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We present a brain development index (BDI) that concisely summarizes
complex imaging patterns of structural brain maturation along a
single dimension using a machine learning methodology. The brain
was found to follow a remarkably consistent developmental trajec-
tory in a sample of 621 subjects of ages 8–22 participating in the Phi-
ladelphia Neurodevelopmental Cohort, reflected by a cross-validated
correlation coefficient between chronologic age and the BDI of
r= 0.89. Critically, deviations from this trajectory related to cognitive
performance. Specifically, subjects whose BDI was higher than their
chronological age displayed significantly superior cognitive proces-
sing speed compared with subjects whose BDI was lower than their
actual age. These results indicate that the multiparametric imaging
patterns summarized by the BDI can accurately delineate trajectories
of brain development and identify individuals with cognitive preco-
city or delay.
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Introduction

Healthy human brain maturation is a complex process evolving
during childhood, adolescence, and young adulthood. Brain
development involves dynamic processes of progressive and
regressive changes that occur simultaneously in these periods
(Silk and Wood 2011). While MRI lacks the resolution to
characterize the cellular mechanism of the change in brain
structures such as dendritic remodeling, cell death, synaptic
pruning or myelination, advances in MRI technologies have
provided valuable opportunities for studying structural brain
measures and evaluate age effects in prospective samples of
children and adolescents (Giedd et al. 1999; Gogtay et al. 2004;
Sowell et al. 2004; Lenroot and Giedd 2006; Toga et al. 2006;
Lenroot et al. 2007; Giedd and Rapoport 2010; Lebel and Beau-
lieu 2011; Ball et al. 2012). Several MRI studies revealed that
white matter (WM) volume increases consistently throughout
adolescence, whereas gray matter (GM) volume declines in a
regionally heterogeneous pattern (Giedd et al. 1999; Toga
et al. 2006; Ball et al. 2012).

More recently, diffusion tensor imaging (DTI) has been used
for studying the microstructural properties of WM during devel-
opment (Asato et al. 2010). Fractional anisotropy (FA) is a
measure of the degree of anisotropy of the diffusion of water
molecules in the brain. High FA suggests highly organized and
myelinated fiber bundles. FA is used to quantify changes in evol-
ving WM microstructure during development (Mukherjee et al.
2001; Barnea-Goraly et al. 2005; Ashtari et al. 2007; Asato et al.
2010). In contrast, the apparent coefficient of diffusion (ADC; or
trace) is a measure of the freedom of diffusion, and declines in

WM as FA increases in development. However, although
DTI measures such as FA and ADC complement T1-weighted
images, few previous studies have attempted to integrate these
2 imaging modalities in the study of neurodevelopment.

Both cross-sectional (Barnea-Goraly et al. 2005; Toga et al.
2006; Lenroot et al. 2007; Asato et al. 2010) and longitudinal
studies (Giedd et al. 1999; Gogtay et al. 2004; Sowell et al.
2004; Lenroot and Giedd 2006) have demonstrated that brain
development is dynamic and spatially heterogeneous, with
individual brain regions following temporally distinct matura-
tional trajectories (Gogtay et al. 2004). In order to consider
such complexity in an integrated fashion, recent studies
(Dosenbach et al. 2010; Franke et al. 2010, 2012; Brown et al.
2012) have used multivariate machine-learning techniques to
derive an amalgamated index of brain development. Specifi-
cally, T1-weighted structural brain imaging can be used to
predict an individual’s chronologic age with a high degree of
accuracy (subjects aged 19–86 years, r = 0.92, mean absolute
error [MAE] = 5) (Franke et al. 2010, 2012). Similarly, Dosen-
bach et al. (2010) found that the complex patterns of functional
connectivity can predict a subject’s age during development,
although with a somewhat lower degree of accuracy (subjects
aged 7–30 years, r2 = 0.553). Notably, however, only one prior
study (Brown et al. 2012) has used more than one imaging
modality to derive an integrated index of brain development,
which successfully predicted the chronological age of subjects
with very high accuracy (subjects aged 3–20, r = 0.96, MAE =
1.03).

