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Abstract

In modern societies, diseases that are driven by dysregulated immune responses are increasing at 

an alarming pace, such as inflammatory bowel diseases and diabetes. There is an urgent need to 

understand these epidemiological trends, which are likely to be driven by the changing 

environment of the last few decades. There are complex interactions between human genetic 

factors and this changing environment that is leading to the increasing prevalence of metabolic 

and inflammatory diseases. Alterations to human gut bacterial communities (the microbiota) and 

lowered prevalence of helminth infections are potential environmental factors contributing to 

immune dysregulation. Helminths have co-evolved with the gut microbiota and their mammalian 

hosts. This three-way interaction is beginning to be characterized and the knowledge gained may 

enable the design of new therapeutic strategies to treat metabolic and inflammatory diseases. 

However, these complex interactions need to be carefully investigated in the context of host 

genetic backgrounds in order to identify optimal treatment strategies. The complex nature of these 

interactions raises the possibility that only with highly personalized treatment, with knowledge of 

individual genetic and microbiota communities, will therapeutic interventions be successful for a 

majority of the individuals suffering from these complex diseases of immune dysregulation.

Introduction

Whilst our previous generations were faced with constant threats of diseases caused by 

infectious agents (accounting for substantial proportions of human mortality (1)), the current 

generation is facing an epidemic of diseases associated with dysregulated inflammation (2). 

These include many metabolic diseases (3). Through defining the mechanisms underlying 

obesity, diabetes and atherosclerosis (4), we now know that dysregulated or unresolved 

inflammation influences many of these diseases. There is no doubt from the epidemiological 

perspective that there is an increase in inflammatory mediated diseases over the last 50 

years. Since this is a timeframe that is unfeasible for genetic changes to have occurred in the 

human population, environmental factors are clearly responsible for these alterations in 

disease landscapes. However, genetic factors are as important in determining the 

consequence of these changes in response to environmental changes, as they are to response 
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to infections with infectious pathogens (5). Hence, it is necessary to understand the 

interaction between genetic and environmental factors (6) to unravel causes behind the 

increasing rates of inflammatory diseases.

In order to avoid expulsion, helminths have evolved mechanisms to regulate the immune 

system of their hosts(7). They do not benefit from replicating within the host or utilizing 

intra-host population genetic approaches towards avoiding the immune response, mainly 

through antigenic variation (a common strategy for viruses, bacteria and protozoan 

parasites). Therefore, helminths have evolved production of various immune regulatory 

molecules (8) during the process of co-evolution, which are encoded into their genomes (9). 

These genomes are therefore a source of immune regulatory molecules (10). The ability of 

helminths to regulate the mammalian immune system is a fascinating topic, which has 

drawn increasing interest as the potential to exploit this knowledge for the treatment of 

autoimmune diseases is increasingly being considered (11, 12).

Concurrently, there has been an explosion of knowledge and interest regarding the many 

physiological effects of commensal bacteria (often termed the microbiota) that live with 

their mammalian hosts(13). While they clearly affect the ability of the host to metabolize 

and absorb nutrients (as was previously recognized), there has been a surge of interests in 

how these commensal communities regulate the immune system of their hosts(14–16). At 

the same time, there has been an increasing appreciation of how shifts in these bacterial 

communities may alter the immune response of their hosts and lead to increased 

inflammatory responses(17). Since alterations to the microbiota clearly has immune 

consequences and there are dramatic differences in the microbial communities of residents 

in developing and developed countries (18) with different rates of inflammatory diseases, 

there is also much interest to relate microbial changes to the hygiene hypothesis(19).

The most widespread helminth infections in man, as well as in most other mammals, are the 

intestinal helminths (20–22). This is also the locale of the majority of commensal bacteria in 

mammals. Undoubtedly, there must be some important interactions between these organisms 

that reside in the same niche (23, 24). In this review, we will discuss some of the recent 

developments in characterizing the interactions between helminths and the microbiota and 

the consequences that this may have on the immune response of the mammalian hosts.

