

2G
b

In
te
lH

D
C
or
e
i3

(~
75
)

O
w
n

+
75
.2
(8
.2
)

+
99
.7
(7
.1
)

+
23
.4

(9
.8
)

+
30
.5

(1
2.
9)

A
ve
ra
ge
d
ac
ro
ss
br
ow

se
rs
fo
rt
ho
se
te
st
ed

on
al
lt
hr
ee

br
ow

se
rs
,a
nd

ac
ro
ss
th
re
e
ru
ns

of
10
0
tr
ia
ls
fo
rt
ho
se
te
st
ed

on
a
si
ng
le
br
ow

se
r.
C
PU

sp
ee
ds

an
d
gr
ap
hi
cs

sp
ee
ds

w
he
re
av
ai
la
bl
e,
w
er
e
ob
ta
in
ed

fr
om

w
w
w
.c
pu
be
nc
hm

ar
k.
co
m
.O

th
er
gr
ap
hi
cs

sp
ee
ds

w
er
e
es
tim

at
ed

fr
om

co
m
pa
ri
so
ns

w
ith

gr
ap
hi
cs

ca
rd
s
w
ith

kn
ow

n
sp
ee
ds
,f
ro
m

w
w
w
.n
ot
eb
oo
kc
he
ck
.n
et

Behav Res (2015) 47:309–327322

Modeling

The measurement error added by Flash and HTML5 does not
make much difference to the power of typical experiments. For
a worst-case scenario, we assumed a two-condition between-
subjects design because, in this case, the large between-
computer differences in the systematic overestimation of each
response time and the small within-computer trial-to-trial fluc-
tuations would both obscure an effect of condition. (For a
within-subject design, only the latter variability would matter.)

One hundred response times were drawn from exponen-
tially modified Gaussian distributions (ex-Gaussians) to sim-
ulate 100 trials from each participant. Each simulated partic-
ipant was assumed to have a different ex-Gaussian: The mean
of the Gaussian component was drawn from a uniform distri-
bution between 400 and 600 ms, the standard deviation of the
Gaussian component was drawn from a uniform distribution
between 25 and 75 ms, and the mean of the exponential
component was drawn from a uniform distribution between
50 and 100 ms. The effect of condition was assumed to differ
across participants and was drawn from a uniform distribution
of between 0 and 100 ms, giving an overall population mean
effect size of 50 ms. The assumption of an ex-Gaussian

distribution for response times and these parameter values
are typical in modeling response time distributions (e.g.,
Brand & Bradley, 2012).

The top panel of Fig. 5 plots the results of many simula-
tions of the experiment, assuming millisecond-accurate re-
cording of response times. Each vertical black line is a 95 %
confidence interval for the estimate of the effect of condition
from a single simulated experiment. The pink crosses mark
the estimated means, and the blue and green crosses mark the
ends of the 95 % confidence intervals for that means. The
simulation was repeated ten times at each sample size, with
sample size (on the x-axis) ranging from four to 100 partici-
pants. The solid pink, green, and blue lines mark the loess-
smoothed means of the means and confidence intervals, and
converge at larger sample sizes. The yellow line is the loess-
smoothed 20th percentile for the lower end of the confidence
intervals. By definition, 80 % of confidence intervals fall
completely above this line. Of central interest is the point at
which this yellow line crosses zero, marked by a red vertical
line at about 62 subjects. This is the sample size required for
80 % or more of the simulated experiments to give 95 %
confidence intervals that do not include zero (i.e., are signif-
icant at the 5 % level in a two-tailed test).

Fig. 3 Cumulative frequencies of measured response times across three machines, for an actual 300-ms response time, as a function of Flash/HTML5
implementation

Behav Res (2015) 47:309–327 323

The lower panel of Fig. 5 repeats the simulation, but assuming
Flash/HTML5 measurement error. We assumed that each simu-
lated participant’s simulated computer added a constant to all of
their response times, which was drawn from a uniform distribu-
tion between 30 and 100 ms. We also assumed that each simu-
lated participant’s simulated computer added random Gaussian
noise to each trial, with a standard deviation drawn from a
uniform distribution between 6 and 17 ms. These ranges match
those we observed in our testing, shown in Table 6. This extra
variability makes only a small difference to the number of
participants required for 80 % power. Seven more participants
were required (an increase of about 10 %), and had a more
conventional within-subjects design been used, eliminating the
effect of the systematic overestimation of response times, there
would be no effective difference. The cost of using Flash/
HTML5 to measure differences in response times is low (see
Brand & Bradley, 2012, for a similar, theoretical argument).

