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Abstract

MicroRNA research in humans and mammalian model organisms is in a crucial stage of 

development. Diagnostic and therapeutic values of microRNAs appear promising, but remain to 

be established. The physiological and pathophysiological significance of microRNAs is generally 

recognized, but much better understood in some organ systems and disease areas than others. In 

the present paper, we review several translational studies of microRNAs, including those showing 

the potential value of therapeutic agents targeting microRNAs and diagnostic or prognostic 

microRNA markers detectable in body fluids. We discuss the lessons learned and the experience 

gained from these studies. Several recent studies have begun to explore translational microRNA 

research in kidney disease and hypertension. Translational research of microRNAs in the kidney 

faces unique challenges, but provides many opportunities to develop and apply new methods, and 

to merge complementary basic and clinical approaches.
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INTRODUCTION

miRNAs (microRNAs) are endogenously produced non-coding RNA molecules 

approximately 22 nucleotides long that play a ubiquitous and important role in regulating 

protein expression (Figure 1A). miRNAs, and non-coding RNA in general, are importantly 

involved in numerous disease processes as indicated by targeted studies, as well as 

exploratory studies such as genome-wide association studies [1]. The human genome 

contains genes encoding more than 1000 miRNAs [2]. With some exceptions, miRNAs 

generally reduce the abundance of target proteins through translational repression or mRNA 

degradation. Readers interested in the specific and detailed mechanisms mediating the 

biogenesis and molecular action of miRNAs are referred to numerous extensive reviews 

published elsewhere [3–8].

An easy way for clinicians to get an initial understanding of miRNAs would be to compare 

miRNAs with mRNAs in terms of their biogenesis and transcriptional factors in terms of 
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their action. Similar to mRNAs, miRNAs are transcribed from the genome by RNA 

polymerase II, processed until reaching their mature forms and degraded over time. 

miRNAs, however, are much shorter than mRNAs and are not translated into proteins.

Similar to transcriptional factors, miRNAs bind to their targets on the basis of nucleotide 

sequence, have a one-to-many and many-to-one relationship with their targets, and can 

potentially influence the expression of nearly all protein-coding genes. miRNAs, however, 

primarily bind to the 3′-UTR (untranslated region) of mRNA, although they could in some 

cases bind to other regions of mRNA as well as genomic DNA, including promoter regions. 

Several miRNA target prediction databases have been developed to aid in sequence-based 

target identification; however, all of the factors that contribute to miRNA targeting are not 

yet understood. miRNA target prediction tools provides a good starting point for functional 

studies. The long lists of predicted targets must still be sifted through with experimental 

validation.

miRNA research has undoubtedly been one of the most exciting and rapidly developing 

areas of biomedical research over the last decade. It appears, however, that miRNA research 

in humans and mammalian model organisms is entering a crucial stage of development. 

Diagnostic and therapeutic values of miRNAs appear promising, but remain to be 

established. The physiological and pathophysiological significance of miRNAs is generally 

recognized, but much better understood in some organ systems and disease areas than 

others.

Translational research is the critical testing ground for finding out whether any new 

directions of biomedical research, miRNAs included, are going to be ‘make or break’. In the 

present paper, we review several translational studies of miRNAs and discuss the lessons 

learned and the opportunities and challenges ahead for miRNA study, focussing on the area 

of hypertension and kidney disease research.

miRNAs AS THERAPEUTIC TARGETS

In many diseases, either excessive or insufficient miRNA expression levels have been found 

to alter gene expression in a way that may contribute to the pathology of the condition. 

Despite the fact that an miRNA can have multiple target genes, several studies have 

suggested that an miRNA can in some cases target genes that are functionally related and 

therefore have a great impact on the functional pathway. For example, we [9] and other 

investigators [9a–9d] have found that the miR-29 family targets nearly 20 genes related to 

extracellular matrix formation, providing one of the most dramatic examples of a single 

miRNA targeting a large number of functionally related genes. Recently published studies 

also suggest that a single miRNA or co-expressed miRNAs could act to co-ordinate a 

cellular change by regulating the expression of genes in multiple pathways [10,11]. With 

such powerful regulatory capability, the potential for miRNA therapies in treating disease 

are very exciting [12]. However, as with all clinical treatments, a therapeutic approach 

aimed at restoring physiological miRNA levels must be efficient and safe. In this section, we 

will review some of the progress made in this area in recent years.
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The largest portion of progress in this area has been in reducing the expression of an miRNA 

that has been up-regulated with disease (Figure 1B). Chemically synthesized anti-miRNA 

oligonucleotides (anti-miRs) have a complementary sequence to the miRNA of interest and, 

when complexed, physically prevent mature miRNAs from interacting with their targets. 

