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Abstract

Contingency, and more particularly temporal contingency, has often figured in thinking about the 

nature of learning. However, it has never been formally defined in such a way as to make it a 

measure that can be applied to most animal learning protocols. We use elementary information 

theory to define contingency in such a way as to make it a measurable property of almost any 

conditioning protocol. We discuss how making it a measurable construct enables the exploration 

of the role of different contingencies in the acquisition and performance of classically and 

operantly conditioned behavior.
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The concept of contingency has long been a shadowy presence in theoretically oriented 

discussions of classical (i.e., Pavlovian) and operant conditioning. In the operant-

conditioning literature, many authors have observed that operant conditioning depends on 

the reward, or desired state of affairs being delivered contingent on a response of some 

particular kind (see Skinner, 1938; Thorndike, 1932). Similarly, in the Pavlovian-

conditioning literature, many authors have observed that a classically conditioned response 

(CR) develops when the occurrence of the unconditioned stimulus (US; i.e., a reinforcer) is 

contingent on (conditioned on) the occurrence of the conditioned stimulus (CS; see Pavlov, 

1927; Rescorla and Wagner, 1972). Its presence is, however, shadowy, because it has never 

been defined in such a way as to be generally useable; in consequence of which, it has never 

been a measurable aspect of most conditioning protocols and/or of the behavior-events 

relations that emerge when animals are exposed to conditioning protocols.

For the most part, contingency has been taken to be reducible to temporal pairing. Skinner 

(1948, p. 168) expressed a common conviction when he wrote: “To say that a reinforcement 

is contingent upon a response may mean nothing more than that it follows the response. It 
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may follow because of some mechanical connection or because of the mediation of another 

organism; but conditioning takes place presumably because of the temporal relation only, 

expressed in terms of the order and proximity of response and reinforcement.” Rescorla 

(1967) gives a lengthy discussion of the issue of temporal pairing versus contingency from a 

theoretical and historical perspective.

The attraction of treating contingency as reducible to temporal pairing is that there should 

not be in principle a problem with operationalizing the concept of temporal pairing. Events 

are temporally paired if and only if they consistently occur together within some critical 

interval. Thus, we should be able to operationalize the concept of temporal pairing by 

determining empirically what the critical interval is and how consistently (i.e., with what 

probability) the times of occurrences of the two events have to fall within that interval in 

order for the brain (of some species) to treat them as temporally paired. In the event, 

however, a century of experimental work on simple associative learning has failed to 

determine the critical interval for any two events in any species in any classical- or operant-

conditioning protocol (Rescorla, 1972; Gallistel and Gibbon, 2000). The concept of 

temporal pairing has eluded empirical definition. A fortiori, there has been no determination 

of what constitutes consistent temporal pairing.

The importance of distinguishing between contingency and temporal pairing was made clear 

by Rescorla’s experiments with a truly random control (Rescorla, 1968; see Fig. 1). In this 

experiment, Rescorla showed that contingency was not reducible to temporal pairing and 

that, when one tested whether it was temporal pairing or contingency that led to the 

emergence of conditioned responding in a Pavlovian conditioning protocol, it was 

contingency and not temporal pairing. This well known experiment did not, however, 

succeed in bringing the concept of contingency out of the theoretical shadows, because it 

continued to be a nebulous, undefined concept. If it was not temporal pairing, what was it? 

Could it be measured?

What many researchers, including Rescorla, took away from Rescorla’s experiment was that 

contingency in Pavlovian conditioning was p(R|CS)/p(R), where R denotes reinforcement 

and CS the presence of a conditioned stimulus. In words, contingency is the probability of 

reinforcement given the conditioned stimulus divided by the unconditional probability of 

reinforcement. This notional definition is readily extended to the operant case by writing 

p(R|r)/p(R), where r denotes a response. The problem with this conclusion is that it takes no 

account of time; hence, both the unconditional and the conditional probabilities are 

undefined.

To see the problem, one need only ask what the unconditional probability of reinforcement 

was in Rescorla’s experiment, or, for that matter, what the conditional probability was. 

Although Rescorla’s experiment has generally been discussed in terms of the differential 

probability of reinforcement, what Rescorla in fact did was vary the rate parameter of a 

Poisson (random rate) process as a function of whether the conditioned stimulus was or was 

not present. Rate, unlike, probability, has a temporal dimension; it is number per unit time. 