Helminth immune responses and the hygiene hypothesis

Helminth infections are generally associated with a Type 2 response, as well as with 

activation of an immune regulatory network(25). It is widely regarded that the Type 2 

response has likely evolved to minimize the virulence of helminth infection to their 

mammalian hosts (26). This response enables parasite resistance (or expulsion) by limiting 

the number helminths that can live in our intestinal tract (27, 28) and also promoting the 

repair of tissue damage that is caused by the helminths that have colonized our tissues (26, 

29). This response is characterized by the production of cytokines such as interleukin-4 

(IL-4), IL-5, IL-9 and IL-13, which in turn activates a broad range of downstream effector 

mechanisms (30, 31) that are necessary for host expulsion and tolerance of helminth 

infections.
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IL-4 and IL-13 are key components of this response and they signal through the IL-4Ra and 

STAT6 (32). Acting on intestinal epithelial cells (IECs), these cytokines promote goblet cell 

differentiation, increased mucus production, proliferation and turnover of the IECs (27, 28). 

In the context of the gut microbiota, these alterations to the intestinal environment may be 

important for maintaining the mucosal barrier and limiting aberrant inflammatory responses 

triggered by the luminal or adherent bacteria in the mucosa (33). When this Type 2 response 

is knocked out during helminth infections in mice it can lead to lethal sepsis from 

compromised gut integrity and leakage of gut bacteria (26). Contraction of intestinal 

muscles and increased fluid flow into the lumen may help flush the worms out of the gut 

(27, 28), but are also likely to alter the environmental niche for gut microbial communities 

(23).

It was first noted from field studies that the peripheral T cells from chronically helminth-

infected patients are unresponsive to stimulation with parasite antigens and responses to 

other antigens are also reduced (7, 34). Subsequently, investigators have worked to define 

the regulatory mechanisms that may be reducing responses during helminth infection. In 

addition to the TH2 response described above, regulatory T cells (35), regulatory B cells (36, 

37) and alternatively activated (or M2) macrophages (38–40) have all been identified as 

important components of the immune regulatory network activated by helminth infections 

(31). These same mechanisms may be responsible for preventing immune dysregulation as 

part of the hygiene hypothesis(12).

Some of the early field evidence to relate allergies and helminths came from Gabon, where 

there is a high prevalence of schistosomiasis (41). Infected children had lower responses to 

allergen challenge (skin test to house dust mite antigen) than uninfected children (42). 

Importantly, deworming the children with anti-helminthics increased reactivity to allergens 

(43), providing evidence for a causal effect of the worms on downregulating reactivity to the 

skin allergens. Since this study, there have been other studies in Brazil (44) and Equador 

(45) that have provided supporting evidence that helminth infections could suppress allergic 

inflammation (46). Since allergic inflammation and helminth infections result in strong Type 

2 responses, why would helminths suppress allergen reactivity? This would not be consistent 

with the paradigm of a TH2 response inhibiting TH1 or TH17 responses, in which case we 

would expect helminths to suppress TH1/TH17 driven diseases such as type 1 diabetes(47), 

multiple sclerosis (48) and Crohn’s disease(12). The answer may lie in the increased levels 

of IL-10, a highly potent immunosuppressive cytokine. IL-10 may attenuate the ability of 

basophils to respond to antibody-mediated activation. While the early studies were on 

schistosomiasis, there is also evidence that gastrointestinal nematodes can also reduce 

allergic inflammation in the skin (46). However, this effect did not appear to extend to a 

suppressive effect on developing clinical asthma, indicating perhaps that once chronic 

pathogenic mechanisms have been established they cannot be overturned by helminths.

The effects of helminth infection may be especially important in early life or even in 

pregnant mothers. A recent study in Africa enrolled 2507 pregnant women in a randomized, 

double blind, placebo controlled trial with different anti-helminthic drug treatment(s) to 

examine immune responses against infant vaccines (49) and the health outcome of offspring. 

There was neither a beneficial or detrimental effect on infectious disease outcomes or on 
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responses to Bacillus Calmette–Guérin vaccine (BCG) immunization (49, 50). Surprisingly, 

the incidence of eczema increased with anti-helminthic treatment (50, 51). These results 

suggest that deworming during pregnancy might promote allergic disease in offspring. This 

large randomized study provides clinical evidence that helminth infection during pregnancy 

may protect children from immune dysregulation, as well as indicating that helminth 

infection during pregnancy does not have a negative effect on the offspring.