Additionally, the duplexing of the anti-miR can target the miRNA for degradation [13,14]. 

The actionofanmiRNA can also be attenuated by excess pseudo-targets that can be provided 

experimentally or, interestingly, generated naturally [15–17].

Despite initial potent suppression of miRNA, preserving the long-term effectiveness of 

oligonucleotide therapy in vivo has been challenging due to the rapid degradation of 

miRNAs by endogenous nucleases and renal excretion. To overcome this, many chemical 

modifications have been introduced to synthesized oligonucleotides to provide increased 

protection and stability in vivo, such as phosphorothioate linkages, 2′-O-methyl RNA, 2′-

fluoro modifications and LNA (locked-nucleic acid) modifications (Figure 1B) [9c,

13,14,18–20]. In particular, LNA-modified anti-miR oligonuleotides have been reported to 

provide long-lasting, efficient and apparently safe suppression of microRNA in vitro and in 

vivo [18].

In 2008, Elmen et al. [18] demonstrated that this technology could effectively suppress 

miR-122 expression in both mice and African green monkeys. To test the efficacy of various 

modifications, they focused on an miRNA-regulated pathway involved with cholesterol 

production in the liver where miR-122 acts to suppress Aldoa (aldolase A) mRNA, resulting 

in the production of cholesterol. Intraperitoneal injection of LNA-modified anti-miR-122 in 

mice successfully suppressed miR-122 expression in the liver with a relatively low dosage 

when compared with other modifications attempted on anti-miRs. With just two weekly 

injections over a 6-week period, total cholesterol levels fell by 30 % in a mouse model of 

dietary obesity [18]. The effectiveness of the LNA-modified anti-miR was also tested in 

African green monkeys given three intravenous injections of the anti-miR on alternating 

days (1–10mg/kg of body weight) and followed over time. Remarkably, the dose-dependent 

reduction in total plasma cholesterol that resulted from the treatment was still evident 7 

weeks after the initial treatment with the highest dosage. Lower dosages were also found to 

be efficacious.

That study [18] is significant for several reasons. The LNA modification appeared to confer 

long-term efficacy to an antagonizing oligonucleotide. The extended in vivo efficacy 

eliminates the need for chronic infusion. The efficient suppression with lower dosages of 

oligonucleotide compared with other anti-miR formulations was also an important 

advancement in this area. Of comparable translational significance was the demonstration 

that therapeutic treatment in both mice and non-human primates did not have any 

measureable adverse effects. LNA-modified anti-miRs have been reported to be effective in 

several recent studies, including our laboratory’s study in rats [9]. The effectiveness of 

LNA-modified anti-miR, however, appears to vary depending on specific miRNAs and the 

accessibility of target tissues.

Another approach to altering miRNA expression is increasing an miRNA that has been 

suppressed during the development of disease (Figure 1B) [22,23]. The loss of miRNA 
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regulation may facilitate an increase in the expression of genes that contribute to the disease 

processes. In these instances, the restoration of normal expression of these regulatory 

miRNAs would be expected to be beneficial. In 2009, Kota et al. [24] described the 

intravenous delivery of a miR-26a AVV (adeno-associated virus) that successfully restored 

miR-26a levels that had been reduced in a murine model of liver cancer. They observed 

apoptosis of tumour cells without death of normal cells and no traces of toxicity [24].

Although the studies described above indicate that therapies targeting miRNA expression 

changes show promise, there are many issues that must be resolved before applying these 

types of treatments in humans. The first relates simply to the significance of the change in 

miRNA expression to the development of the disease. Determining whether the change is 

causal or secondary will be an important initial consideration when deciding if a particular 

disease would be most effectively treated by miRNA therapy. Additionally, many of the 

same challenges with siRNA (small interfering RNA)-based therapies and gene therapies 

also apply to miRNA-based therapies. Particularly important issues include target 

specificity, tissue specificity, cellular uptake and adverse reactions to delivery vehicle 

(Figure 2).