Rates can be converted to probabilities only by integration—integration over some interval

—and the result depends on the interval. Thus, the question, what is the probability of 
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reinforcement given some random rate? is ill posed; it has no answer. One can ask what the 

probability is that reinforcement will occur within some interval, for example within one of 

the 2-min intervals during which the conditioned stimulus in Rescorla’s experiment was 

present. However, even this question is not well posed, because it does not specify what we 

understand by ‘the occurrence of reinforcement’: Does it matter how many reinforcers occur 

within the specified interval? Are two or even three shocks during one CS presentation to be 

regarded as no different from only one shock? The same indeterminancies arise when we 

attempt to apply the above intuitive definition of contingency to the operant case.

Intuitively, contingency is closely related to correlation. However, the conventional 

measures of correlation assume that co-occurrence, that is, the pairing of x and y 

observations has already been determined; the only question is whether variation in the x 

values predict variation in the y values with which they are paired.

Measures of contingency in the psychological literature are derived from 2 × 2 contingency 

table (Table 1). Several have been used, but only two have suitable mathematical properties, 

such as ranging from 0 to 1 and not depending on the number of observations (for a review, 

see Gibbon et al., 1974). Both of these are properties of the correlation coefficient, but that 

measure cannot be computed for dichotomous variables. For dichotomous variables, 

Pearson’s mean square coefficient of contingency

is recommended by Gibbon et al. (1974) and others, while the difference in the conditional 

probabilities of the US,

has been used extensively in studies of human contingency and causality judgment (see, for 

example Allan et al., 2008).

There is, however, no unproblematic way to construct a contingency table in Pavlovian 

conditioning experiments, because they do not reliably have an empirically definable trial 

structure (Gallistel and Gibbon, 2000). The problem comes into strong relief when one 

considers how to construct the contingency table for Rescorla’s (1968) experiment 

schematized in Fig. 1. In that experiment, the CS lasted 2 min each time it occurred. The 

intervals between CS offsets and CS onsets varied around an average of 10 min. There is no 

doubt about how many CSs and USs there were, nor whether a given US occurred while the 

CS was present, so the first cell (a in Table 1) is no problem. All the other cells are 

problematic, because there is no objectively justifiable answer to the question, “How many 

not-USs and how many not-CSs were there and when did they occur?”
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One approach to dealing with this problem is to suppose that the brain divides continuous 

time into a continual sequence of discrete “trials.” This is what Rescorla and Wagner (1972) 

assumed in their analysis of the experiment by Rescorla (1968) schematized in Fig. 1. They 

assumed that the protocol in Fig. 1 could be treated as consisting of a sequence of 2-min-

long pseudo-trials, one immediately succeeding the other. During each pseudo-trial a US 

either occurred or it did not occur, and likewise for a CS. Thus, for example, if during one 

such fictitious trial, neither a US nor a CS occurred, then, for the purpose of constructing a 

contingency table, this would count as a “trial” on which one ~CS and one ~US occurred. 

They do not say how they scored pseudo-trials on which more than one US occurred.

The problem with this approach is obvious. It is impossible to say how often something does 

not occur. It is impossible to say, for example, how many not earthquakes London 

experienced in the year just passed. Without objectively defined trials, ~USs and ~CSs have 

no objectively definable relative frequency. This problem is even more acute in the case of 

operant conditioning, because in those protocols, there are often no trials of any kind, in the 

sense in which ‘trial’ is understood in the literature on classical conditioning. Thus, for 

example, it is impossible to say how many not-reinforcers occurred during an inter-

reinforcement interval in an operant conditioning protocol.

A second problem with measures based on a contingency table, and with the correlation 

coefficient as well, is that they take no account of time. They do not do so, because they 

assume that the pairing of two events—which instances of one event are paired with which 

instances of the other—has already been determined. The contingencies of ordinary 

experience, however, are defined over time, and the temporal intervals between the events 

are centrally relevant to the psychological perception of contingency and causality. A 

psychologically useful measure of contingency must take into account the intervals between 

events.

The cross-correlation function does take time into account. It computes the correlation 

between two events as a function of the displacement in time of one event record relative to 

that of the other. Its computation, however, presupposes that time can be divided into 

discrete bins, because the two records are stepped relative to one another bin by bin, and the 

computation of the correlation coefficient at any given step treats the events in aligned bins 

as co-occurrences (i.e., x–y pairs). The results of a cross-correlation computation depend 

strongly on the choice of bin widths. To apply this to the analysis of contingency in 

conditioning paradigms, one would need to know the brain’s temporal bin widths. Knowing 

this is analogous to knowing what the brain regards as “close” in time; two events are 

“close” or “contiguous” or “concurrent” just in case they fall within the same time bin. As 

already noted, attempts to determine experimentally how wide such a bin might be have 

failed.