General discussion

Two studies used specialist hardware to examine variability in
stimulus presentation durations and measured response times

under Flash and a setup using HTML5, CSS3, and JavaScript,
particularly differences between the two implementations, effects
of stimulus duration, browser, and system under which the
experiment was run. In general, within-system reliability was
very good for both Flash and HTML5—standard deviations in
measured response times and stimulus presentation durations
were generally less than 10 ms. External validity was less im-
pressive, with overestimations of response times of between 30
and 100 ms, depending on system. The effect of browser was
generally small and nonsystematic, although presentation dura-
tions with HTML5 and Internet Explorer tended to be longer
than in other conditions. Similarly, stimulus duration and actual
response time were relatively unimportant—actual response
times of 150-, 300-, and 600-ms response times gave similar
overestimations. Central or graphics processing power appeared
to have no systematic effect on timing performance: The most
accurate system for response measurement and presentation
accuracy was an old Windows XP machine. Although our
sample was too small for strong conclusions to be drawn, it is
interesting to note that the two systems running Windows XP
gave much more accurate measurements of response time than
virtually all the more powerful Windows Vista and 7 systems.
This gives credence to Plant and Quinlan’s (2013) argument that

Fig. 4 Cumulative frequencies of actual display durations across three machines, for an intended duration of 150 ms, as a function of Flash/HTML5
implementation

Behav Res (2015) 47:309–327324

more up-to-date, complex operating systemsmay actually lead to
worse performance in measuring behavioral data.

Implications for Web-based research

With regard to stimulus presentation durations, we would
warn against running experiments in which precise stimulus
durations are required, particularly those of short duration.
Our findings suggest that durations tend to be longer than
specified, and that this overpresentation can vary from ~5
to ~25 ms. We also note that on rare occasions, durations

can be up to 100 ms longer than specified. Clearly, this
would affect, for example, masked priming experiments,
and may explain the results of Crump et al. (2013), who
failed to replicate well-established findings for very short
durations. As such, we would not recommend running
experiments that require precise stimulus durations online
using Flash or HTML5. On the other hand, for most
experiments, variability in presentation durations of up to
25 ms would not be a problem, particularly with such good
within-system reliability, meaning Web-based research in
these situations should be fine.

Fig. 5 Effect of Flash/HTML5 measurement error on the detection of a 50-
ms effect in a between-subjects design. Each vertical black bar represents a
95 % confidence interval for the estimated effect size from a simulated
experiment. The pink crosses mark the estimated means, and the blue and
green crossesmark the extents of the 95% confidence interval for eachmean.
The simulations were repeated ten times at each sample size. The pink, blue,
and green lines are loess-smoothed estimates of the means of the estimated
means and confidence intervals. The yellow lines are the 20th percentiles for
the lower ends of the confidence intervals, so by definition, 80 % of the

confidence intervals are completely above this line. The red vertical lines
mark the points at which 80%of the confidence intervals are above zero (i.e.,
where the yellow line crosses zero) and indicate the sample sizes beyond
which 80 % or more of experiments would give a significant effect (i.e.,
where 80 % or more of the confidence intervals do not contain zero). The
upper-panel simulations assume millisecond-accurate measurement of re-
sponse times. The lower-panel simulations assume Flash/HTML5 measure-
ment error as we measured here

Behav Res (2015) 47:309–327 325

Number of Subjects

E
ffe

ct
 o

f C
on

di
tio

n
/ m

s −50

0

50

100

150

Without Computer Noise

−50

0

50

100

150

0 20 40 60 80 100

With Computer Noise

97.5% CI
Mean
2.5% CI

For measuring response times, the implications of these
findings depend on the design of experiment used. It is very
rare simply to wish to measure in absolute terms how quickly
someone responds to a stimulus—and in those cases in which
such a measurement was required we would definitely dis-
courage the use of Web-based research. The results here
indicate that such a measurement would overestimate the
response time by 30–100 ms. A between-subjects comparison
of response times across two conditions controls for this
overestimate and the extra noise from Flash/HTML5 can be
offset by running about 10 %more participants. And a within-
subjects comparison of response times across two conditions
is almost unaffected.

Correlational studies are potentially more problematic.
Experiments examining correlations between response
times on two different tasks would risk finding spurious
false positives from system-to-system variability. More
generally, if system properties affecting response time
measurement are correlated with demographics of interest,
such as gender, age, education or income, or, say, person-
ality measures (e.g., Buchanan & Reips, 2001, found
differences in personality between PC and Mac users),
then spurious relationships between demographics or per-
sonality and response times could be detected. Similarly,
longitudinal research could be problematic online, both for
finding general trends over time, which would be affected
by software and hardware development, and comparing
groups’ longitudinal changes in response times, if people
of different demographics upgrade more or less frequently,
or switch to different types of machine. It would also be
the case that studies such as clinical trials, which are not
longitudinal in design but may last several years, may be
affected by upgrades to hardware or operating system
during the trial. This may, of course, also be the case
for lab-based research in which hardware or software are
updated during a longitudinal study.