This recent work has been valuable because it introduces
the possibility of describing normative trajectories of brain
development, akin to the growth charts used in pediatrics to
screen for gross abnormalities of development. While such
common measures such as height, weight, and head circumfer-
ence (Nellhaus 1968) have proven to be of indisputable clinical
utility, they are relatively insensitive to neuropsychiatric dis-
orders, which are now increasingly conceptualized as develop-
mental brain diseases (Paus et al. 2008; Insel 2009). Though
prior studies have outlined normative trajectories of growth for
individual brain regions across the lifespan (Giedd et al. 1999;
Sowell et al. 2004; Ball et al. 2012), because of the multiplicity
of brain regions and regional heterogeneity in developmental
patterns, such data are difficult to integrate into clinical prac-
tice and are of limited clinical applicability considered in iso-
lation. Conversely, techniques that distill multivariate patterns
of brain development to a single dimension have the potential
to be of practical utility.

While prior studies have demonstrated that multivariate pat-
terns of brain images can accurately predict chronologic age,
they have not examined whether deviations from this predicted
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trajectory of development are related to individual differences in
cognition. Establishing such a relationship is a prerequisite for
demonstrating the putative utility of the approach; as a subject’s
age is a ground truth that is easily ascertained, if brain imaging
patterns could predict subject age but did not relate to measures
of brain function, such a technique would be of academic inter-
est only. In contrast, as previously noted (Bunge and Whitaker
2012; Franke et al. 2012), if the degree to which a subject’s esti-
mated “brain age” diverged from their chronologic age was
related to either precocity or delay of cognitive development, it
would suggest that brain imaging may be a useful biomarker for
the early detection of subtle developmental abnormalities.

We hypothesized that multimodal, multivariate patterns of
brain maturation would relate to individual differences in matu-
ration and cognition. Specifically, a support vector regression
(SVR) procedure was used to derive an integrated brain devel-
opment index (BDI) from T1 and DTI images of children, ado-
lescents, and young adults studied as part of the Philadelphia
Neurodevelopmental Cohort (PNC). We validated the sensi-
tivity of this index to the well-established sex difference in
maturation, which is earlier in females (De Bellis et al. 2001;
Lenroot et al. 2007), by applying the male predictors to the
female sample and vice versa. With this procedure we tested
the prediction that male-based models will underestimate
chronological age in females while female-based scores will
overestimate chronological age in males. We then identified a
precocious and a delayed group and tested the prediction that
individuals with a BDI that was higher than their chronologic
age would demonstrate relative precocity in cognitive per-
formance, whereas those with a BDI that was lower than their
chronologic age would demonstrate signs of relative cognitive
delay. As described below, results supported our hypotheses,
providing novel evidence that individual differences in com-
plex patterns of brain development have an impact on cogni-
tive functioning.

Materials and Methods

Participants
Subjects were drawn from the PNC, a collaboration between the Brain
Behavior Laboratory at the University of Pennsylvania (Penn) and the
Center for Applied Genomics at Children’s Hospital of Philadelphia
(CHOP). Study procedures were reviewed and approved by the Insti-
tutional Review Boards of both Penn and CHOP. The population-based
sample included youths who presented to the CHOP network for a
pediatric visit and volunteered to participate in genomic studies of
complex pediatric disorders (Gur et al. 2012). A subset of 1445 of these
individuals received neuroimaging. The present results consider an
interim subsample of the first 1078 subjects who participated in the
study. Of these, 457 subjects were excluded for insufficient data quality
(n = 240) or a history that suggested potential abnormalities of brain
development (n = 217), such as history of medical problems that might
affect brain function, a history of inpatient psychiatric hospitalization,
or current use of psychotropic medication. The final sample included
621 subjects aged 8–22 years (351 female); mean age 15.08 years (3.27
standard deviation [SD]).