What is needed for contingency to emerge from the theoretical shadows is a definition that: 

(1) makes it measurable; (2) takes time into account; (3) can be applied to any kind of 

suggested contingency; and (4) does not depend fundamentally on an arbitrary discretization 

of continuous time (time bins). Information theory provides such a definition.
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1. An information-theoretic definition of temporal contingency

Information (aka entropy) is a computable property of a probability distribution, just like its 

mean or its variance. A probability distribution associates probabilities or probability 

densities with the possible values for some variable. The possible values are called the 

support for the distribution. The entropy of the distribution, denoted H, is the probability of 

each possible value times the logarithm of its inverse:

where i indexes the possible values of the support for the distribution.

When only one value is possible, the associated probability is 1, and the “distribution” has 0 

entropy. In such a case, there is no information to be gained about the value of the support 

variable. The information available from that source is therefore 0. The more values a 

variable can assume and the more nearly equal their relative frequency, the greater the 

entropy of the probability distribution; hence, the more information there is to be gained 

from learning the current value of the support variable.

Events convey information about one another to the extent that knowledge of one event 

reduces our uncertainty about the other. This is Shannon’s (1948) definition of the amount 

of information that the signal events processed by a receiver convey about a source variable. 

The receiver’s average information gain from the signal events is measured by the difference 

in entropy between the receiver’s probability distribution on the source variable in the 

absence of the signal and its probability distribution in the presence of the signal. The 

entropy of the former measures the receiver’s uncertainty in the absence of a signal. This 

entropy is the upper limit on how much information the receiver can gain about that source. 

We will call this the basal entropy and denote it by Hb. We call the entropy of the receiver’s 

distribution given the signal the residual entropy and denote it by Hr. The proposed 

information-theoretic measure of contingency is:

Consider, for example, pellets that are released into a feeding hopper by an approximation to 

a Poisson (random rate) process, with rate parameter, λ. The distribution of inter-pellet 

intervals is exponential with expectation μ = 1/λ. Its entropy is k log(1/λ) = k log(μ), where k 

is a scaling factor whose value is determined by the temporal resolution. This resolution-

dependent scaling factor cancels out of the contingency measure, because it appears in both 

the numerator and the denominator, so we drop it from here on. The entropy of the inter-

pellet interval (IPI) distribution is an example of a basal entropy. This entropy is commonly 

called the available information or the source information. It measures the uncertainty about 

when to expect the next pellet, in the absence of any other events that convey information 

about the timing of pellet release, including previous pellet releases.
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Suppose, now, that there are such other events. Suppose, for example, that a brief tone 

precedes every pellet release by 1 s. The distribution of intervals from tone onset to pellet 

release has no entropy, because there is only one such interval. The objective contingency 

between tone onset and pellet release—the contingency for an observer with perfect timing

—is 1, because for such an observer, the residual entropy is 0, so

For an animal observer, the residual entropy is not 0, because brains represent temporal 

intervals with scalar uncertainty (Gibbon, 1977; Killeen and Weiss, 1987). Thus, we may 

take the residual entropy to be the entropy of a normal distribution1 whose standard 

deviation is proportional to the duration, d:

where w is the temporal Weber fraction and Hn(d, w) denotes the entropy of a normal 

distribution with mean d and coefficient of variation, w. Because the Weber fraction, w, is 

small (on the order of .16; Gallistel et al., 2004), the residual subjective entropy is small. For 

a fixed residual subjective entropy, the subjective contingency between CS and US depends 

on the expected interval between pellets; the larger the IPI, the stronger this subjective 

contingency is. Assuming w = 0.16 and an expected IPI of 10 s (and a tone-release interval 

of 1 s), the subjective tone-release contingency is 0.78. If we increase the expected IPI to 

100 s, the tone-release contingency is 0.89. As the basal entropy, which appears in both the 

numerator and the denominator, becomes arbitrarily large, the contingency ratio becomes 

arbitrarily close to 1.

Suppose, now, that the experimental protocol schedules tones using a Poisson process with 

rate parameter λ, but on each tone “trial” it releases pellets with probability p(R|CS). In 

traditional parlance, we partially reinforce the tone. Doing so lengthens the expected IPI by 

1/p(R|CS)—see Fig. 2. This increases by log(1/p(R|CS)) = −log(p(R|CS)) the basal 

uncertainty, Hb, about when the next pellet release will occur, which uncertainty is the 

denominator of the contingency ratio. Partial reinforcement increases the residual 

uncertainty, Hr, as well, which is the other term in the numerator of the contingency ratio. It 

does so because it introduces uncertainty about whether a pellet will be released at the 

conclusion of any given tone occurrence. The uncertainty about whether a pellet release will 

occur following a tone is independent of the uncertainty attendant on the application of the 