While we have thus far described helminths in a positive light with regard to immune 

regulation, it is important to note though that parasitic helminths are not commensals. In fact 

they are perhaps the greatest of all neglected diseases (21). There is a heterogeneous 

immune response to helminth infections in any endemic population (31). Individuals that 

mount particularly weak or inappropriate immune responses to the parasites may result in 

carrying heavy worm burdens. These heavy worm burdens are then likely to cause 

pathology associated with heavy infection (20). In contrast, there will also be some 

individuals that mount exceedingly strong immune responses to the helminths, these 

individuals are likely to carry very low worm burdens, but may suffer collateral damage 

from immune driven pathology (29). For the majority of individuals there is a balance 

between tolerance (52) and resistance to the presence of the helminths, which enables a 

small number of parasites to survive within the host without avert pathology (31). Under 

these circumstances, there is an optimal interaction whereby immune reactivity and parasite-

induced suppression of immune responses are balanced to minimize pathology from either 

heavy worm burden or immune pathology (53). Studies on Soay sheep on an isolated island 

in Scotland, demonstrate that there can be a balance between reproductive fitness and 

survival that is driven by the magnitude of an immune response (54), indicating that there is 

selection for tolerating the presence of helminth infections (55) with a moderate immune 

response, without causing collateral damage that reduces reproductive ability.

Perhaps helminths should thus be considered to be “pathobionts”, potentially disease 

causing organisms, which under normal circumstances live as a symbiont with their hosts 

(56). This also depends on how we define “normal” circumstances. Depending on the type 

of helminth infection, some would be more likely to be “normally” symbiotic (e.g. 

gastrointestinal helminths like Trichuris and Ascaris) while others would be weighed more 

towards the disease-causing spectrum (e.g. schistosomiasis). In general, the gastrointestinal 

tract is a body site more tolerant to accommodating helminth colonization without 

pathology.

Microbiota and the hygiene hypothesis

The populations of microbes that are found primarily in the gut of mammals are considered 

to be their “microbiota”. There is ever increasing evidence that the microbiota plays an 

important role in regulating homeostasis of their host and consequently has effects on many 

different disease processes (17). Many different physiological functions, including 

metabolism, cognitive development (57) and immune responses are affected by the 

composition of the microbiota. Importantly, alterations to bacterial communities in early life 

appear to be most important and can have long-term consequences to physiology in adult 
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life (58). There have been many recent reviews on the relationship between the microbiota 

and human diseases (59,60) and just a few examples are highlighted here.

Inflammation is an important component of many metabolic diseases (61). The relationship 

between obesity and the gut microbiota is among the best studied of host-microbiota 

interactions (62). The increase in obesity in the last few decades is striking and clearly a 

result of environmental alterations. While diet and lifestyle clearly are important 

contributors, the composition of gut microbial communities can also contribute to 

progression of obesity. Obesity is now widely considered to be an inflammatory disorder 

and disruption of specific immune pathways; especially bacterial sensors (e.g. TLR5 (63) 

and Inflammasome components(64)) result in phenotypes that are associated with increased 

weight, adiposity or other metabolic effects. Recent studies perturbing the microbiota with 

low sub-therapeutic doses of antibiotics during early life, has dramatic effects on adiposity 

in mice, especially when combined with high fat diets. These metabolic changes were also 

associated with alterations to immune cell function, specifically a reduction in TH17 

responses(58).

Inflammatory bowel diseases (IBD), are complex disorders that include Crohn’s disease 

(CD) and ulcerative colitis. These autoimmune diseases are characterized by recurring 

inflammation in the gastrointestinal tract (65). While the causes of IBD are still to be 

determined, there is general consensus that abnormal responses to the gut microbiota are a 

key component of the disease manifestation (65, 66). Hence, more is known about the role 

of the microbiota in this disease, which may serve as a model for studies to better understand 

host-microbiota interactions (59). Imbalances in commensal bacterial populations, referred 

to as dysbiosis, is a common feature among IBD patients (67). Genetic risk factors are also 

involved in host-microbe interactions, suggesting a disease model in which certain 

commensal microbes drive an exaggerated inflammatory response in genetically susceptible 

individuals. Hence, IBDs are complex diseases and different combinations of genetic and 

environmental factors (e.g. the microbiota) may require different treatment options. 