Computerized Neurocognitive Battery
As previously described (Gur et al. 2010 ,2012), the 1-h Penn Compu-
terized Neurocognitive Battery (CNB) was administered to all partici-
pants, and consisted of 14 tests that evaluate a broad range of cognitive
functions: abstraction and mental flexibility (ABF), attention (ATT),
working memory (WM), verbal memory (VMEM), face memory
(FMEM), spatial memory (SMEM), language reasoning (LAN),

nonverbal reasoning (NVR), spatial processing (SPA), emotion identifi-
cation (EMI), emotion differentiation (EMD), age differentiation
(AGD), sensorimotor processing speed (SM), and motor speed (MOT).
Except for the SM and MOT tests that only measure speed, each test
provides measures of both accuracy and speed. For this developmental
sample, instructions and vocabulary for verbal stimuli were simplified
from the adult CNB. Cognitive assessment was completed during a sep-
arate session from neuroimaging; length of time between the 2 ses-
sions averaged 3.4 months. As detailed in Gur et al. (2012) the
assessment session was scheduled at home (68.8% of participants) or
in the laboratory (31.2%), according to family and subject preference.
During task administration, potential interference was minimized,
standard instructions were read aloud in addition to appearing on the
screen, and a professional testing environment was maintained. Tests
were administered in a fixed order that was based on previous experi-
ence and designed to maintain participants’ engagement in the tasks
and prevent fatigue. Breaks were offered approximately every 15 min.
Raw accuracy and speed scores were normalized by age within the
entire cohort of the PNC study (n = 9138). Specifically, accuracy and
speed for each test were z-transformed based on the mean and SD of
participants within a 1-year-age bin. As prior (Gur et al. 2012), for ease
of presentation, higher z-scores always reflect better performance;
z-scores where higher numbers reflected poorer performance (i.e.,
response time) were multiplied by −1.

MR Image Acquisition
Imaging data were acquired using a Siemens Tim Trio (Erlangen,
Germany) 3T scanner equipped with 40 mT/m gradients and 200 mT/
m/s slew-rates. RF transmission utilized a quadrature body-coil and
reception used a 32-channel head coil optimized for parallel imaging.
The T1-weighted protocol utilized a 3D, inversion-recovery, magnetization-
prepared rapid acquisition gradient echo (MPRAGE) with TI/TR/TE =
1100/1810/3.51 ms, flip angle = 9°, matrix = 256 × 192, FOV = 240 ×
180 mm, slices = 160, and slice thickness = 1 mm. DTI images were
acquired with a twice-refocused spin-echo single-shot EPI seque-
nce and a custom 64-direction diffusion set, with b-values of 0 and
1000 s/mm2. The b = 0 scan was repeated 6 times, each b = 1000 scan was
acquired once at each direction, for a total of 70 repetitions. The acqui-
sition parameters were TR/TE = 8100/82 ms, matrix = 128 × 128, FOV=
240 mm, slices = 70, slice thickness = 2 mm and GRAPPA factor = 3.

Image Processing
The T1 images were first preprocessed using an in-house automated pi-
peline, which included removal of extra-cranial material (skull-
stripping) and cerebellum, bias correction, and tissue segmentation
into GM, WM, and cerebrospinal fluid. Lateral ventricles (VN) were seg-
mented by transferring manually segmented ventricle masks from a
standard template to the subject space using the publicly available
DRAMMS deformable registration tool (Ou et al. 2011). The quality of
the initial and processed images were verified using strictly defined
quality control procedures involving both automated and manual QA
at each step of processing; images (n = 240) that failed QA procedures
at any stage were removed from the analysis.

Images were registered prior to group-level analysis to a template
that was the single most-representative T1 image of the sample. The
automated selection ensured that the template had the maximum
overall similarity to all images in the dataset, measured by calculating
the correlation ratio between each image pair after linear alignment.
Regional volumetric maps, RAVENS (regional analysis of volumes
examined in normalized space) maps (Goldszal et al. 1998; Davatzikos
et al. 2001), were generated using the DRAMMS deformable regis-
tration package (Ou et al. 2011) to enable comparative analysis of
tissue volumes on the common template space. The RAVENS approach
has been extensively validated and applied in various studies (Resnick
et al. 2000; Beresford et al. 2006; Gur et al. 2006; Driscoll et al. 2009).
In this investigation, GM, WM, and ventricular (VN) RAVENS maps
were generated, each quantifying the amount of respective tissue
present in each brain region. The RAVENS maps were normalized by
individual intracranial volume to adjust for global differences in intra-
cranial size, down-sampled to 2 × 2 × 2 mm, and smoothed for
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incorporation of neighborhood information using an 8-mm-diameter
Gaussian filter.