Weber fraction to the fixed delay between tone onset and pellet release. The entropies from 

independently distributed sources of uncertainty are additive. Therefore, the residual 

subjective entropy is the entropy of the normally distributed subjective uncertainty about 

when exactly pellet release will occur following tone onset, if it does occur on this 

1Technically, the left tail of the normal distribution extends to negative infinity. A more mathematically rigorous approach would use 
a distribution supported only on the positive reals, for example, the gamma distribution.
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presentation, plus the entropy of the distribution of trials-to-pellet release. This latter 

distribution is geometric with parameter p(R|CS)—see Fig. 3. The entropy of a geometric 

distribution is log(1/p(R|CS)). Thus, when we apply the information-theoretic measure of 

contingency, we have:

(1)

We see from Eq. (1) that partial reinforcement increases the denominator of the contingency 

ratio by log(1/p(R|CS)) while having no effect on the numerator. Therefore, partial 

reinforcement reduces the tone-pellet contingency, as one would expect.

The numerator in Eq. (1), which is unaffected by the partial reinforcement, is the 

information about US timing conveyed by the onset of a conditioned stimulus. Thus, partial 

reinforcement degrades the contingency between the conditioned stimulus and the 

unconditioned stimulus, but it does not diminish the information about US timing conveyed 

by the onset of a CS. Surprisingly, partial reinforcement has little or no effect on the number 

of reinforced presentations of the conditioned stimulus required for the appearance of a 

conditioned response (Williams, 1981; Gottlieb, 2004; Harris et al., 2011; Harris, 2011). 

Thus, it would appear that what matters for the acquisition of a conditioned response in a 

Pavlovian paradigm is not the CS–US contingency but rather how informative the onset of 

the CS is about how soon to expect the US (Balsam and Gallistel, 2009).

So far, we have considered only predictive contingency, but there are reasons to consider 

also retrospective contingency. We will want to do so most particularly when we come to 

consider the assignment of credit problem in operant conditioning (Staddon and Zhang, 

1991). This is the problem of computing what one did that produced the reinforcer that has 

just been delivered. We introduce the concept of retrospective contingency here, because the 

predictive tone-pellet contingency is not the same as the retrospective pellet-tone 

contingency. When we consider the retrospective contingency, the basal entropy is the 

entropy of the intervals looking backward from one tone to the preceding tone (rather than 

forward from one pellet release to the next release). The distribution of these retrospective 

inter-tone-intervals (ITI’s) is the same as that of the IPI’s; it is exponential with parameter λ. 

Therefore, the basal entropy in the denominator of the retrospective contingency ratio is the 

same as in the denominator of the prospective contingency ratio already considered. The 

numerator, though, is another story. When we come to consider how well pellet releases 

retrodict tones, the distribution we consider in computing the residual entropy is the 

distribution of intervals looking backward from pellet releases to the first preceding tone. 

The distribution of these intervals has no entropy, regardless of the value of the partial 

reinforcement parameter, p(R|CS), because a tone invariably precedes every pellet release 

by 1 s.

By developing a measure of contingency, we have deepened and refined our understanding 

of what we might mean by it. To our knowledge, in discussing the contingency between 

events A and B (say, between CS and US events), no one previously has distinguished 
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between the predictive contingency and the retrospective contingency. Because time was not 

present in previous conceptions of contingency, the distinction between prediction and 

retrodiction could not be made. This distinction becomes even more central when we turn to 

operant conditioning, as we now do.

Consider a pigeon pecking a key on a variable-interval (VI) schedule. On this schedule, the 

duration of the interval from one reinforcer to the next (denoted IRI) is approximately 

exponentially distributed. The inter-response intervals (iri’s) are much shorter than the IRI’s, 

so most responses (i.e., pecks) do not bring up the grain hopper. Every now and then, 

however, a peck does bring it up, with a very short fixed delay (.01 s). We pose the question, 

what is the response–reinforcement contingency in this protocol? We show that there are 

different ways to define it, depending on what one imagines is relevant to the observed 

behavior. The information-theoretic formula applies to each different way of defining it, 

giving us several different contingency measures. Thus, one can ask which measures, if any, 

predict the observed behavior. In this way, we address quantitatively the role of contingency 

in operant behavior.

The first contingency is the same as the one we first considered in discussing the prospective 

contingency between a CS (the tone) and a US (pellet release) in classical conditioning, only 

we replace CS onset times with response times. The basal entropy in the denominator of the 

contingency ratio is the entropy of the distribution of IRI’s (inter-reinforcer intervals). The 

residual entropy is the entropy of the distribution of r→R intervals (response-reinforcer 

intervals), where r denotes the time at which a response occurs and R the time at which the 

next reinforcer occurs.