Limitations of present research

The research reported here is a fairly comprehensive at-
tempt to measure how response times and stimulus presen-
tation durations vary across systems. However, it is not
exhaustive. Our selection of systems was based on a con-
venience sample, and is not completely representative of
the sample of computers on which Web-based experiments
are completed. We were not able to deconfound operating
system and hardware, as more recent systems tended to
have more powerful hardware and more recent versions of
Windows running. Nor were we able to test all possible
configurations—it is almost inevitable that some untested
combinations of hardware, software, and running applica-
tions would produce much less reliable results than those
reported here. We did not account for variability in input

devices (see, e.g., Plant, Hammond, & Whitehouse, 2003),
since we were able only to dismantle a single USB keyboard
for the response time tests. There is, of course, likely to be
variability in timing measured across keyboards (and between,
e.g., keyboards, touchscreens, and mice).

A second issue is that it is not clear whether the variability
and patterns of quantizing seen across systems are stable
phenomena based on hardware or configuration differences,
or transient differences that occurred because the two systems
were performing different background tasks at the points at
which we ran the tests. To discover the cause of the cross-
system variability, this would need to be determined.
However, since our aim was to estimate variability, and hence
the feasibility of running response-time-based Web experi-
ments, this was less important here.

Finally, we note that these studies used simple stimuli,
coded as cleanly as possible. It is possible that the use of
different methods to record timings or to control stimulus
presentation could lead to a different pattern of results.
Similarly, the use of large graphics files for visual stimuli
could lead to worse timing performance, or to more of an
effect of system capabilities on timing performance. More
generally, we suggest that researchers should be mindful of
the fact that their results are likely to be distortions of the
actual response times.

While taking these limitations into account, we have reason
to be cautiously positive about measuring response times
through a Web browser using Flash or HTML5. Of course,
this is a conclusion that could change rapidly, as new operat-
ing systems are released, along with new browsers, new
versions of Flash, and new input and display devices. As such,
this study can only provide a snapshot.

Of course, other sources of participant-generated variance
are likely to be larger forWeb-based studies than for lab-based
studies—for example, lack of attentiveness, misunderstanding
of instructions, distractions, motivational limitations, and so
on. These are more general issues that researchers must con-
sider when designing and implementing Web-based experi-
ments. We also note that these findings apply specifically to
Web-based experiments that use simple visual stimuli.
However, it seems from this research that technical variability
across systems and within-system noise are likely to make
relatively minor contributions to overall variance.

Author note We are grateful to Peter Barr and Angela Ng for technical
assistance. Neil Stewart was supported by Economic and Social Research
Council Grant Nos. ES/K002201/1 and ES/K004948/1, and by
Leverhulme Grant No. RP2012-V-022.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and

Behav Res (2015) 47:309–327326

reproduction in any medium, provided the original author(s) and the
source are credited.

References

Birnbaum, M. H. (2000). Decision making in the lab and on the Web. In
M. Birnbaum (Ed.), Psychological experiments on the Internet (pp.
3–34). San Diego: Academic Press.

Brand, A., & Bradley, M. T. (2012). Assessing the effects of technical
variance on the statistical outcomes of web experiments measuring
response times. Social Science Computer Review, 30, 350–357.

Buchanan, T., & Reips, U.-D. (2001). Platform-dependent biases in
online research: Do Mac users really think different? In K. J.
Jonas, P. Breuer, B. Schauenburg, & M. Boos (Eds.), Perspectives
on Internet research: Concepts and methods (pp. 1–11). Retrieved
from http://www.uni-konstanz.de/iscience/reips/pubs/papers/
Buchanan_Reips2001.pdf

Chandler, J., Mueller, P., & Paolacci, G. (2013). Nonnaïveté among
Amazon Mechanical Turk workers: Consequences and solutions
for behavioral researchers. Behavior ResearchMethods, 46, 112–130

Crump, M. J., McDonnell, J. V., & Gureckis, T. M. (2013).
Evaluating Amazon’s Mechanical Turk as a tool for experi-
mental behavioral research. PLoS ONE, 8, e57410

Damian, M. F. (2010). Does variability in human performance outweigh
imprecision in response devices such as computer keyboards? Behavior
Research Methods, 42, 205–211

Kassam, K. S., Morewedge, C. K., Gilbert, D. T., &Wilson, T. D. (2011).
Winners love winning and losers love money. Psychological
Science, 22, 602–606.