The distribution of therapeutic agents within different organs and tissues is a prevailing 

concern in treatments which would alter gene expression. It is clear that miRNA profiles can 

vary greatly between tissue and cell types and within a single cell type during disease 

progression. It is possible that altering miRNA expression could be therapeutic in one tissue 

or cell type, while detrimental in another (Figure 2). On the other hand, cell-specific 

expression or action of miRNAs could be an advantage for miRNA therapies. For example, 

an anti-miR administered systemically would knock down an miRNA only in cells that 

express the miRNA while sparing cells that do not express the miRNA.

Intravenous delivery of therapeutics might be more effective in organs that receive the 

greatest portion of blood flow. The liver is a likely place for circulating oligonucleotides to 

accumulate, as demonstrated by Elmen et al. [18]. In our laboratory, we have observed 

effective suppression of miRNA by LNA-modified anti-miRNAs in the kidney [9,24a]. 

There is also growing evidence that LNA-modified anti-miRs are effective in other organs 

or tissues including tumours [25].

Once delivered to the tissue, the therapeutic agent needs to efficiently enter the cell. The 

route of uptake of oligonucleotides appears to vary between organs. In an isolated perfusion 

system, it has been shown that oligonucleotide uptake occurs non-specifically in both 

parenchymal and non-parenchymal cells of the liver [26]. Sawai et al. [27] have shown that 

the uptake of modified oligonucleotides in a perfused rat kidney resulted from tubular 

reabsorption and uptake from the capillaries. A greater understanding of organ-specific 

differences in uptake may allow us to improve the targeting of tissues with modifications to 

avoid off-target effects.

Although delivery of miRNA-based therapeutics directly to the diseased tissue may be more 

safe and effective, this would probably limit the clinical applications. The study by Kota et 

al. [24] restored miRNA levels using an AAV under a constitutively active promoter. If the 
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safety of miRNA AVV delivery can be confirmed, it may be possible to drive expression of 

the miRNA using a tissue- or cell-specific promoter to diminish unintended effects.

BODY FLUID miRNAs AS DIAGNOSTIC OR PROGNOSTIC MARKERS

Stringent statistical criteria must be satisfied and clinical values beyond currently available 

markers must be demonstrated in order to establish any miRNA expression signatures as 

clinically useful diagnostic or prognostic markers. Numerous studies have reported the 

identification of miRNA expression patterns in cells or organ tissues that are associated with 

the diagnosis or prognosis of human disease. Few, if any, have come close to establishing 

new clinically relevant diagnostic or prognostic markers. However, analysis of miRNA 

expression patterns remains a promising possibility for discovering disease markers, 

particularly expression patterns that can be discerned in body fluids collected in non-

invasive or minimally invasive manners (Figure 1B).

Over the past few years, several studies have shown that miRNAs are detectable in 

circulating blood; however, the mechanisms facilitating their entry into the bloodstream 

have not been fully characterized [28–30]. Early observations that endogenous plasma 

miRNAs exist in a form that is resistant to plasma RNase activity suggested that these blood 

miRNAs were not cell-associated, but rather located in protective microvesicles [28,30]. 

Several studies have indicated that miRNAs are both actively secreted into the blood within 

microvesicles [29–32] and released from apoptotic bodies originating from cells lining blood 

vessels [32]. miRNAs detectable in extracellular compartments have also been proposed to 

play a role as intercellular messengers [33].

Measurements obtained from plasma or serum indicated that both fluids may be suitable for 

miRNA biomarker analysis. Serum levels of various miRNAs remain stable for several 

hours at room temperature [28,30]. These are important characteristics that would permit 

expression analysis of circulating miRNAs in a clinical setting.

The potential use of circulating miRNAs in diagnosis has been investigated in various 

cardiovascular diseases, such as CAD (coronary artery disease), myocardial infarction and 

heart failure [34–36]. A study by Fichtlscherer et al. [34] used hybridization-based array to 

compare the expression profiles of circulating miRNAs in patients with stable CAD and 

healthy volunteers. This analysis revealed alterations in miRNA enriched in vascular 

endothelial cells, including miR-126, members of the miR-17~92 cluster (miR-17, miR-20a 

and miR-92a), miR-130a, miR-221, let-7d and miR-21. When expression levels of several 

cardiac and smooth muscle miRNAs were measured by TaqMan qPCR (quantitative PCR) 

in larger cohorts (n = 53), smooth-muscle-enriched miR-145 was significantly reduced and 

cardiac-muscle-enriched miRNAs miR-133 and miR-208a were significantly increased in 