For the r→R distribution, we go through the data peck by peck. We find for each peck the 

interval to the next reinforcer, ignoring any intervening pecks. We make a histogram of 

these intervals, normalize the counts to obtain an empirical discrete probability distribution, 

and apply Shannon’s formula bin by bin. To obtain a comparable empirical distribution for 

the basal entropy in the denominator, we take the record of reinforcement times, sprinkle on 

the time line as many random points as there were pecks, and find for each randomly chosen 

point in time the interval to the next reinforcer. From this tabulation we get an empirical 

probability distribution with the same bin widths as the empirical distribution of r→R 

intervals. We call these t→R distributions, where t denotes a randomly chosen moment in 

time.

In the Shahan lab, we ran 8 pigeons on VI schedules with expected intervals of 30, 165, and 

300 s, for 10 sessions at each expected interval. Representative r→R and t→R distributions 

from this experiment are shown in Fig. 4. Over an order of magnitude variation in VI, the 

r→R distribution is almost indistinguishable from the t→R distribution, which means that 

there is no prospective contingency between response and reinforcer delivery in a VI 

schedule of reinforcement. The residual entropies, which is to say the entropies of the r→R 

distributions, are the same as the basal entropies (the entropies of the t→R distributions). 

Thus, the numerators of the contingency ratios are 0, and the contingencies themselves are 

therefore 0.
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The question arises: If there is no measurable prospective contingency between pecks and 

reinforcement—that is, if making a peck does not alter by any measurable amount the 

probability of reinforcement at any particular time in the future—then why do the birds 

peck? One possible answer is that there is a contingency between rate of pecking and rate of 

reinforcement. If pecking were very slow, so that the average inter-peck interval was much 

longer than the expectation of the VI schedule, then there certainly would be such a 

contingency, because almost every peck would produce a reinforcer; therefore, as the rate of 

pecking increased, so would the rate of reinforcement.

To estimate this contingency, we consider the joint distribution between the iri’s and the 

IRI’s. The support for a joint distribution is the set of all possible combinations of values for 

two variables. In this case, every IRI yields such a combination, because one can associate 

with every IRI a mean iri, namely the average interval between responses during the interval 

from the preceding reinforcer to the current reinforcer. We denote the average inter-response 

interval during an IRI by 〈iri〉 Empirically, for every reinforcer, we note the interval elapsed 

since the previous reinforcer, and we note the number of pecks, np, that occurred during that 

interval. The 〈iri〉 associated with that IRI is the IRI/np. This analysis of the record of peck 

and reinforcement times produces a (non-arbitrary) pairing of IRI’s and 〈iri〉’ s. The shorter 

the 〈iri〉, the faster the bird pecked during that IRI. Fig. 5 shows the three joint distributions 

for a representative bird when plotted against linear axes, while Fig. 6 shows them when 

plotted against log–log axes.

The information-theoretic measure of contingency tells us the extent to which the 

uncertainty in a conditional distribution differs from the uncertainty in an unconditional 

distribution. So far, the unconditional entropy has been the entropy of the distribution of 

intervals from randomly chosen points in time to the reinforcer (or response) first 

encountered as one looks forward (or backward) in time from that randomly chosen point. 

The conditional entropy has been that of the distribution of intervals looking forward or 

backward in time from either a response or a reinforcer. The points in time from which one 

looks forward or backward have no duration; that is, they are not themselves random 

variables. By contrast, both the intervals between reinforcers, the IRI’s, and the mean 

intervals between responses within an IRI, that is, the 〈iri〉’ s, are both random variables. 

When we ask to what extent the IRI is contingent on the 〈iri〉, we ask whether the 

distributions of IRI’s conditioned on the choice of smallish segments of the 〈iri〉 axis differ 

from the unconditioned distribution of IRI’s; that is, does p(IRI|〈iri〉i) differ noticeably in 

shape or location from p(IRI|〈iri〉j) for some choices of i and j? The unconditional 

distribution of IRI’s, p(IRI), is called the marginal distribution, because it is obtained by 

summing (or integrating) the joint distribution along the 〈iri〉 axis. This summing or 

integrating may be thought of as a kind of bulldozer that runs parallel to the 〈iri〉 axis and 

piles up probability against the margin of the plot (Fig. 7).