Standard methods for calculating FA and ADC from the raw DTI
images were used to derive voxel-wise maps (Le Bihan et al. 2001). FA
and ADC maps from each subject were coregistered to the common
template space by first aligning them linearly to the subject T1 image
and then applying the previously calculated deformation field from the
subject T1 image to the template T1 image.

SVR
Imaging patterns of brain development were quantified using a SVR
(ɛ-SVR) algorithm (Smola and Scholkopf 2004). SVR is a supervised
learning technique based on the concept of support vector machines
(SVM), but generalizes the categorical classification of SVM to predict
continuous variables (e.g., age). SVM has many advantages that make
it suitable for our high-dimensional pattern recognition problem, such
as high generalization performance, as well as easy computation that
allows dealing with the curse of dimensionality. In support vector
classification, the best separating hyperplane between data samples
from 2 different classes is found by maximizing the margin between
these 2 classes. The decision function, that is, the classification hyper-
plane, is fully specified by only the data samples on the margin bound-
aries, which are called the support vectors. Analogously to SVM, in
SVR a regression model that only depends only on a subset of the train-
ing data is computed, by ignoring the errors of any training data close
to the model prediction within a margin determined by the threshold
ɛ. Thus, one does not care about errors as long as they are less than ɛ,
but will not accept any deviation larger than this (Smola and Scholkopf
2004). SVR attempts to minimize the training error within the ɛ toler-
ance, as well as the complexity of the regressor, so as to achieve gener-
alized performance.

BDI
We used the SVR algorithm implemented in LIBSVM (Chang and Lin
2011) to calculate the regression model used for estimating the BDI. As
an input to SVR, each subject is represented by a feature vector
obtained by concatenating the voxel values from various input image
maps, that is, GM, WM, VN RAVENS maps and FA and ADC maps, after
automatically masking out the background in each mask. Each feature
is independently normalized by scaling the feature values between 0
and 1. In data normalization only training samples are used to calculate
scaling parameters, which are also used for scaling the test samples.
We did not apply a preliminary feature selection step, as the SVR
method is both efficient and computationally feasible for regression
problems using very high-dimensional feature vectors as input, but
also because patterns of brain change during development are spread
throughout the whole brain, and are not localized in specific regions,
as is often the case with brain pathologies. The final feature vector,
obtained by combining all image maps, contained 1 116 006 features.
In order to ensure that derived models would generalize to new indi-
viduals, 10-fold cross validation was applied, by each time using 90%
of the samples as training data for the regression model, and testing
the model on the remaining 10% of the samples. This procedure pro-
vides an unbiased estimate of model predictive accuracy and prevents
model over-fitting. As the feature dimension is significantly larger than
the sample size, a linear kernel was used. The epsilon parameter was
set to its default value, ɛ = 0.01.

Although initially all 5 image maps were used as input, the SVR pro-
cedure was repeated using each image type in isolation in order to
compare their relative predictive capabilities. Additionally, sex-specific
brain development indices were constructed by applying the above
procedure separately on males and females. In order to evaluate each
sex developmental trajectory relative to the other, the male-trained
model was applied to females and vice versa.