CAD patients. The study indicated that alterations in circulating miRNAs are not restricted 

to endothelial or vascular miRNAs in CAD. The sensitivity of the detection assay may be an 

important consideration when deciding which techniques to use for detecting disease-related 

biomarkers. In that regard, recently developed technologies such as RNA-seq (RNA 

sequencing) [37] could provide unprecedented views of miRNA expression profiles (Figure 

1B).
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Another study by Zampetaki et al. [38] has described the plasma miRNA signature for DM 

(diabetes mellitus) in subjects from the prospective Bruneck population-based study. It was 

shown that 91 out of 99 (92%) controls and 56 out of 80 (70%) DM cases were correctly 

classified using expression profiles of the five most significant miRNAs. Interestingly, more 

than 50% of normoglycaemic subjects that developed DM within the 10-year follow-up 

period were already determined to be diabetics by this analysis, highlighting the potential for 

miRNA biomarkers to act as predictors of disease. Roderburg et al. [39] have reported that 

human cirrhotic livers had lower miR-29 expression compared with the control liver 

samples. Members of the miR-29 family have been shown to regulate the expression of 

extracellular matrix proteins which are involved in fibrosis [9,9c]. Patients with advanced 

liver cirrhosis had lower miR-29 levels than patients with early stage fibrosis, indicating its 

potential use as not only a marker of disease, but also as an indicator of disease progression 

and disease severity. miR-29 expression may be an indicator of the aetiology of fibrosis, as 

patients with alcoholic cirrhosis had a lower miR-29 levels compared with patients with viral 

hepatitis.

Detection of miRNAs in body fluids other than the plasma, such as urine, pleural fluid, 

peritoneal fluid, cerebrospinal fluid, breast milk, colostrum, saliva, seminal fluid, tears and 

amniotic fluid, have been reported [30,40]. In a study by Weber et al. [40], a variety of 

miRNAs were shown to be present at high levels in most body fluids, whereas others were 

specific to a type of body fluid. The amount of total RNA ranged from approximately100 

μg/l to almost 50 mg/l. Breast milk and seminal fluid were richest in RNA, whereas urine, 

plasma and cerebrospinal fluid contained the least amount. The largest number of miRNAs 

was detected in saliva, seminal fluid and breast milk (~430 or more), whereas the number of 

detectable miRNAs in urine, pleural fluid and cerebrospinal fluid was approximately 50% 

less. Compared with blood, cerebrospinal fluid or other body fluids, saliva may have 

increased variability in the miRNA profile because of variations in the number of 

desquamated oral epithelial cells in the sample. The variability could be reduced by 

removing desquamated cells with centrifugation [41].

Physiological or ‘normal’ concentration ranges of miRNAs in body fluids remain to be 

established. Methods are also needed to standardize isolation and sample preparation 

procedures, as well as establishing controls for normalizing detected miRNA abundance 

across multiple samples. Zampetaki et al. [38] analysed their qPCR data as unadjusted Ct 

values standardized to miR-454 and RNU6b (RNA U6B small nuclear) levels in plasma. The 

inclusion of a spiked-in control has been reported as being useful for sample preparation and 

analysis. Fichtlscherer et al. [34] supplemented the samples with 5 nmol/l Caenorhabditis 

elegans miR-39 (cel-miR-39) and used it for normalization of the RNA sample processing.

TRANSLATIONAL RESEARCH OF miRNA IN KIDNEY DISEASE AND 

HYPERTENSION

Several studies have reported the involvement of miRNA in renal development, function and 

disease in animal models [42–49]. However, very little is known about the function of 

miRNAs in normal renal physiological processes in humans. In healthy humans, miRNA 

profiles reveal many distinct tissue-specific differences in expression. A tissue miRNA 
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profiling study by Sun et al. [50] found mouse and human kidney tissues to have an elevated 

expression of miR-192, miR-193, miR-204, miR-215 and miR-216, when compared with 

heart, lung, muscle or prostate tissue. Several studies have focused on the role of miR-192 in 

the development of fibrosis in the kidney [51–54].