One can form an approximate estimate of the contingency between two associated random 

variables by inspecting their scatter plot, that is, their joint distribution (Figs. 5 and 6). The 

question is whether the extent to which the location or shape of the distribution of points 

differs as one considers different vertical or horizontal slices through the scatter plot. For 

example, does the vertical location of the region where the points are densest change 
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noticeably from one vertical slice to another, and/or are the points notably more dispersed in 

one slice than in another? For all three plots in Fig. 5, the location of points and degree of 

dispersion within different vertical slices are much the same. Thus, we judge by inspection 

that the contingency between rate of responding (1/〈iri〉) and rate of reinforcement (1/IRI) is 

weak.

The picture changes somewhat when we plot the same data against log–log axes, as in Fig. 

6. We see in the upper left plot a region (the region below the diagonal dashed line) in which 

there is a striking contingency between log(IRI) and log〈iri〉. In this region, log(IRI) 

increases as a linear function of log〈iri〉. This occurs because on a VI 30-s schedule, the 

three shortest reinforcer-arming intervals on the list from which the scheduling algorithm 

chose at random were as short or shorter than the basal average interval between responses. 

Whenever that happened, the actually experienced interval between reinforcers was 

dominated by the interval between two responses, each of which produced a reinforcer: 

Because reinforcers are in fact triggered by responses, the interval between the two 

reinforcers whose time of occurrences define an IRI can never be shorter than the average 

interval between responses associated with that IRI. Put another way, the 〈iri〉 associated 

with an IRI can never be longer than the IRI, whereas the reverse is not true; the 〈iri〉 can be

—and generally is—much smaller than the IRI with which it is associated. This is what 

makes the feedback function for VI schedules complex (Baum, 1992).

It could be that the bird’s brain processed its experiences of its own 〈iri〉’ s and the IRI’s in 

such a way as to make the bird behaviorally sensitive to the contingency that is evident in a 

portion of the joint distribution of log(IRI)’s and their associated log(〈iri〉)’s. This 

contingency, however, disappeared when we lengthened the VI (see the upper-right and 

lower plots in Fig. 6). If this contingency were driving the pigeon’s responding, then we 

would expect this manipulation to change responding substantially. In fact, however, the 

manipulation of the VI has almost no effect: the marginal distributions of 〈iri〉’ s are very 

similar for all three plots, which means that the average rate of responding and the within-

session variation in rate of responding were little affected by a manipulation that eliminated 

the low-end contingency between the 〈iri〉 and its associated IRI.

In principle, the entropy of a joint distribution, Hj, is computed in the same way as the 

entropy of a simple distribution; it is the probability of each possible combination times the 

log of the inverse of that probability:

The mutual information between the variables is:

and the degree to which the y variable is contingent on the x variable is:
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In practice, the simple approach to estimating the entropy that works reasonably well for 

obtaining an estimate of the information-theoretic contingency from empirical distributions 

like those in Fig. 4 cannot be used with empirical distributions like those in Figs. 5–7. The 

distributions in Fig. 4 are histograms in which the number of observations, N, is much larger 

than the number of bins, m, in consequence of which, there are several counts in almost 

every bin. Therefore, the bin-by-bin empirical probabilities (ni/N) are reasonable 

approximations to the true probabilities. Therefore, it is reasonable to apply Shannon’s 

entropy formula directly to these empirical probabilities. The resulting estimates of the 

entropies are inflated (biased) in a manner that depends on the N/m ratio; the larger this ratio 

is, the less biased the estimate of the entropy is, because the estimates of the true 

probabilities get better as this ratio gets larger. However, the bias is the same for both of the 

entropy estimates, Hb and Hr, that enter into the contingency ratio, so it cancels out.

When it comes to joint distributions, like those in Figs. 5–7, one needs a reasonable number 

of bins (at least 10) on each axis in order to get a reasonable discrete approximation to the 

true continuous distributions. Then, however, the total number of bins, m, is mx × my (the 

numbers of bins on each axis), which is to say a much larger number of bins. If we used a 

minimum of 10 bins on each axis, the total number of bins for the joint distribution would be 

100, and we only have N = 390 observations. Therefore, only a few of the 100 bins will have 

more than a few tallies, and many will have none. In that case, the empirical relative 

frequencies in these 100 bins are no longer reasonable estimates of the true joint 

probabilities. How to estimate the entropy under these circumstances has been studied 

intensely in recent years (Paninski, 2003; Nemenman et al., 2004; Paninski, 2004; Shwartz 

et al., 2005; Ho et al., 2010; Sricharan et al., 2011).