Comparison to Cognitive Performance
Finally, we investigated the relationship between each subject’s esti-
mated BDI and their cognitive performance. In order to evaluate
whether divergent patterns of brain development were associated with

cognitive performance, we examined the outliers of the model, that is,
those subjects whose predicted age was significantly different from
their chronological age. Outliers were identified as subjects who were
beyond the 90% confidence interval (CI) band from a linear regression
between BDI and chronological age. Outliers having a BDI higher
than the prediction interval boundaries are referred to as advanced
(advBDI), and those having a BDI lower than the prediction interval
boundaries here are called delayed (delBDI). Finally, a group of sub-
jects whose chronologic age was well predicted by their imaging data
(normal, normBDI) was constructed by selecting subjects within a 30%
prediction interval of the regression line. The cognitive performances
of subjects in the 3 groups were compared using one-way ANOVA
between the 3 groups for each cognitive test score for accuracy and
speed. Multiple testing correction using false discovery rate (FDR) esti-
mation is applied using the method described in Storey (2002) and
adjusted P values (q-values) are reported.

Results

Regional Volumetric Analysis
A global volumetric analysis indicates that age-related differ-
ences in volume of GM, WM, and VN were consistent with
those reported in the literature (Gogtay et al. 2004; Lenroot
and Giedd 2006; Toga et al. 2006): globally, the WM volume
increases while the GM volume decreases, as a result of both
progressive myelination and regressive pruning processes.
Lateral ventricle volume increases linearly with age. Figure 1
shows the age-related differences in cortical GM volume from
ages 8 to 22. We observe a consistent decrease in GM volume
with age in the whole brain, with region specific patterns of
maturation.

BDI
When all image maps were used in combination as input
samples, a high estimation accuracy was obtained, with
r = 0.89 correlation between the BDIs and the chronological
ages of subjects (10-fold cross-validated, as described in
Materials and methods). The MAE between the estimated and
true age was 1.22 years. The scatter plot of the BDIs versus
chronological ages of subjects is displayed in Figure 2.

The SVR regression hyperplane that best fits the training
data is defined as a weighted combination of all features,
where the weight vector, ~w, indicates the relative contribution
of each feature. Following the approach commonly used in
functional MRI analysis using SVM (LaConte et al. 2005),
in order to show the contribution of different brain regions in
different image modalities we used a direct visualization of the
SVR training weight vector. For this visualization we mapped
~w back to initial image domains of each input modality, over-
laid each map on the T1-weighted image of the common tem-
plate, and showed high values of ~w both in positive and
negative directions (Fig. 3). The masking of the weight maps is
done using a single threshold value for all image modalities,
which corresponds to the 90th percentile of the absolute value
of ~w.

When the method is applied using each image map inde-
pendently as input, the prediction accuracy decreased.
However the r value was still high, particularly for the ADC
(r = 0.85, MAE = 1.35), FA (r = 0.83, MAE = 1.41), and GM (r =
0.81, MAE = 1.52) maps. WM maps obtained a lower r value
(r = 0.76, MAE = 1.71), and the BDIs obtained using VN maps
had relatively much lower correlation with the chronological
ages (r = 0.43, MAE = 2.71). These results indicate that while
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single image maps can be used for an accurate estimation
of the age, the combination of all maps achieves a higher
accuracy in age prediction than the accuracy of each map
independently.

We trained sex-specific brain development models, that is, a
female model (MF) of age prediction trained using only the
female subjects, and a male model (MM) trained using only the
male subjects. BDIs of males and females have been calculated

separately using images of male and female subjects, respect-
ively, with leave 10% out cross-validation. The prediction accu-
racy for both sexes were comparable to the accuracy obtained
using all subjects together (r = 0.87 and MAE = 1.291 for males
trained on males, and r = 0.88 MAE = 1.264 for females trained
on females).

The female and male models have been then applied for
predicting the age of the subjects in the other sex. Figure 4
shows the scatter plots of the chronological ages versus BDIs
for males and females using the sex-specific models. According
to the MM, female subjects have a higher BDI compared with
what the MM expected in the early ages, and a lower BDI in
ages ranging from 16–21. According to the MF, male subjects
have a lower BDI than the female subjects in the early ages,
but they close the gap in later ages. To evaluate the significance
of sex differences in BDIs obtained using gender-specific
models we applied a multivariate regression, with the BDIs as
the response variable and age and sex as predictor variables.
We found that the BDIs obtained using the female SVR
model had a significant group difference for sex (P = 0.23 ×
10−8), while the difference was not significant for BDIs ob-
tained using the male SVR model (P = 0.053). We also investi-
gated how much of the observed differences could be
explained by biological maturation, by including the Tanner
stage of each subject into the model as a covariate. After ac-
counting for the effect of biological maturation, the group
difference for sex was still significant for BDIs obtained
using the female SVR model (P = 0.001), while the BDIs
from the male SVR model showed no significant sex differences
P = 0.091.