Human tissue samples from kidney have been profiled in many diseases, including 

hypertensive nephrosclerosis, IgA nephropathy, diabetic nephropathy and renal tumours. 

Analysis of miRNA profiles generated from renal cell carcinoma tumours in humans 

resulted in a successful classification of distinct cancer subtypes and identified miRNA 

expression patterns that correlated with prognosis [55].

An exciting application for miRNA profiling has been in the prediction of acute renal 

allograft rejection in patients. Anglicheau et al. [56] reported that the level of miRNAs 

miR-142-5p, miR-155, miR-223, miR-10b, miR-30a-3p and let-7c obtained from biopsies of 

transplanted kidneys was highly predictive of acute rejection and even graft function [56].

Despite the limited human tissue availability, the significance of miRNA in the 

pathophysiology of human kidney disease and hypertension is becoming apparent through 

the merging of clinical and basic science with the help of analytical tools. One approach 

taken by several investigators is to combine studies in human kidney tissues, human kidney 

cell lines and animal models (Figure 1C). In our laboratory we have used a human renal 

tubular epithelial cell line (HK-2 cells) to identify miRNA–target pairs involved with 

phenotypic changes resulting from TGFβ1 (transforming growth factor β1) treatment. In this 

study [57], we compared proteomic and miRNA array data from TGFβ1- and vehicle-treated 

cells and identified miRNAs and their predicted target proteins showing reciprocal 

expression that was indicative of a regulatory interaction. We validated several of the 

identified miRNA–target interactions and confirmed that miR-382 contributed significantly 

to the TGFβ1-induced loss of epithelial characteristics in HK2 cells via regulation of target 

mnSOD (manganese superoxide dismutase) [57].

We have extended our study of miR-382 to animal models and human kidney tissues and 

demonstrated a significant role of miR-382 and its target genes in the development of renal 

interstitial fibrosis in mouse models and possibly human kidney disease [24a,58]. In mice, 

kidneys subjected to 3 days of unilateral urethral obstruction experienced a substantial up-

regulation of miR-382 and medullary fibrosis. Intravenous administration of LNA-modified 

anti-miR-382 prevented the increase in miR-382 and completely inhibited the development 

of fibrosis in the inner medulla. Through an extensive set of in vitro and in vivo experiments, 

we discovered a completely novel pathway in which targeting of the (chymo)trypsin-like 

proteinase kallikrein-5 by miR-382 contributed to the fibrotic effect of miR-382 in the mouse 

model [24a]. We obtained fresh kidney samples from humans and found that the level of 

fibrosis in the inner medulla correlated positively with miR-382 expression and negatively 

with kallikrein-5 expression, supporting the relevance of the miR-382 and kallikrein-5 

pathway to human kidney fibrosis [58].

Krupa et al. [52] treated HK-2 cells with high glucose to simulate a diabetic state; however, 

this treatment did not produce any changes in miRNA expression. Profiling of miRNA from 
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human biopsies, however, uncovered expression differences between patients with diabetic 

nephropathy and healthy controls. Distinct miRNA profiles were identified for early- and 

late-progressing diabetic nephropathy. Overall, patients who were in an early stage of 

diabetic nephropathy had a higher expression of miR-192 than late presenters. In addition, 

the reduced amount of miR-192 correlated with the degree of tubulointerstitial fibrosis [52].

An example of the relevance of miRNAs to human hypertension involves regulation of the 

AT1R (angiotensin II type 1 receptor). Although several polymorphisms have been 

identified in this gene, 1166 A/C in particular was correlated with increased incidence of 

hypertension and cardiovascular disease in several studies [59–63]. Despite this, the 

mechanism underlying the association of the polymorphism to disease phenotypes was not 

clear because it resided within the non-coding 3′-UTR region of the gene. Martin et al. [64] 

used computer alignment tools to determine that this region would be predicted to bind 

miR-155. Subsequent analysis verified that the single nucleotide variation reduced the 

binding capability of miR-155 in the target region, preventing normal suppression of this 

gene, which appeared to contribute to the development of certain forms of human 

hypertension [64,65]. The role of miRNAs in genetic determination or control of disease is 

an exciting research area. For example, it has been reported that mutations in the seed region 

of miR-96 are responsible for a Mendelian form of hearing loss in human [66].