Fig. 8 makes clear what the problem is. As in Fig. 7, it shows the scatter plot for a joint 

distribution (from a bird responding on VI160 schedule) and the histograms for the two 

marginal distributions. In making this figure, we estimated the joint probability density 

distribution using a more or less standard 2-dimensional kernel smoothing operation. The 

resulting estimate is indicated by the contour lines (level curves of the estimated probability 

density function) that are superimposed on the scatter plot. The curves superimposed on the 

histograms are the estimates of the marginal distributions obtained by integrating along the 

orthogonal dimensions of the joint distribution. The unsatisfactoriness of the estimate of the 

joint probability density function is evident in the discrepancy between the histogram on the 

ordinate and the corresponding integral of the estimated joint probability density function, 

that is, between the observed marginal distribution (the histogram) and the estimated 

marginal distribution (the smooth curve). Reasonably precise estimates of contingencies in 

these cases depend on techniques for accurately estimating the joint distribution, because the 

three entropies must be computed from the smooth estimates of the three probability density 

distributions (the joint and the two marginals). However, none of this prevents one noting 

from simple inspection that this contingency is clearly weak.
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We do not go into the issues surrounding techniques for estimating joint distributions here; 

they are highly technical and we do not pretend proficiency. Our proposed approach to 

measuring temporal contingency in conditioning protocols will achieve its full power only 

when the field settles on a demonstrably valid, generally applicable solution to the problem 

of estimating the entropies of sparse empirical distributions.

Purely empirical work can also help. The more data one has, the less problematic the 

estimation problem is, and operant methods lend themselves to the gathering of really large 

data sets. Also, VI schedules can now be implemented in ways that would remove the 

artificial discontinuities in the log(IRI) distribution evident in Figs. 5–8.

To summarize so far, when birds respond on VI schedules, there is a negligible prospective 

contingency between their responses and reinforcer deliveries, because the distribution of 

the r→R intervals, the intervals from a response to the next reinforcer, differs very little 

from the distribution of t→R intervals, where the t’s are randomly chosen points in time. Put 

most simply, having made a response changes hardly at all the expectations regarding the 

interval to the next reinforcer. By contrast with a fixed-ratio 1 (FR 1) schedule, where each 

response produces a reinforcer, there is a perfect prospective contingency between a 

response and a reinforcer delivery. This contingency gets gradually weaker as the parameter 

of the FR schedule increases. When birds respond on VI schedules, the contingency between 

their rate of responding and the rate of reinforcement is also negligible. By contrast, with a 

variable-ratio (VR) schedule, this contingency is strong, because the faster they respond, the 

sooner on average a reinforcer is delivered.

Another contingency that could be relevant to conditioned behavior with VI protocols is the 

retrospective contingency between reinforcers and immediately preceding responses, which 

we denote as the r→R contingency. The basal entropy for this contingency is the distribution 

of intervals from randomly chosen points in time backward to the immediately preceding 

response. This distribution is very similar to—hence, has approximately the same entropy as

—the distribution of inter-response times. (NB: This is not the same as the distribution of 

〈iri〉’ s, which are IRI/nr, where nr is the number of responses during the IRI.) The residual 

entropy for this contingency is the entropy of the distribution of intervals from reinforcers 

back to the immediately preceding response. The entropy of this distribution is 0, because 

every reinforcer is preceded by a response at an unvarying interval of 0.01 s. Thus, there is a 

perfect retrospective, r→R, contingency on a VI schedule. The same is true for all four 

elementary schedules of reinforcement [fixed interval (FI), VI, FR, and VR]. In every case, 

reinforcers are triggered by some one of the subject’s repeated responses. Whenever 

triggered, they occur at a fixed very short delay after the triggering response. Therefore, 

when one looks backward in time from reinforcer deliveries (R), one always finds a 

preceding response (r) at the same short unvarying remove.

Thus, the retrospective contingency between reinforcer and response may be an important 

variable in the emergence and sustenance of operantly conditioned behavior. We currently 

are investigating this idea by manipulating this retrospective distribution in various ways. 

Clearly, it is not the only important variable, because responding is, for example, much 

higher on a VR schedule than on a VI schedule when the two schedules produce equivalent 
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rates of reinforcement (e.g., Lattal et al., 1989; Nevin et al., 2001). It does, however, seem 

plausible that the retrospective r < − R contingency is an important variable, perhaps even a 

sine qua non for the emergence of responding. If so, this will capture the intuition that 

operant conditioning differs in interesting ways from classical/Pavlovian conditioning. The 

latter appears to be driven primarily by the informativeness of the CS onset, that is, by the 

relative shortening of the expected interval to reinforcer delivery that occurs at CS onset 

(Balsam et al., 2006; Ward et al., 2012).