BDI Versus Cognitive Performance
The subjects in the advance (advBDI), delayed (delBDI), and
normally-developed (normBDI) groups were determined

Figure 2. Scatter plot of BDIs versus chronological ages of 621 subjects. The BDIs
were calculated through 10-fold cross-validation, using the model trained on the
combination of all image maps. The correlation between the chronological age and the
BDI is r= 0.89. The bold dotted line shows the linear regression line. 90% and 30%
prediction intervals are shown with dotted lines. The subjects outside the 90%
prediction interval have been labeled as outliers (advanced or delayed brain
development). The subjects within the 30% prediction interval have been labeled as
normally developed.

Figure 1. Right mesial, right lateral, and top views of the average GM RAVENS Maps for age groups 8–22. The color map represents lower RAVENS values (i.e., less GM) in blue
and higher RAVENS values (i.e., more GM) in red. The GM volume decreases with age in the whole brain, with region specific patterns of maturation.

Cerebral Cortex June 2015, V 25 N 6 1679



based on their BDIs calculated using the model trained on all
subjects and all image maps (Fig. 2). The number of subjects
in each group, the sex and average age of these subjects are
given in Table 1. To emphasize the differences between the 3
groups, we visualized the dynamic changes through age for
subjects in each group, by creating average GM RAVENS within
consecutive age intervals between age 8 and 22 (Fig. 5). We ob-
served a maturational shift between the groups, such that all
groups demonstrated similar patterns of maturation, but they

occurred earlier in the advBDI group and later in the delBDI
group.

We compared the cognitive performance of the subjects in
the 3 groups, by applying a one-way ANOVA between groups
for each test score. FDR corrected P values (q values) for accu-
racy and speed scores in each test are given in Table 2.
Notably, we observed significant group differences in speed,
the most significant effect being observed in motor speed
(MOT) test. All 3 tests in memory domain had significant

Figure 3. The visualization of the SVR weight vector for the SVR model trained using all image maps from all subjects as input. The highlighted areas in each image map show the
brain regions that obtained a high positive (red) or negative (blue) weight.

Figure 4. Scatter plot of chronological ages versus BDIs of female and male subjects calculated using sex-specific prediction models. Left: the BDIs for male and female subjects
calculated using the model trained on the male subjects only. The linear regression line is shown in black for males and in gray for females. Right: the BDIs for female and male
subjects calculated using the model trained on the female subjects only. The linear regression line is shown in black for females and in gray for males. Ten-fold cross validation is
used when the model is trained and tested on the same sex.
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q value for speed, while the q values for tests in cognition
domain were not significant. In accuracy scores, only the ab-
straction and mental flexibility (ABF) test in the executive
domain had significant group differences. Figure 6 shows the
average scores of subjects in each group for each test, normal-
ized by the scores of the normal group for a better visualization
of group differences.

In order to assess the possibility that these results were
driven largely or entirely by the DTI variables we repeated the
same analysis after grouping the subjects into the advanced,
delayed, and normal groups based on the BDIs calculated
using only the ADC, and ADC and TR together. In both cases
the groups displayed differences consistent with the previous

findings, with advanced group showing a higher performance
in speed, however, the group differences were not significant
after FDR correction (i.e., q > 0.05).

Discussion

The applied framework utilized advanced image analysis
methodology to derive an index of brain maturation from
structural MR images using T1 and DTI protocols. A multi-
variate regression method using SVM was applied to map the
very high-dimensional feature vector consisting of voxel values
from T1 and DTI processed images into an index of brain matu-
ration. The developmental trajectory of the brain has been
successfully captured by this model, as reflected by a cross-
validated correlation coefficient between chronologic age and
the BDI of r = 0.89.