TECHNICAL CONSIDERATIONS FOR ANALYSING miRNAs IN HUMAN 

KIDNEY TISSUE

A major challenge to understanding the role of miRNA in human renal physiology and 

disease and the role of renal miRNAs in human hypertension is determining where the 

miRNAs are expressed within the kidney and how they regulate their targets. The kidney is 

a highly heterogeneous organ that can contain several tubule segments and cell types within 

a given plane (Figure 2). Tian et al. [67] found vastly different miRNA expression between 

the cortex and medulla in rats. It is expected that we will find distinct differences in miRNA 

expression between tubule segments and cell types within the same kidney region, each 

contributing to gene regulation in a unique way.

Because fresh human tissues are scarce, and most biopsied samples frequently exist in 

formalin-fixed paraffin-embedded archives, mechanistic studies in human tissue remain 

challenging. We do know that formalin-fixed paraffin-embedded kidney tissues from 

patients can be used to study miRNA expression [52,56,68–71]; however, the breadth of the 

studies is often limited with needle core biopsies containing mostly cortical tissue. 

Acquiring tissue from the renal medulla is uncommon, except in cases of partial or complete 

nephrectomy.

In situ hybridization has been used to visualize cellular localization of miRNA [72,73] 

(Figure 1B), but there are several obstacles in using this method to both quantify miRNA 

expression and to determine the cell location of the miRNA in kidney tissue. Ideally, in situ 

hybridization and immunohistochemistry could be combined to map the expression of the 

miRNA using fluorescent double labelling. However, the inherent autofluorescence of 

kidney tissue, combined with autofluorescence added by the formalin fixation and paraffin-
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embedding process, make it very difficult to tease apart low-abundance miRNA expression 

from background [74]. In our laboratory, we have opted to use an amplifying enzyme-based 

colorimetric stain to detect miRNA expression by in situ hybridization. The approach 

alleviates concerns about interference from autofluorescence. However, any subsequent 

colorimetric immunohistochemistry would mask some of the miRNA signal within a tissue, 

making visualization and relative quantification of either sample potentially difficult.

Another promising approach is miRNA expression analysis of laser-captured kidney tissue 

(Figure 1B). This approach can selectively isolate distinct renal tubules and cell types from 

sectioned kidney tissues. Many researchers have taken steps to optimize miRNA detection 

and quantification in formalin-fixed clinical samples [75,76]. Despite successful miRNA 

analysis in these samples, it has also been demonstrated that formalin fixation of human 

tissue may not preserve RNA optimally as well as ethanol fixation [77–79]. The impact of 

fixation, immunohistochemical labelling and processing reagents on laser-captured renal 

miRNA quality and quantity requires investigation.

CONCLUSIONS

The importance of miRNA regulation in human kidney disease and hypertension is 

becoming increasingly clear. The translational study of miRNA in kidney disease and 

hypertension has unique challenges. However, we can learn from experience, as well as 

from lessons obtained from translational miRNA research in other disease areas. New and 

improved tools for detecting, analysing and manipulating miRNAs in models and samples 

relevant to translational research are constantly being developed and improved. It will be 

important to carefully consider the limitations of each method or technique in the context of 

achieving valuable goals in translational miRNA research in kidney disease and 

hypertension. By merging complementary basic and clinical research we can work toward 

understanding miRNA regulation in kidney disease and hypertension and how best to 

manipulate miRNAs in relevant disease states.
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TGFβ1 transforming growth factor β1
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Figure 1. Translational research of miRNAs
(A) miRNAs are encoded by endogenous genes and regulate the abundance of target 

proteins. (B) Methods and materials for translational study of miRNAs. (C) Translational 

research by merging studies of humans, animal models and in vitro systems. mRISC, 

miRNA-induced silencing complex; miRNA-seq, miRNA sequencing; ISH, in situ 

hybridization; FFPE, formalin-fixed paraffin-embedded; LCM, laser-capture 

microdissection.
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Figure 2. Challenges in the development of miRNA therapies
As undesired effects of miRNA therapies are of great concern, the route of delivery must be 

carefully considered. Once the therapeutic agent has reached the tissue, it will be important 

that it targets cell types involved with the disease process. This is especially important in the 

kidney where there are many cell types present, all with a unique function. Upon reaching 

the appropriate cell population, the therapeutic agent must gain entry into the cell in a 

sufficient concentration to be effective for the clinical treatment of disease.
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