However, animal models that recreate this multi-hit pathogenesis mechanism have been 

lacking, making it difficult to understand the relationship between genetic, microbial, and 

other environmental risk factors. We recently developed a mouse model to understand 

dysbiosis, in which the combination of genetic susceptibility and microbial imbalances 

generates intestinal inflammation (68). These types of model may enable the gene-microbe-

helminth interactions in the future.

Whilst the gut microbiota is restricted to the intestinal tract, metabolites produced by the 

bacterial communities can influence peripheral tissues (69, 70). In a remarkable study, 

supplementation of dietary fiber to mice led to increased concentrations of circulating short 

chain fatty acids (SCFA), as a result of metabolizing the fibers by the gut microbiota(71). 

This increase in SCFAs in turn protected the mice from allergic inflammation(71). SCFAs 

have also been shown to regulate intestinal inflammation and promote differentiation of 

Foxp3+ Tregs(72) (69). These finding provide a potential mechanistic link between 

alterations to our modern diet (low fiber high fat) and increased susceptibility to 

inflammatory diseases. Further studies, especially translational studies in human subjects 

with dietary alterations (73, 74) should validate some of these hypotheses.
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As a result of the Human Microbiome Project, we now have a detailed catalog of the healthy 

human microbiota from individuals of the developed world (75, 76). The microbiome refers 

to the genomes of the microbiota. However, it is clear from the few studies conducted so far 

that the gut microbiota of developing countries are extremely different to residents from the 

developed world (18, 77, 78). Notably, helminth infection status of individuals analyzed 

from developing countries has not been well described in most of these studies. Diet 

certainly would contribute significantly to differences between the developing and 

developed countries. But there is growing evidence that helminth infections may also have a 

substantial impact on the human microbiota. Recent studies have also emerged indicating 

that specific taxa within the microbiota of individuals living in developing countries have 

profound effects on the health outcome of these people; for example, promoting the 

recovery from cholera (79), and affecting malnutrition (80, 81). The effects of helminth 

infections in these interactions remain to be determined.

Helminths and microbial communities

Just as the immune system has co-evolved with the gut microbiota, it has co-evolved to 

tolerate the presence of helminth infections. Hence, it is undoubtedly the case that the 

helminths and the gut microbiota must have co-evolved also. While this is still a new area of 

investigation, there is growing evidence that intestinal helminths can alter the composition 

of the gut microbiota.

Some of the earlier experiments were conducted on pigs. Trichuris suis is associated with 

exacerbation of campylobacteriosis (82). More recent data with next generation sequencing 

showed that Mucispirillum bacteria, which colonize mucus, were substantially increased in 

infected animals (83). Shotgun sequencing indicated that T. suis infection reduces 

carbohydrate metabolism, coinciding with reductions in Ruminococcus bacterium that are 

cellulolytic (83). A study to compare relationship between the mucosal immune response 

and worm burden was possible because at a later time point (53 days) some pigs were 

cleared of adult worms, whereas others were still colonized, enabling the comparison of 

infected pigs that retained worms with pigs that had cleared worms (84). Interestingly, 

Campylobacter was more common in worm bearing pigs. Greater worm burden was also 

associated with increased expression of inflammatory genes, arg1, cxcr2, c3ar1, il6, muc5ac 

and ptgs2 (84). However, the functional relationship between the inflammatory response, 

worm burden and bacterial communities is difficult to determine in pigs and easier to 

investigate in mice.