It has long been imagined that in operant conditioning, the reinforcer acts backward in time 

to stamp in a latent association between the stimulus situation in which a response was made 

and the response. Our analysis of contingency suggests that what may be correct about this 

idea is that the interval measured backward from the reinforcer to the response may be a key 

interval. In any event, we now have a powerful new tool for investigating the issues about 

temporal pairing versus contingency that Rescorla (1967) discussed almost half a century 

ago. We have finally brought time into the picture in a manner that does not rely on some 

indefensible artifice, such as the analytic imposition of pseudotrials, the assumed durations 

of which are without empirical justification. That is progress.
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Fig. 1. 
Schematic of Rescorl (1968) experiment distinguishing CS–US pairing from CS–US 

contingency. The temporal pairing of CS and US is the same in both conditions, but there is 

a CS–US contingency in the top protocol and none in the bottom protocol. Rats developed a 

conditioned response to the CS only when run in the top protocol.
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Fig. 2. 
Partial reinforcement of a random fraction of the CS presentations lengthens the average 

interval between pellets, 〈IPI〉, by the reciprocal of the partial reinforcement fraction, that is, 

by 1/p(R|CS). This increases the basal entropy, the denominator of the contingency ratio, but 

it has no effect on the numerator of that ratio, which is the information about when to expect 

the US that the onset of the CS conveys. When to expect the US is altered only by whether 

the US will occur during this CS presentation. That source of uncertainty is independent of 

the uncertainty about when the US will occur if it occurs during this presentation, so the two 

entropies (the whether and when measures of uncertainty) combine additively (see Eq. (1)).
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Fig. 3. 
Geometric distributions for two different partial reinforcement schedules. A geometric 

distribution associates with successive future trials (e.g., future tones) the discrete 

probability that reinforcement will occur on that trial. The entropy of a geometric 

distribution is log(1/p(R)), where p(R) is the probability of a reinforcer on any given trial. 

Note that 1/p(R) is the expected number of trials to a reinforcer, just as 1/λ is the expected 

interval to the next reinforcer in a variable–interval protocol. The formula for the entropy of 

a geometric distribution is very similar to the formula for the entropy of an exponential 

distribution because the geometric distribution is the discrete approximation to the 

exponential distribution.
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Fig. 4. 
Representative empirical distributions of r→R (peck time→reinforcer time) and t→R 

(random time→reinforcer time) intervals for one bird responding on VI schedules of 

reinforcement. Top row: VI 30 s. Middle row: 165 s. Bottom row: VI 300 s. The bin width 

in these histograms, for a given VI, is the same for both the r→R and the t→R distribution. 

It appears as a scale factor in both the numerator and the denominator of the contingency 

ratio. Therefore, it does not affect the contingency ratio (in the limit as the data sample gets 

large enough to put several counts in the bin with the fewest counts, as is the case in these 

normalized histograms).
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Fig. 5. 
Representative joint distributions of Inter-Reinforcement Interval durations (IRI) and their 

associated mean inter-response intervals, 〈iri〉, from one bird responding for several sessions 

each on 3 different Variable Interval (VI) schedules, plotted against linear axes. The discrete 

character of the IRI’s arises from the way the VI schedules were implemented: The interval 

to the setting up of the next reinforcer was drawn from a uniform discrete probability 

distribution on a set of 10 intervals with equal logarithmic separations. The first peck after 

this interval elapsed delivered the reinforcer.
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Fig. 6. 
Same data as in Fig. 5, plotted against double logarithmic axes. The dashed diagonal line in 

the upper-left panel separates a portion that shows a strong prospective contingency between 

the mean iri and the IRI (below the line) from a portion that shows only weak contingency. 

This portion is largely missing from the upper right panel and missing altogether from the 

lower panel. Note that the locations of the IRI streaks move up as the VI-schedule parameter 

increases, whereas the location of the high density of mean iri’s remains roughly constant.
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Fig. 7. 
Data from the VI(30) condition showing both the scatter plot (the empirical joint 

distribution) and the two histograms (the empirical marginal distributions).
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Fig. 8. 
Scatter plot of log 〈iri〉 versus log(IRI) with marginal histograms, for one bird responding on 

a VI160s schedule. An estimate of the 2-dimensional joint probability density function is 

shown by level curves (ovoid contour lines) superposed on the scatter plot. The smooth 

curves superposed on the marginal histograms are the suitably rescaled 1-dimensional 

integrals of this estimated joint probability density function.
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Table 1

2 × 2 contingency table.

#USs #~USs Row totals

#CSs: a b a + b

#~CSs: c d c + d

Col totals: a + c b + d
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