Keller, F., Gunasekharan, S., Mayo, N., & Corley, M. (2009). Timing
accuracy of Web experiments: A case study using the WebExp
software package. Behavior Research Methods, 41, 1–12

Kinderman, P., Schwannauer, M., Pontin, E., & Tai, S. (2013).
Psychological processes mediate the impact of familial risk, social
circumstances and life events on mental health. PLoS ONE, 8,
e76564. doi:10.1371/journal.pone.0076564

Mason, W., & Suri, S. (2012). Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior Research Methods, 44, 1–23

Musch, J., & Reips, U. D. (2000). A brief history of Web experimenting.
In M. Birnbaum (Ed.), Psychological experiments on the Internet
(pp. 61–88). San Diego: Academic Press.

Neath, I., Earle, A., Hallett, D., & Surprenant, A. M. (2011). Response
time accuracy in Apple Macintosh computers. Behavior Research
Methods, 43, 353–362.

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating presen-
tation and response timing in cognitive paradigms: How and why?

Behavior Research Methods, Instruments, & Computers, 36, 291–
303

Plant, R. P., Hammond, N., & Whitehouse, T. (2003). How choice of
mouse may affect response timing in psychological studies.
Behavior Research Methods, Instruments, & Computers, 35, 276–
284

Plant, R. R., & Quinlan, P. T. (2013). Could millisecond timing
errors in commonly used equipment be a cause of replication
failure in some neuroscience studies? Cognitive, Affective, &
Behavioral Neuroscience, 13, 598–614

Reimers, S. (2007). The BBC Internet study: General methodology.
Archives of Sexual Behavior, 36, 147–161.

Reimers, S. (2009). A paycheck half-empty or half-full? Framing, fair-
ness and progressive taxation. Judgment and Decision Making, 4,
461–466.

Reimers, S., & Maylor, E. A. (2005). Task switching across the
life span: Effects of age on general and specific switch costs.
Developmental Psychology, 41, 661–671

Reimers, S., & Stewart, N. (2007). Adobe Flash as a medium for online
experimentation: A test of reaction time measurement capabilities.
Behavior Research Methods, 39, 365–370.

Reimers, S., & Stewart, N. (2008). Using Adobe Flash Lite on mobile
phones for psychological research: Reaction time measurement
reliability and interdevice variability. Behavior Research Methods,
40, 1170–1176.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: A Web-based tool for
generating and visualizing experimental designs and procedures.
Behavior Research Methods, Instruments, & Computers, 34, 234–
240.

Rosenberg, J. (2012). Google Play hits 25 billion downloads. Retrieved
September 26, 2013, from http://officialandroid.blogspot.ca/2012/
09/google-play-hits-25-billion-downloads.html.

Schubert, T. W., Murteira, C., Collins, E. C., & Lopes, D. (2013).
ScriptingRT: A software library for collecting response latencies in
online studies of cognition. PLoS ONE, 8, e67769. doi:10.1371/
journal.pone.0067769

Simcox, T., & Fiez, J. A. (2014). Collecting response times using
Amazon Mechanical Turk and Adobe Flash. Behavior Research
Methods, 46, 95–111

Stewart, N., Reimers, S., & Harris, A. J. L. (2014). On the origin
of utility, weighting, and discounting functions: How they get
their shapes and how to change their shapes. Management
Science. doi:10.1287/mnsc.2013.1853

Winokur, D. (2011). Flash to focus on PC browsing and mobile apps;
Adobe to more aggressively contribute to HTML5. Retrieved,
September 26, 2013 from http://blogs.adobe.com/conversations/
2011/11/flash-focus.html

Behav Res (2015) 47:309–327 327

http://www.uni-konstanz.de/iscience/reips/pubs/papers/Buchanan_Reips2001.pdf
http://www.uni-konstanz.de/iscience/reips/pubs/papers/Buchanan_Reips2001.pdf
http://dx.doi.org/10.1371/journal.pone.0076564
http://officialandroid.blogspot.ca/2012/09/google-play-hits-25-billion-downloads.html
http://officialandroid.blogspot.ca/2012/09/google-play-hits-25-billion-downloads.html
http://dx.doi.org/10.1371/journal.pone.0067769
http://dx.doi.org/10.1371/journal.pone.0067769
http://dx.doi.org/10.1287/mnsc.2013.1853
http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://blogs.adobe.com/conversations/2011/11/flash-focus.html

	Presentation and response timing accuracy in Adobe Flash and HTML5/JavaScript Web experiments
	Abstract
	Participant recruitment
	Technological development
	Response time experiments online
	Comparisons of Web- versus lab-based experimental results
	Direct measurement of Web-based timing accuracy
	Research rationale

	Study 1
	Visual display duration (VDD)
	Response time measurement
	Hardware and operating systems
	Test results
	Display duration deviations
	Response time overestimations
	Distribution of display and response times

	Discussion
	Study 2
	Test results
	Modeling

	General discussion
	Implications for Web-based research
	Limitations of present research

	References