Heligmosomoides polygyrus can alter gut microbiota of healthy mice (85–87) in the large 

intestine, despite the parasite occupying the small intestine. Members of the 

Lactobacillaceae family were increased in abundance in several independent studies (85–

87), as were the Enterobacteria (86, 87). Very early experiments with germ-free mice had 

found that fewer adult worms were recovered from these mice, which was associated with 

increased eosinophilia, granulomas and thickening of the small intestinal wall (88), however 

this finding still awaits validation in the modern germ-free setting.
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Intriguingly, the abundance of Lactobacillus was found to correlate positively with infection 

intensity of H. polygyrus, in addition to H. polygyrus increasing the abundance of 

Lactobacillus (87). Indeed, the introduction of exogenous Lactobacillus to mice promoted 

establishment of the worm infection (87). This synergistic relationship between worm and 

bacteria was reminiscent of another nematode, Trichuris muris, which utilizes the cecal 

microbiota to provide environmental cues for hatching of the larvae (89). It is still unclear if 

T. muris can also alter the intestinal microbiota to promote expansion of bacterial taxa that 

can enable hatching. Since these worms need to find mates in order to produce eggs, it 

would be sensible to adopt such strategies. The relationship between H. polygyrus and 

Lactobacillus could be driven by an expansion of regulatory T cells, which is correlated with 

exogenous delivery of Lactobacillus (87) and has been demonstrated to promote H. 

polygyrus colonization. Increase in Lactobacillaceae is not restricted to the gastrointestinal 

nematodes and interestingly the liver fluke Opisthorchis viverrini also increases this group 

of organisms (90), along with the Lachnospiraceae and Ruminococcaceae. One possibility is 

that these alterations are driven by the Type 2 response, a common feature of these different 

helminth infections.

There are now a few reported studies from humans in endemic regions infected with 

helminths, with many others in the pipeline (unpublished). We performed a cross-sectional 

study on 51 individuals from two Orang Asli villages in Malaysia, of which 36 (70.6%) 

were infected by helminths (91). The Orang Asli are an indigenous population who live in 

the rural and semi-urban areas of Peninsular Malaysia where helminth infection remains 

prevalent. We found that the helminth-colonized individuals among these villagers had 

greater species richness and number of observed OTUs, compared to the uninfected 

individuals. Recently, we have followed up these studies with a longitudinal deworming 

study and confirmed that deworming decreases microbial diversity, indicating a causal 

relationship between helminth infections and microbial diversity (unpublished). However, a 

different study conducted in Ecuador did not find significant effects of helminth infection on 

microbial diversity(92). In this study, the investigators compared uninfected with infected 

children, but also compared children before and after treatment with deworming medication. 

There were also no significant differences in bacterial composition. Hence, there may be 

geographic and cultural differences that could influence these studies, or technical 

differences in sample storage, extraction and sequencing platforms may also affect the 

results.

In summary, experimental models suggest that helminths and the microbiota may interact in 

positive and negative feedback loops, whereby a particular worm (e.g. H. polygyrus) is 

better suited to an environment with certain bacterial communities (e.g. abundant 

Lactobacilli) and therefore produces factors that promotes the growth of bacterial 

communities that favors it’s presence. This may also be a strategy to exclude other worms, 

or enteric organisms from occupying this niche. The heterogeneity of worm burdens that is 

typically observed in an endemically infected human population, with 15% of the population 

often carrying 80% of the worm burden (21, 93), may well be a reflection of this interaction. 

This is a testable hypothesis for future field studies. The results from endemic human studies 

are still variable at the moment and definitive conclusions will await further reports.
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Helminths as treatment for inflammatory diseases

Gastroenterologists at the University of Iowa led the way in taking the emerging concepts of 

immune regulation by helminths into translational research on inflammatory bowel disease 

patients (94–96). Trichuris suis was utilized as a therapeutic agent because it produces a 

self-limited colonization in humans and remains isolated to the gastrointestinal tract (97). An 

exploratory open-label study of seven patients with IBD was first reported in 2003. In this 

study and subsequent clinical trials of Trichuris suis ova (TSO) in Iowa, there were 

significant improvements in patient outcomes for both UC and Crohn’s disease with 

essentially no adverse effects (94–96). In a randomized, placebo-controlled, double-blind 

study of 54 subjects with moderate to severe UC, after 12 weeks of treatment, 43.3% of the 

individuals treated with TSO had improved symptoms compared to 16.7% in the placebo 

group, which was statistically significant.