Both tissue density maps for GM, WM, and VN derived from
T1-weigthed images, and FA and ADC maps from DTI images
were used in combination as imaging data. While the models
using single image maps were also successful in predicting
age, the highest accuracy was obtained by the combination of
voxel-wise features from all image maps. These quantitative

Table 1
Summary statistics of subjects in advanced, delayed, and normal groups

N Male Female Age MAE

advBDI 22 12 10 14.89 ± 2.10 2.81
delBDI 31 15 16 14.39 ± 4.00 2.78
normBDI 165 72 93 14.92 ± 3.25 0.63

Figure 5. Top views of average GM RAVENS Maps in different age groups for the advanced, delayed, and normal subjects. The color map represents lower RAVENS values (i.e.,
less GM) in blue and higher RAVENS values (i.e., more GM) in red. A consistent developmental pattern is observed for all groups similar to that shown in Figure 1. However a shift
can be observed between the 3 groups, where the GM decrease happens earlier in the advanced group, and later in the delayed group, compared with normal group. The * has
been used to show the correspondences, as an indicator of this developmental shift.

Table 2
Group comparisons with ANOVA for accuracy and speed scores in cognitive domains (please refer to Materials and methods for abbreviations used in cognitive test names)

Domain Executive Memory Cognition Social cognition Praxis speed

Test ABF ATT WM VMEM FMEM SMEM LAN NVR SPA EMI EMD AGD MOT SM

q
Accuracy 0.029 0.145 0.133 0.347 0.146 0.307 0.109 0.069 0.335 0.347 0.223 0.150
Speed 0.227 0.020 0.063 0.008 0.005 0.031 0.094 0.096 0.227 0.044 0.139 0.134 0.004 0.033

Note: A one-way ANOVA is applied on each cognitive test to compare scores of the subjects in advBDI, delBDI, and normBDI groups. Multiple testing correction using FDR estimation is applied and adjusted
P values (q-values) are reported. Significant (q< 0.05) values are indicated in bold font.
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results point to the contribution of complementary information
from each of these different maps, but also to a certain redun-
dancy in their information content. When the method was
applied in each sex independently, a comparable accuracy
was obtained, showing that the method successfully captured
sex-specific patterns of brain maturation. Sex differences in
applying the model learned from one sex on another support
multiple studies suggesting earlier maturation in females (De
Bellis et al. 2001; Lenroot et al. 2007). Specifically, as pre-
dicted, BDI scores based on males overestimated chronological
age in females, especially in the younger age groups, while
female-based BDI scores underestimated male chronological
ages, again most noticeably in the younger age groups.

In order to show the contribution of different brain regions
in different image modalities we used a direct visualization of
the SVR training weight vector. We should note that, while
being informative on the relative contribution of specific brain
regions to the regression hyperplane, the ~w maps do not
provide a measure that could be directly used to compare
different image maps. As a future work, we plan to apply multi-
kernel learning (Gonen and Alpaydin 2011), a recent tech-
nique that is used for combining high-dimensional data from
different sources in a more structured way within the SVM fra-
mework, which will give us the possibility to compare the
overall contribution of different image maps.

In adolescence, in parallel to structural brain changes, core
cognitive processes continue to develop and mature. As noted
by Paus (2005), quantitative morphometric features can be
used as a “dependent” variable in studies of brain–behavior
relationships. Recent findings have shown significant corre-
lations between regional patterns of structural brain change
and cognitive development (Gogtay et al. 2004; Sowell et al.
2004; Blakemore and Choudhury 2006; Shaw et al. 2006;
Tamnes et al. 2010a, 2010b). Using longitudinal scans Shaw
et al. (2006) demonstrated that intelligence scores are associ-
ated with the trajectory of cortical development in childhood
and adolescence. Gogtay et al. (2004) reported accelerated

maturation of frontal lobe during adolescence and related it to
increased effectiveness of executive functions. Reviewing 37
neuroimaging studies, Jung and Haier (2007) reported a strik-
ing consensus on findings that relate individual differences in
intelligence test scores to variations in brain structure and func-
tion. In light of these findings, we hypothesized that multimo-
dal, multivariate patterns of brain maturation would relate to
individual differences in cognition. Accordingly, we investi-
gated the relationship between cognition, as measured by cog-
nitive test performance in several domains, and the difference
of the estimated BDI from the chronological age.