Subsequently, small investigator initiated trials were established to evaluate efficacy for 

multiple sclerosis (98, 99), based on observations in Argentina indicating positive effects of 

helminth infections on MS patients (100). There was also a larger randomized double blind, 

placebo-controlled trial of 100 subjects with allergic rhinitis (101). The allergic rhinitis trial 

did not show any significant effect on symptom scores or allergic reactivity. While there was 

no effect on symptoms, this trial provided an indication of potential side effects for 

relatively healthy individuals, not suffering from chronic gastrointestinal disorders. A few 

side effects were documented (102), including diarrhea, excessive flatulence, and upper 

abdominal pain. These events peaked 30 to 50 days after the first treatment with TSO, but 

were generally transient (median duration of two days) and subsided. Perhaps this is an 

indication of alterations in gut microbiota as a result of TSO.

The other helminth studied in clinical trials is the hookworm N. americanus, which has been 

tested on asthma and celiac disease patients. TSO is being used in clinical trials with 

dosages as high as 7500 eggs. For N. americanus there may be a narrower therapeutic 

window between achieving effective immune modulation and unacceptable adverse events. 

Doses higher than 10 larvae already correlate with increased adverse events (103). In a 

randomized, double-blinded trial with 32 asthma subjects, the differences between the 

treated and placebo groups were non-significant (104). N. americanus has also been tested in 

a randomized double blind clinical trial on 20 patients with well-controlled clinically 

inactive celiac disease (105). In this initial study, subjects underwent a five-day gluten 

challenge 12 weeks post inoculation and no significant difference was observed in 

pathologic grade or systemic inflammatory immune response after gluten challenge between 

the hookworm infected and placebo treated groups. However, a biological response was 

elicited to N. americanus in these subjects with a strong mucosal TH2 responses as well as 

increased IL-22 expression accompanied by declines in IFNg and IL-17A secretion from 

cultured duodenal pinch biopsies (106, 107). Remarkably, with a different study design 

(108), with escalating gluten challenges, N. americanus combined with gluten 

microchallenge showed promise in promoting tolerance to larger challenges of subsequent 

gluten challenge. These results clearly illustrate the importance of devising an appropriate 

intervention strategy when utilizing helminths as a therapeutic agent.
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Whereas in the previous section, we discussed early studies on the effects of helminth 

infections on the microbiota of humans living in endemic regions, there is also an emerging 

body of work on the microbiota from experimental treatments of individuals with helminth 

infections. We performed a longitudinal treatment study of juvenile macaques suffering 

from idiopathic chronic colitis, treated with Trichuris trichiura eggs we received from a 

self-infected individual (109). This colitis condition is a major cause of required veterinary 

attention in primate research centers. Four of the 5 treated macaques responded positively to 

infection and gained weight progressively. When we examined the composition of the 

mucosal microbiota from the biopsy specimens, we found that microbial diversity was 

significantly reduced in colitic macaques compared to healthy macaques (consistent with 

previous reports (110)) and diversity was partially restored post treatment. The bacterial 

communities post treatment was also more similar to healthy macaques. These results 

indicated that Trichuris infection might reverse dysbiosis in these macaques with colitis. In a 

study of healthy celiac disease patients infected with N. americanus, fecal samples were 

analyzed from 8 healthy celiac disease patients on a long-term gluten-free diet before and 

after infection with N. americanus (105–107) and analyzed by 16S sequencing. The results 

showed a small increase in microbial species richness, but there was not a dramatic effect on 

community structure, diversity or relative abundance of individual bacterial species. One 

possibility why the effects on the microbiota was minor could be because N. americanus 

colonizes the small intestine, rather than the colon.

The only large placebo controlled trials thus far conducted with the GMP grade helminth 

product, TSO, (for allergic rhinitis and Crohn’s disease) have failed to demonstrate 

significant improvement of symptoms compared to placebo alone. While these results have 

been discouraging, it is important to note that our understanding of how TSO may affect a 

wide range of patients is poor. Currently, there are no good ways to measure correlates of 

biological activity. With conventional drugs (e.g. antibodies and small molecules), 

determination of accurate pharmacokinetics is important for dosing. For a live therapeutic 

organism, this information is unavailable. This scenario is more similar to a therapeutic 

vaccine, where investigators can still measure antibody responses or T cell response to 

antigens as a correlate of biological activity. In the case of TSO, hatching rates and hence 

parasite loads could vary significantly between individuals, and is not well understood. The 

composition of gut microbiota from different individuals may result in different hatching 

rates, since hatching of the eggs has been shown to be dependent on gut bacteria (23, 89). 