The neurocognitive effects indicate greater maturational
effects on speed than accuracy, which is consistent with mul-
tiple studies on age-related changes in performance across the
lifespan (Kail 2007; Coyle et al. 2011). A cross-sectional study
of cognitive maturation in healthy subjects ages 8–30 (Luna
et al. 2004) indicated maturation of processing speed through
late childhood and into adolescence. Notably, the developmen-
tal increases in speed of information processing reflected a dis-
tinct process from the development of accuracy, which also
matures albeit at a slower slope than speed (Gur et al. 2012)
during adolescence. The improved speed of performance
could be attributed to increased efficiency in neuronal organiz-
ation and communication through myelination and pruning
processes. The multivariate approach is well suited for better
capturing such effects that span over brain regions.

Contrary to our expectations, both the advanced and delayed
groups performed less accurately on the abstraction and mental
flexibility domain, as well as on the complex cognition domains
of language and nonverbal reasoning. It appears that advanced
compared with delayed maturation effects are exclusive for
speed of performance, whereas both can adversely affect per-
formance on tasks that require more extensive cortical re-
sources. The path to poorer accuracy could be different for the
2 groups. Precocious maturers may over-apply speed that can
hinder accuracy on tasks that require reflection and compu-
tation, while delayed maturers may lack the cerebral resources

Figure 6. Mean(±SEM) scores in each cognitive domain for subjects in normal, advanced, and delayed groups. The scores in each cognitive domain were normalized to those
whose BDI age is within 30% CI of chronological age (NORMAL), such that the normal group has zero mean and SD equal to one. The cognitive domains with significant group
differences are marked with *. See domain abbreviations in Materials and methods.
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for accurate performance and are hence both slow and inaccur-
ate. Future studies can examine regional correlations with per-
formance to elucidate the issue.

The BDI could have important clinical utility. In the first
place, it could be used for creating “brain growth charts”
similar to those used by pediatricians to follow a child’’s
growth. By observing BDIs of a large number of healthy chil-
dren over time, such tools could be used for following devi-
ations or delays from normal brain development. Luna and
Sweeney (2001) emphasized the need for neurobehavioral
and neuroimaging studies characterizing normal development
before examining at-risk or clinical populations, referring spe-
cifically to elucidation of dysmaturation processes in schizo-
phrenia. It is noteworthy that Bachman et al. (2012) reported
that adolescent-onset psychosis patients fail to show normal
age-related increases in processing speed, which in turn pre-
dicts poorer functional outcomes.

In this paper we had a relatively limited but focused scope
that basically aimed to investigate the relationship between the
cognitive development and structural brain changes in matu-
ration. The PNC data, with multimodal MRI images, large
sample size and a well-designed cognitive battery, provided a
very good opportunity to work on this problem. Importantly, a
second potential clinical aim of our work would be to provide
early biomarkers of pathologic deviations from the normal
trajectory of brain development. A future direction of our
research will be to focus specifically on subjects with promi-
nent psychopathology, as diagnosed by clinical assessment,
extending this study to other datasets. This would permit
examining differences in brain development trajectories in
specific disorders compared with a normative population, and
provide a tool for early identification of neuropsychiatric
pathology.

Establishing the PNC as a publicly available resource for the
study of brain development was one of the principal aims of the
initiative. Accordingly, all nonidentifying data acquired as part
of the PNC will be made public and freely available to qualified
investigators. Details on data sharing are available in the article
that describes the study design (Satterthwaite et al. 2013).
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