Hence, many challenges remain for this form of new disease treatment, as is often the case 

for “first in class” therapeutics.

Challenges

Immunologists tend to get confused about the diverse biological properties of different 

helminths. Differences in life cycles, location of larvae relative to adult forms and the 

migration process through different body cavities, blood vessels and lymphatic systems tend 

to be under appreciated. “Worms are a way to induce Type 2 responses”, is a common 

thought process for some immunologists. While it is indeed true that Type 2 responses are a 

general feature of most helminth infections, and indeed features of immune regulation are 

also shared between most helminth infections, it is also important to note that the relative 
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magnitude of the Type 2 response and immune regulatory response varies greatly depending 

on which helminth infection is being investigated (111). Indeed, the type of response is also 

greatly affected by the dosage of parasites used and of course the strain of mice under 

investigation (28).

In the same vein as above, there is often a failure to appreciate the complexities of the many 

different types of autoimmune or inflammatory diseases. Indeed within the same type of 

disease, there are huge variations in manifestations of pathology and disease course, 

indicating perhaps that there are actually a number of different diseases that are being 

categorized together, but are in effect, many separate diseases. Whereas with cancer, there is 

an increasing appreciation of sub-categorizing cancer types based on molecular profiles 

(112–116), autoimmune and inflammatory diseases are still often being treated as a single 

entity, because we lack a molecular and cellular understanding of the different disease 

manifestations.

Thus, while there are clear examples in mouse models (11), and in individual cases (117), 

where a particular helminth can have dramatic effects at improving disease pathology of an 

inflammatory disease, there is also unlimited possibilities in pairing different helminth 

infections with different autoimmune and inflammatory diseases, and we are poorly placed 

at the moment to do so, because we do not understand the complexities of the different 

infections and inflammatory diseases. It is therefore dangerous to predict that any helminth 

infection can suppress any particular inflammatory disease, because it is just as likely to 

have unintended consequences of exacerbating disease (118, 119). What is likely required 

instead is the careful study and pairing of specific helminths (or helminth products), with 

specific immunological features with certain specific (perhaps even subsets?) diseases. It is 

unlikely that any single helminth is going to have a beneficial effect on several different 

inflammatory diseases.

Future directions

It is clear that gut microbial communities can exert a strong influence on the host immune 

response (14, 15, 120). In mouse experimental models, we can determine that these effects 

are definitely happening in the absence of helminth infections. While we are equally certain 

that helminth infections can exert strong influences on the immune response of the host 

(121), it has not been clearly demonstrated if these immune effects can occur in the absence 

of gut bacteria. Hence, it is possible that certain elements of immune regulation by 

helminths may be caused by alterations to the bacterial communities of the host. Germ-free 

mice experiments with helminth infections may clarify this in the future. In a recent study on 

virus-helminth co-infection (122), helminths impaired antiviral immunity, but the immune 

regulation was still present in germ-free mice, indicating that regulation can occur 

independently of the microbiota. Whether this observation is a general rule will require 

further investigation. Clearly, we have a lot to learn about the many different types of 

transkingdom interactions that can occur between the mammalian hosts, viruses, bacteria, 

fungi and helminths. How these interactions may impact the regulation of the immune 

system will be the subject of future studies.
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Bacterial communities have a tendency to stabilize into several distinct clusters (sometimes 

referred to as enterotypes(123)). These community structures appear to be relatively resilient 

to perturbations (13). It has been suggested that once community structures have stabilized, 

considerably more “activation energy” may be required to alter these structures (59). One 

possibility is that helminths (or the immune response to helminths) are a driving force 

favoring specific bacterial communities that are more immune regulatory (24). An exciting 

area of further research will be to characterize the dynamic interactions between helminth 

infections and bacterial communities to determine whether they may promote stability and 

resilience of certain communities, as well as decoupling the immunological effects of the 

microbiota from the helminths.
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